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The progress of microbubble flow simulations in our group is summarized. Numerical simulations of

turbulent channel flows containing a lot of bubbles are performed for various Reynolds numbers. The

skin friction increases at the lower Reynolds number of Reτ ≈ 200, while it decreases at the higher

Reynolds number of Reτ ≈ 1× 103 which is same magnitude as that in typical experiments. These results

are consistent with the dissipation theory, i.e., the reduction (or increase) of the total dissipation rate

accounts for the drag reduction (or increase). Numerical simulations of homogeneous shear flows are also

carried out in order to find the mechanism of reducing the turbulence production leading to the drag

reduction. By investigating the distribution of vortical structures, the turbulence production tends to

reduce when the turbulence introduced by the bubbles is small enough.

1 Introduction

Injecting microbubbles into a turbulent boundary layer is considered the most suitable for ships among
several techniques proposed for reducing a skin friction, such as riblets, mechanical devices and polymers,
because of high efficiency, low cost and no environmental contamination. Madavan et al. (1984) measured
the skin friction on a plate placed in a water tunnel and reported an attractive result that the efficiency of
the MicroBubble Drag Reduction (MBDR) reaches up to 80%. Although the MBDR has been studied over
the last three decades since McCormick and Bhattachryya (1973) experimentally found this phenomenon, its
mechanism is not fully understood yet. It is because the microbubbles obstruct detailed measurements.

It is very recent to overcome the difficulty in obtaining the detailed data on the flow modulation. With
progresses in measurements and numerical simulations, the dynamic interaction between the bubble and
liquid has enabled us to be locally captured and tells us helpful insight into the MBDR mechanism. On the
numerical studies, we have simulated the microbubble flow since 2000 when the research project of “Smart
Control of Turbulence” started. Although the numerical simulation seems appropriate for making clear the
MBDR mechanism because of considering the local flow dynamics, it is not easy to reproduce the MBDR.
Kawamura and Kodama (2002) and Sugiyama et al. (2002) simulated the channel turbulent flow containing
deformable bubbles in the Front Tracking Method (FTM) generalized by Unverdi and Tryggvason (1992) and
showed unsuccessful results that the skin friction increases with increasing void fraction. They set to the
friction Reynolds number Reτ less than 180, which is one or two orders of the magnitude smaller compared
with typical experiments, due to computational restrictions. Sugiyama et al. (2002) also investigated the
influences of other factors, such as the compressibility of bubble, and showed the increase of the skin friction.
The first successful simulation to reproduce the MBDR was reported by Xu, Maxey and Karniadakis (2002).
They employed the Force Coupling Method (FCM) developed by Maxey and Patel (2001). They simulated
the turbulent channel flow at relatively low Reynolds number (Reτ = 135) with large bubbles (d = 0.2h−0.6h,
here d is the bubble diameter and h the channel half height h). They initially put bubbles in the layer near
the wall and showed that the drag reduction transiently occurs when the bubbles disperse by turbulence. The
authors also investigated the transient effects of the bubble concentration on the skin friction at the comparable
Reynolds number in the Eulerian-Lagrangian Method (ELM), FTM and FCM (see Kodama et al., 2003 and
Sugiyama et al.,2003 & 2004). With respect to the fully resolved DNS for deformable bubbles, Lu , Fernández
and Tryggvason (2004) recently investigated the deformation effect on the skin friction in the FTM. They
showed that the deformable bubbles suppress forming quasi-streamwise vortices near the wall, which carry
large Reynolds shear stress, and consequently the skin friction significantly reduces. Ferrante and Elghobashi
(2004) performed point bubble simulations in the spatially developing turbulent boundary layer in the ELM.
They showed that the non-zero divergence of the liquid velocity vector due to the inhomogeneous distribution
of the void fraction causes the negative momentum transfer and displaces quasi-streamwise vortices away from
the wall. Consequently, the MBDR rate reaches up to about 20% even at the small void fraction (α0 =2%).
Although the high efficiency of the MBDR in their result is attractive for the application, it is technically



difficult to generate the small bubble comparable to the wall unit with small energy input. Until now, although
several different hypotheses for the MBDR have been proposed from the simulation results, the consensus on
its mechanism is not reached yet.

