

次世代CFDコードNAGISAの開発

流体性能評価系 CFD研究グループ 平田 信行*、田原 裕介、大橋 訓英、小林 寛

海技研の現行CFDソフトウェア

格子生成ソフト: H-O, O-Oトポロジー

HullDes:構造格子生成ソフト AutoDes:構造格子生成ソフト+船型変形&最適化 NSソルバー:抵抗、自航、斜航、旋回、姿勢変化の計算機能 NEPTUNE:構造格子によるNSソルバー SURF:非構造格子によるNSソルバー

海技研の新しいCFDソフトウェア 複雑形状物体周り計算に適した重合格子法

重合格子法とは?

互いに重合(オーバーラップ)する 複数の格子間で計算領域をカバー する。計算時に物理量等を補間し 合うことで流場を求める。 海技研が提供している重合格子システム G-TOOL:初期検討に適したシステム UP_GRID:詳細検討に適したシステム **重合格子を用いた構造格子によるNSソルバー** NAGISA:抵抗、自航、斜航、姿勢変化の計算機能

操縦・運動・耐航性能

G-TOOL

GTOOLによる重合格子生成(2ステップ) ①フィン形状作成と格子生成

chord r@root	1	chord r @tip	0.5	twist center	10
upper t ratio	1	shift x @ tip	0	twist @ tip	20
lower t ratio	0.1	i_int_span	1		
imay	41	dumin	10-005	dtin	0.01
jmax	41	domain_root	0.3	domain_tip	2
kmax	41	dyout	0.01		

②船体との重合

Main Block					
main block inapa_bulker_dm.bfc	bfc(00) 💌	Leeway	0		
Jub Blocks					
# of sub 7 <>			x	Y	z
sub block 1 💕 vfg.grd		StatorFin(- 0,4	73 0		-0.033
StatorFin(VFG)	RudFin(VFG)	Rudder		scale	0.005
✓ Identical # of fins 6	T Identical 2 fins	Rotation Ang	0	angle	10
AutoSlide span slide -0.001	pair# 0	Rudder Axis	0	position	50
Cut@y=0 side step 0.001				rotaxis	0
					-
a un l'auri l'ar	Comments			× 1	Cancel

UP_GRID (2/2)

NAGISA

概要

・基本的なNS解法はNEPTUNEに準拠

·擬似圧縮性、有限体積法、Roe法+MUSCL(3次)

- ・乱流モデル:SA、MSA、k-ω、EASM、DES(DDES)
- ・界面追跡法(単ブロックのみ)/捕獲法(Level-Set)
- ・抵抗、自航(簡易プロペラモデル他)、斜航/定常旋回、姿勢変化
- ・定常/非定常計算(dual time stepping)
- ・静的/動的重合格子による複雑形状計算
- ・波浪モデル(規則波)による波浪中、船体運動計算、PMMモード
- ・運動モデル(既定の運動、PMM、6自由度運動)
- ・格子変形+移動格子による運動計算も可能
- ・フルマルチグリッドの重合格子への適用

抵抗・推進性能 ダクト付肥大船まわりの流れ計算(1/4)

- 船型/: JBC
- Fn/= 0.142, Re=7.46e6
- 乱流モデル: EASM
- 計算領域
- -2<x<3.5, -2.5<y<2.5 -1.56<z<0.241
- Sinkage&trim free

	1m-1	jm-1	KM-1	Num. of Cells	Ave. min. spacing	Average y+
trut	56	80	40	179200	3.35E-06	0.39
uct	224	112	80	2007040	8.48E-07	0.054
tern_tube	136	144	80	1566720	2.46E-06	0.185
ect	144	144	144	2985984		
ull	96	320	80	2457600	1.77E-06	0.185
ect	96	112	80	860160		

. . . .