In this paper, the progress of microbubble flow simulations for elucidating the drag reduction mechanism
in our group is summarized. The simulation methods in the ELM, FCM and FTM for the microbubble flow in
the channel are shown and flow modulations on the skin friction are discussed on the basis of the dissipation
theory. Numerical simulations of homogeneous shear flows are also carried out in order to find the mechanism
of reducing the turbulence production leading to the drag reduction.

2 Channel flow simulation with point bubbles

In order to investigate the effect of the large scale density fluctuation, point bubble simulations have
been performed (Sugiyama et al.,2003). The purpose of this simulation is to examine the effects of the
transient bubble dispersion (Xu et al., 2001) and the velocity divergence (Ferrante and Elghobashi, 2004). The
simulation code based on the Eulerian-Lagrangian Method (ELM, Murai and Matsumoto, 1996) is developed
for the channel turbulent flow with microbubbles. In the ELM, the liquid phase is solved on the grid in the
Eulerian way and the bubble is individually tracked in the Lagrangian way. The governing equations are
based on the volume averaged equations for the mass and momentum conservations and discretized on grids
much larger than the bubble diameter.

Governing equations consist of conservation equations of liquid and gas volume fraction,

∂fL

∂t
+ ∇ · (fLuL) = 0,

∂fG

∂t
+ ∇ · (fGuG) = 0, (1)

and the momentum conservation equation for the liquid and gas mixture fluid,

ρL

[
∂fLuL

∂t
+ ∇ · (fLuLuL)

]
= −∇p + µL∇2uL, (2)

where f is the volume fraction, t the time, u the velocity, p the pressure, µ the viscosity. The subscripts L and
G represent liquid and gas phases, respectively. To close the set of equations, the constraints on the volume
fraction fL + fG = 1 and the equation of translational motion of bubble taken the added inertia, steady drag
force on the bubble and the liquid inertia around the bubble into account are used as constitutive equations.
The fourth-order finite difference and second-order Adams-Bashforth methods are employed for the spatial and
time derivatives, respectively. The interpolation from the liquid phase to the bubble centroid is approximated
by using the fifth-order Lagrange’s interpolation polynomial. The developing flow in a channel with a bubble
injection from the top wall is simulated. The friction Reynolds number Reτ is set to 150. The size of the
simulation domain is set to Lx × Ly × Lz = 10πh × 2h × πh divided by Nx × Ny × Nz = 320 × 64 × 64 grid
points, in the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively. The bubble diameter
normalized by the wall unit d+ is 2. The bulk void fraction fG0, corresponding to the flow rate of the injected
bubble divided by the total flow rate, is 0.3%. This fG0 is much smaller than in the typical experiments due
to the numerical restriction.

Figure 1 shows a typical side view of an instantaneous bubble distribution. White points correspond to
the bubbles. The bubbles are injected from x = 0.5πh to πh with the vertical velocity of −uτ . As shown in
Fig.1, the bubbles disperse by turbulence in the downstream.

Figure 2 shows the streamwise profile of Cf/Cf0 on the top and bottom walls. Cf corresponds to the
friction coefficient scaled by the inlet flow rate and the liquid density and Cf0 to that in single phase flow. Cf is
averaged over the time and in the spanwise direction. The skin friction on the top wall reduces at downstream
of the injection when the bubble cluster disperses into the flow. This results seems to be consistent with that
reported by Xu et al.(2001) in the force coupling method. The drag reduction persists to the outlet region at
the distance from the end of the injection zone longer than 20h, corresponding to 3000 wall units. Although
the skin friction increases on the top and bottom walls near the bubble injection region, the total skin friction
with bubbles becomes smaller than that in the singe phase flow.

In order to discuss the flow modulation, the Reynolds shear stress −f̄LuLvL is analyzed. This stress can
be decomposed into

−f̄LuLvL =

fluctuating component︷ ︸︸ ︷
−(f̄LuLvL − f̄LūLv̄L) −f̄LūLv̄L︸ ︷︷ ︸

mean component

, (3)

where the operator ·̄ corresponds to averaging over the xz−plane. Note that the mean component is zero in
the single phase flow because of v̄L = 0. The wall-normal profiles of the fluctuating and mean components



of the Reynolds shear stress on several x-positions are shown in Fig.3. The fluctuating component is almost
independent of x, while the mean component is non-zero (i.e., v̄L �= 0) and strongly dependent on x. That is
the modulation of the turbulent flow is small, while that of the mean flow is large. It is caused by the velocity
divergence effect due to the inhomogeneous distribution of the void fraction shown by Ferrante and Elghobashi
(2004). We confirmed the drag reduction obtained in the ELM is caused by the velocity divergence effect from
momentum balances. The results seem to be consistent with those reported by Xu et al.(2002) and Ferrante
and Elghobashi (2004). In the ELM, however, the restriction of the bubble diameter being comparable to
the wall unit is severe problem when considering the bubble diameter being O(100) wall units in the typical
experiments. In the following sections, the larger bubble will be treated in other simulation methods.

3 Channel flow simulations with finite size bubbles at low Reynolds
number (Reτ < 200)

Extensive simulations of the channel turbulent flow have been performed at the friction Reynolds number
Reτ less than 200. So far, most of the microbubble flow simulations have also been performed at Reτ ∼ 150
which is one or two orders of the magnitude smaller compared with typical experiments. Lu et al. (2004)
showed both increase and reduction of the skin friction by examining the bubble deformation. For perfectly or
nearly spherical bubbles in the low Reynolds number simulations, Xu et al.(2002) shows the drag reduction,
while Kawamura and Kodama (2002) and Sugiyama et al. (2002& 2004) showed the drag increase in spite
of almost same bubble size. In this section, we discuss this inconsistency and show what type of simulation
method should be employed in elucidating the drag redution mechanism on the basis of the dissipation theory.

Xu et al.(2002) employed the Force Coupling Method (FCM). They assumed the bubble is spherical and
rigid and neglected the buoyancy. In the FCM, the no-slip boundary condition is not fully satisfied on the
bubble surface. Instead of the satisfaction of the boundary condition, the body force from the bubble to the
liquid Fp is introduced in the momentum equation given by

ρL
Du
Dt

= −∇p + µL∇2u + Fp. (4)

Based on the Stokesian dynamics, Fp is expressed as,

Fpi =
Nb∑
l=1

(
F

(l)
i ∆(x − Y(l), σm)︸ ︷︷ ︸

Force monopole

+ F
(l)
ij

∂

∂xj
∆(x − Y(l), σd)︸ ︷︷ ︸

Force dipole

...

)
. (5)

The force monopole is related to the translational motion of the bubble and equivalent to the reaction force
against the drag force on the bubble. Xu et al.(2002) considered the force monopole. The force dipole is
related to the velocity gradient around the bubble. Even if the bubbles perfectly follow the surrounding
liquid, the force dipole is non-zero due to the shear flow. According to the Einstein’s theory (Batchelor,
1967), the force dipole contributes to the increase of the skin friction. Although the method to include the
force dipole in the FCM was generalized by Lomholt et al.(2002), Xu et al.(2002) neglected it. The authors
developed the simple method to estimate the force dipole and showed reasonable result compared with the
Einstein’s theory (Sugiyama et al., 2004).

The modulation of the skin friction will be discussed from the dissipation theory. In the single phase flow,
the modulation of the skin friction is often discussed from the Reynolds shear stress or the production of the
turbulent kinetic energy. The dissipation rate may seem the secondary effect because small eddies carrying
large dissipation rate are generated as the result of the energy cascade from energy-containing large eddies.
In the bubbly flow, however, the dissipation rate around the bubble locally changes due to the vorticity
generation on the bubble surface. Based on Eq.4, total friction coefficient CTop

f + CBot
f in the channel flow is

expressed as,

CTop
f + CBot

f =
8µLh〈S : S〉

ρL〈u〉3︸ ︷︷ ︸
Dissipation

+
2h

〈u〉3
[
d〈u · u〉

dt
− d〈u〉〈u〉

dt

]
︸ ︷︷ ︸

Fluid motion

− 4h

ρL〈u〉3 〈u ·Fp〉︸ ︷︷ ︸
Bubble force

,
(6)

where S(= {∇u + (∇u)T }/2) is the strain rate tensor and the operator 〈·〉 the volume averaging over the
whole region. The effects of the buoyancy and the bubble deformation can be additionally included in Eq.6.
The bubble force term in Eq.6 accounts for the bubble and liquid interaction. The third term in the RHS will
temporally decrease if the transient effect, e.g. the large scale density change due to the bubble dispersion, is



important for the drag reduction. In the statistically steady situation, this term becomes negligible and the
dissipation term dominant.