抵抗・推進性能 ダクト付肥大船まわりの流れ計算(2/4)

抵抗・推進性能 ダクト付肥大船まわりの流れ計算(3/4)

抵抗・推進性能 ダクト付肥大船まわりの流れ計算(4/4)

Table 1.5a-1: V&V study for JBC self propulsion w/o ESD, Re = 7.46×10⁶, Fr= 0.142

Parameters		EFD (D)	V&V Study		
			Coarse	Medium	Fine
	Value	4.811	5.257	4.720	4.922
$C_T \times 10^3$	E%D		-9.26	1.90	-2.31
2	Value		3.134	3.096	3.211
$C_F \times 10^3$	E%D				
	Value		2.122	1.624	1.711
$C_P \times 10^3$	E%D				
	Value	0.217	0.244	0.238	0.233
K _T	E%D		-12.38	-9.80	-7.52
V	Value	0.0279	0.0315	0.0310	0.0293
NQ	E%D		-12.91	-11.25	-5.09
(mg)	Value	7.8	7.83	7.18	7.56
n (rps)	E%D		-0.45	7.90	3.13

Table 1.6a-1: V&V stud	v for JBC self propulsior	n with ESD, Re = 7.46×106, Fr= 0.142
I ubic Itou It i we i bluu	j for obc sen propulsion	1 with ESD, ite 110 100, 11 0.112

Param	eters	EFD (D)	V&V Study		
			Coarse	Medium	Fine
$C_{T} \times 10^{3}$	Value	4.762	5.194	4.687	4.893
	E%D		-9.08	1.57	-2.76
$C_F \times 10^3$	Value		3.136	3.095	3.214
	E%D				
$C_P \times 10^3$	Value		2.059	1.592	1.680
	E%D				
K _T	Value	0.233	0.247	0.241	0.240
	E%D		-6.05	-3.28	-3.05
V	Value	0.0295	0.0315	0.0300	0.0300
ĸq	E%D		-6.81	-1.60	-1.76
n (mg)	Value	7.5	7.74	7.13	7.44
n (rps)	E%D		-3.19	4.87	0.76

抵抗・推進性能 浅水域における肥大船まわりの流れ計算(1/3)

対象船型:JBC、計算条件:Fn=0.142,Rn=4.6mil.,H/d=1.42-

抵抗・推進性能 浅水域における肥大船まわりの流れ計算(2/3)

Case	H/d	Measured	Computed
8hallow1	1.42	8.34	7.93
Shallow2	2.16	5.65	5.85
Shallow3	2.78	5.12	5.22
Deep	11.95	4.58	4.67

全抵抗係数 $C_t \times 10^3$

抵抗・推進性能 浅水域における肥大船まわりの流れ計算(3/3)

船側波形(左図)、水槽底の圧力分布(右図)

波浪中性能 向い波中における船体運動計算(1/2)

対象船型:KCS、計算条件:Fn=0.26, λ/L=1.15, Hs/L=0.0203

波浪中性能 向い波中における船体運動計算(2/2)

前後揺れ

操縦性能 Z操舵シミュレーション(1/2)

- タンカー船型(ESSO OSAKA)
 オーボーマンクション
 - 3m模型相当
- 乱流モデル k-ω SSTモデル
- プロペラモデル 簡易プロペラモデル
- 10度-10度 Z操舵シミュレーション
- 無次元時間刻み 0.01
- 移動格子法
- ▶ 動的重合格子手法(UP_GRID)

Grid	IM x JM x KM
Refined Rect.	97 x 105 x 25
Rudder	69 x 89 x 65
Refined Rudder Rect.	45 x 33 x 45
Hull	193 x 129 x 45
Background Rect.	125 x 97 x 41

操縦性能 Z操舵シミュレーション(2/2)

上下揺れ

- ・次世代CFDコード (G-TOOL, UP_GRID, NAGISA)
- ・現行CFDコード (HullDes, AutoDes, NEPTUNE, SURF)
- 今後、以下の研究を進め、舶用CFD技術の高度化を図る。
 - ・平水中・波浪中のフリーラン、実船スケール対応
 - ・キャビテーション計算手法の開発
 - ・風圧抵抗評価手法の確立
 - ・船体や省エネデバイスの形状最適化システムの構築
 - ・荒天下における大振幅動揺計算手法の開発