The effect of non-uniform distribution of the initial bubble position on the skin friction is investigated
under a similar condition to the computation reported by Xu et al. (2002). Before introducing the bubbles,
a fully developed single-phase turbulent channel flow at Reτ = 150 is computed. The size of the simulation
domain is set to Lx × Ly × Lz = 2πh × 2h × πh divided by Nx × Ny × Nz = 64 × 64 × 64 grid points. The
periodic boundary condition is imposed in x and z directions. The bubble radius a and the bubble number
Nb are set to 0.25h and 30, respectively. The initial bubble location is the layer near the top wall.

The temporal evolution of the total friction coefficient CTop
f + CBot

f and the dissipation term in Eq.6 are
shown in Fig.4. CTop

f +CBot
f is strongly dependent on the dissipation term. When neglecting the force dipole,

the fluid motion term in Eq.6 initially decreases due to the transient density change caused by the bubble
dispersion. The decrease of the fluid motion term transfers to the decrease of the dissipation term as the flow
evolves. On the other hand, when considering the force dipole, the dissipation around the bubble becomes
large due to the shear flow modulation.

The skin friction is likely to increase due to the force dipole. In the force coupling simulation, however, the
local no-slip boundary condition is not fully satisfied on the bubble surface even if the force dipole is introduced
and the steady Stokes dynamics is assumed for the two-phase interaction even at the finite Reynolds number.
The direct simulations, where the boundary condition is locally approximated, are also performed under the
almost same condition. We simulated the flows containing the rigid bubble with the no-slip boundary based
on the method proposed by Sugiyama et al. (2001) or the deformable bubble with the free slip one using the
code developed by Kawamura and Kodama (2002). Then, similarly to the force coupling simulation with the
force dipole, we confirmed the drag increase in both simulations due to the local increase of the dissipation
rate around the bubble. For example, Fig.5 shows that a conditionally sampled (S : S)∗ for the DNS with
the rigid bubble with respect to the nearest length from the bubble centroid λ. Here, (S : S)∗ corresponds to
the deviation of the S : S from that averaged over the xz−plane. As shown in Fig.5, the (S : S)∗ is likely to
increase near the bubble surface (λ/a > 1). The positive change of (S : S)∗ contributes to the increase of the
skin friction as expected by Eq.6. So far, we confirmed that the inertial terms in Eq.6 can contribute to the
drag reduction but the increase of the dissipation term is larger than the decrease of the inertial terms.

The drag increase result shown in this section is reasonable in view of the dissipation theory. The present
simulation condition is rather limited so that we cannot conclude if the drag reduction occurs at the low
Reynolds number. However, we can say that the simulation method resolving the dissipation rate near the
bubble surface should be chosen in investing the skin friction change.

4 Channel flow simulations at high Reynolds number comparable

to that in typical experiment (Reτ ∼ 1000)

In the last year, the authors reported the Large Eddy Simulation (LES) at the high Reynolds number
(Reτ = 1100) comparable to that in the experiment by Moriguchi and Kato (2002) (see Sugiyama et al.,2004).
The result showed that both the skin friction and the total dissipation rate transiently reduce during a short
period (t+ ≤ 480). Until now, we have simulated up to t+ = 1800. In this section, the several statistical data
are discussed.

The numerical method used in this study is based on the Front-Tracking Method (FTM) to deal with
the deformable bubble (Kawamura and Kodama, 2002). In order to determine the simulation condition,
the experiment by Moriguchi and Kato (2002) is referred. The dimensionless parameters are Reτ=1,100,
d/h=0.2, the Froude number Fd = Um/

√
gh = 16, and the Weber number We = ρU2

md/σ = 34. The size of
the simulation domain is set to Lx ×Ly ×Lz = 6.4h× 2h× 3.2h divided by Nx ×Ny ×Nz = 256× 128× 128
grid points. Initially, 98 bubbles are introduced and the length between the bubble centroid and the wall is
set to 0.2h. In balance with the buoyancy and bubble dispersion effects, the bubbles are likely to locate near
the top wall.

The instantaneous distribution of the bubble near the wall at t+ = 1800 is shown in Fig.6. The color
contour indicates the magnitude of the streamwise velocity. The bubble diameter is 220 wall units. Although
seemingly the bubble is very close to the wall, the nearest bubble surface from the wall is located at the buffer
layer or the log-law region. Thus, most of the bubble body is included in the outer layer (y+ > 50).

The temporal evolution of the relative friction coefficient Cf/Cf0 on the top wall is shown in Fig.7. The
tendency of Cf/Cf0 < 1 indicates that the skin friction reduces on the top wall. The relation between
Cf/Cf0 and the void fraction is shown in Fig.8. The symbols • and + correspond to the results in the
present simulation and in the experiment by Moriguchi and Kato (2002), respectively. As shown in Fig.8, the



magnitude of the drag reduction in the present simulation shows good agreement with that in the experiment
within the measurement error.

The mean velocity profiles at Reτ = 1100 and 180 are shown in Figs.9 and 10, respectively. The velocity
is normalized by the friction velocity uτ so that the increase of the normalized velocity accounts for the drag
reduction. The bottom figure shows the change of the liquid velocity by adding the bubble. As shown in Fig.9
in the higher Reynolds number case, the mean velocity increases in the region of y+ > 200, contributing to
the drag reduction. On the other hand, the mean velocity decreases in the near wall region y+ < 100 where
the mean velocity gradient is large. It is seen from Fig.10 in the lower Reynolds number case that the mean
velocity decreases in almost whole region. This result is consistent with the drag increase obtained at the
lower Reynolds number. Note that the center of the channel corresponds to y+ = Reτ . Thus, the velocity
increase in the outer region is likely to occur at the high Reynolds number. On the velocity modulation, we
also confirmed a consistent result with the optical measurement by Kitagawa et al.(2004) that the Reynolds
shear stress −u′v′ of the bubble is considerably smaller than that of the liquid phase.

The time histories of the relative dissipation rate 〈S : S〉L at Reτ = 180 and Reτ = 1100 are shown in
Fig.11. The dissipation rate at the lower Reynolds number increases by adding the bubble leading to the
drag increase. On the other hand, the dissipation rate at the higher Reynolds number decreases leading to
the drag reduction. The decrease magnitude of the total dissipation rate is rather smaller than the that of
the skin friction on the top wall shown in Fig.7. It is because the total dissipation rate contributes to the
skin frictions not only on the top wall but also on the bottom one. We confirmed that the sum of the friction
coefficients on the top and bottom walls is well correlated to the total dissipation rate.

As shown in Fig.5, the local increase of the dissipation rate around the bubble leading to the drag increase
can be found at the low Reynolds number. Although the flow modulation is checked from the data at the
high Reynolds number, the locally characteristic structure to reduce the dissipation rate cannot be found
around the bubble. This result may suggest that the global turbulence modulation through the production
and dissipation process for the turbulent kinetic energy is more important than the local flow modulation
around the bubbles. In the next section, the turbulence production mechanism by the presence of the bubbles
is investigated by simulating the homogeneous shear flow.

5 Homogeneous shear flow simulation

Although the drag reduction mechanism is not fully made clear yet, it is presumed that the Reynolds
number is important parameter and the turbulence seems to be globally modulated. On the turbulence effect,
Fukagata et al. (2002) quantified the contribution of the Reynolds shear stress to the skin friction. Based on
their theory, we pay attention to the turbulence production expressed by the product of the Reynolds shear
stress and the mean shear. We consider x−component of the averaged momentum equation based on Eq.4
given by

ρL

[
∂ū

∂t
+

∂u′v′

∂y

]
=
(
−dP

dx

)
+ µL

∂2ū

∂y2
+ F̄px, (7)

where the operator ·̄ corresponds to averaging over the xz−plane and f ′g′ = fg− f̄ ḡ. Eq.6 can be decomposed
into

ρL〈ū〉3(CTop
f + CBot

f )
4h

=P + µL

〈(
∂ū

∂y

)2
〉

+
ρL

2

[
d〈ū · ū〉

dt
− d〈ū〉〈ū〉

dt

]
− 〈ū · F̄p〉, (8)

P =2µL〈S′ : S′〉 +
ρL

2
d〈u′ · u′〉

dt
− 〈u′ · F′

p〉, (9)

where the turbulence production P is given by

P = −ρL

〈
u′v′

∂ū

∂y

〉
. (10)

In the RHS of Eq.8, the term containing the fluctuating velocity is only the first one. Thus, P is considered
to account for the contribution of the turbulence eddy to the skin friction.

In order to clarify the mechanisms of the drag reduction, it is useful to quantify the influence of parameters
by means of the DNS. However, the simulation of the channel flow containing bubbles requires a lot of compu-
tational time so that this flow is not appropriate for the parametric study. In this section, the homogeneous
turbulent shear flow with uniform shear and no solid boundary is simulated instead of the channel flow. This
flow is considered the simplest flow to appropriately investigate the vortical structure generating the Reynolds



shear stress. The modulation of the turbulence production P, which is significant for the skin friction (Eq.8),
is discussed by estimating P based on Eq.9 for the fluctuating velocity field.

The DNS of the bubbly flow is performed based on the method proposed by Kajishima et al.(2001) for the
rigid bubble or in the FTM for the deformable bubble. Governing equations for fluctuating velocity ui and
pressure p consist of the mass and momentum conservation equation. In the tensor form, these normalized
equations for the rigid bubble flow are given by

∂ui

∂xi
= 0, (11)

∂ui

∂t
+ U1

∂ui

∂x1
+ Sδi1u2 + uj

∂ui

∂xj
=

∂

∂xj
(−pδij + 2νSij) + Fpi, (12)

where S(= dU1/dx2) is the shear rate and U1 = (S(x2 − L2/2), 0, 0) is the mean velocity. S is set to 1. The
size of the simulation domain is set to L1 × L2 × L3 = 1 × 1 × 1 divided by N1 × N2 × N3 = 64 × 64 × 64 or
128 × 128 × 128 grid points, in the streamwise (x1), vertical (x2) and spanwise (x3) directions, respectively.
There is no wall in the flow, thus the periodic boundary condition is imposed in the x1 and x3 directions
and the shear-periodic boundary condition (Gerz et al.,1989) in the x2 direction. Initial turbulence field is
randomly given by the solenoidal velocity vector satisfying the prescribed three-dimensional energy spectrum
Ẽ(k) shown by Gerz et al.(1989). Simulation parameters consist of the shear Reynolds number Re(= Sd2/ν),
the initial root-mean-square (rms) of fluctuating velocity urms0 and the Weber number We(= ρLS2d3/σ) (only
for the deformable bubble). In both Re and We, Sd is used as the velocity scale. In order to determine the
simulation condition, the parameters in the previous experiments performed by Moriguchi and Kato (2002)
and Oishi et al.(2003) are referred. The ranges of Re and urms0 are 581−2326 and 0.411−6.576, respectively.
We is set to 5.0 or 11.5. The bubble diameter d and the number of bubbles Nb are set to 0.2 and 8, respectively.
Correspondingly, the void fraction α0 is 3.35%. Initially, the simulation domain is divided into 8 cubic boxes
and the bubble centroids are located at the center of these boxes. The time derivative of the turbulent kinetic
energy E(= 〈uiui/2〉) for the rigid bubble flow is expressed as,

dE

dt
= P − ε + 〈Fpiui〉 , (13)

where P(= −S〈u1u2〉) is the turbulence production and ε(= 2ν〈SijSij〉) the turbulence dissipation. The
last term in the RHS of Eq.13 corresponds to the contribution of the bubble with no-slip boundary. In the
fully developed state, the growth of E, P and ε is exponential in time. Scaled turbulence production P/E is
discussed.

P/E is shown in Fig.12. Ret(= urmsd/ν) in Fig.12 corresponds to the turbulence Reynolds number, here
urms(=

√
2E/3) is the rms velocity. Ret is used for the horizontal axis in order to make equitable comparison

under the same E. As shown in Figs.12(a)- 12(d), the turbulence production P/E tends to increase by adding
the bubbles at the lower Reynolds number (Re = 581), while P/E to reduces at the higher Reynolds number
(Re = 2326) in both flows containing deformable and rigid bubbles. From Eq.8, the reduction (or increase)
of P/E contributes to the drag reduction (or increase) in the channel flow due to the fluctuating velocity.
The reduction of P/E in the higher Reynolds number (i.e., the lower viscosity) seems consistent with the
drag reduction shown in §4. It is seen from Figs.12(d) and 12(e) that P/E tends to increase by adding the
bubbles in the smaller urms0 case, though P/E to reduce in the larger urms0 case even at the same Re. As
recognized from the horizontal axis, Ret in the smaller urms0 case (Fig.12(e)) is much lower than that in the
larger urms0 case (Fig.12(d)). This result indicates that the turbulence intensity is also important parameter
for distinguishing reduction and increase of the skin friction.

In order to grasp the flow structure when the turbulence production reduces or increases, the vortical
structure is visualized. In the present study, the vortex is educed by means of a λ2-definition proposed by
Jeong and Hussain (1995). λ2 corresponds to the second largest eigenvalue of a tensor SikSkj + ΩikΩkj ,
here Ωij = (∂ui/∂xj − ∂uj/∂xi)/2. If λ2 < 0, the swirling motion may exceed the straining motion. In
order to educe the vortical structure objectively, λ2 is scaled by urms and the Kolmogorov length scale η
based on the numerical investigation by Tanahashi et al.(2001), who identified the fine scale eddy by using II
(corresponding to the second invariant of the velocity gradienttensor). Incidentally, Iida et al.(2000) educed
the vortical structures in the homogeneous shear flow by both the λ2- and II-definitions with prescribed
thresholds and showed there was no difference in the definitions.

The side view of the typical vortical structure visualized by isosurface of λ2/(urms/η)2 = −0.02 is shown in
Fig.13. The cyan and yellow surfaces correspond to ω1 > 0 and ω1 < 0, respectively. As shown in Figs.13(A)
and 13(C), corresponding to the cases in which the bubbles increase the turbulence production (Figs.12(c) and
12(e)), potent eddies preferentially exist around bubbles. The elongated structures seem slightly to incline



from the x1-direction towards the x2-direction. Such an inclination of the vortical structure generates the
negative correlation between u1 and u2, contributing to the positive turbulence production. According to
Adrian and Moin (1988) and Kida and Tanaka (1992), the Reynolds shear stress (i.e., P) is likely to take
large value between pairs of counter rotating vortices. In Figs.13(A(b)) and 13(C(b)), the counter rotating
vortices, as drawn by different colors, are observed near the bubble. Indeed, we confirmed the preferentially
organized vortices contain quite large Reynolds shear stresses from the conditional sampling. The case of
Fig.13(B) corresponds to that in which the bubbles decrease the turbulence production (Fig.12(d)). The
integral length l is equivalent to that in Fig.13(C(b)), corresponding to l = 0.23. Unlike the cases at the lower
Re (Fig.13(A(b))) and the smaller urms0 (Fig.13(C(b))), it is seen from Fig.13(B(b)) that the preferentially
potent eddies do not clearly observed around the bubble. The uniform distribution of the eddies indicates the
Reynolds shear stress is also uniformly distributed. Indeed, we confirmed that the x2−position of the bubble
and −u1u2, corresponding to the Reynolds stress averaged over x1x3−plane, are not well correlated. So far,
we also performed computatitions based on the linear theory, corresponding to the rapid distortion theory
(Lee et al., 1990), and confirmed that the nonlinear interaction among the small scale motion is essential for
reducing the turbulence production. Moreover, the small scale motion to generate the Reynolds shear stress is
considerably suppressed by the bubble containing no turbulence eddy when P/E reduces. From results of the
uniform profile of −u1u2 in the liquid phase and the suppression of −u1u2 inside the bubble, the reduction of
P/E by adding the bubble is considered to be caused by decreasing the degree of freedom of the turbulence
motion.

The scaled production ratio 〈P/E〉/〈(P/E)0〉 is shown in Fig.14, here 〈(P/E)0〉 is for the single phase flow.
From Figs.14(a) and 14(b), 〈P/E〉/〈(P/E)0〉 becomes smaller at the higher shear and turbulence Reynolds
numbers. The result of 〈P/E〉/〈(P/E)0〉 > 1 at the lower Reynolds numbers is caused by the preferentially
organized vortices around the bubble as shown in Figs.13(A) and 13(C). The dotted line corresponds to the
liquid volume fraction. Although the number of data is small, 〈P/E〉/〈(P/E)0〉 seems to approach the liquid
volume fraction at the higher Reynolds numbers. This result supports the hypothesis that the reduction of
P/E is caused by decreasing the degree of freedom of the turbulence motion if the turbulence introduced by
the bubble is small enough. Fig.14(c) shows the influence of the bubble deformation with different Weber
numbers (We = 5.0, 11.5). At the lowest Reynolds number, 〈P/E〉 increases in both cases of We = 5.0 and
11.5 by adding the bubble. The increase ratio is considerably smaller at the higher Weber number. This
result indicates that the deformation of bubbles suppresses the turbulence production. On the other hand,
〈P/E〉 reduces at the higher Reynolds number in both Weber number cases. Unlike the cases at the lower
Reynolds number, the influence of the Weber number is quite small on the decrease ratio of 〈P/E〉. For the
deformable bubble flow, 〈P/E〉/〈(P/E)0〉 also seems to approach the liquid volume fraction.

6 Conclusions

The progress of microbubble flow simulations for elucidating the drag reduction mechanism in our group is
summarized. By using several simulation techniques such as the Eulerian-Lagrangian method, force coupling
one and front tracking one, the following results are obtained.

• In a transient process of developing flows, the bubble dispersion contributes to the drag reduction, while
the increase of the local velocity gradient around the bubble contributes to the drag increase. Although
the latter effect requires a lot of computational resources, it should be considered when investigating
the drag reduction mechanism.

• In the low Reynolds number turbulence (Reτ < 200), the increase of the dissipation rate by the presence
of bubbles cannot be negligible so that the skin friction consequently tends to increase.

• At the friction Reynolds number higher than about 1000, the turbulence structure is globally modulated
to reduce the skin friction by the bubble motion. In the large eddy simulation at the friction Reynolds
number of Reτ = 1100 and the void fraction of 1%, the skin friction reduces in 2 − 3% as a result of
reducing the total dissipation rate. The drag reduction magnitude is comparable to the experimental
result obtained by Moriguchi and Kato(2002) within a measurement error.

• From the homogeneous shear flow simulation, the Reynolds shear stress increases by adding the bubble
when potent eddies are preferentially generated around bubbles, while it reduces when the bulk turbu-
lence is large enough. When shear and turbulence Reynolds numbers and Weber number are large, the
Reynolds shear stress tends to be smaller, which may lead to the drag reduction.
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Figure 1: Visualization of computed flow in the point
bubble simulation (ELM)
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Figure 2: Streamwise distribution of skin friction ratio
on top and bottom walls in the ELM
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Figure 3: Wall-normal distributions of the fluctuating
and mean components of the Reynolds shear stress in
the ELM (−f̄LuLvL) on x/h=1.18, 1.96, 2.75, 3.53,
4.32 and 5.11.
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Figure 4: Temporal evolution of the total friction co-
efficient and the energy dissipation at Reτ = 150 in
the FCM
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the DNS
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Reτ = 1100
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Figure 9: Mean velocity profile at Reτ = 1100
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Figure 10: Mean velocity profile at Reτ = 180
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Figure 11: Time history of the total dissipation rate
with deformable bubbles
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Figure 14: Scaled production P/E ratio


