PS-16 曳航型ガンマ線スペクトロメータを用いた海底土放射能の連続測定

海洋リスク評価系 *鎌田 創、大西世紀、浅見光史 東京大学生産技術研究所 ソーントン ブレア 海技研フェロー、九州工業大学 浦環

1. はじめに

平成23年3月11日に発生した東日本大震災に伴う東京電 な 1F 周辺海域における放射性物質動態の予測に資するデー 学生産技術研究所(東大生研)は、震災直後に東大生研が開 発した曳航型ガンマ線スペクトロメータ[1]を用いて、平成 ムホースに入れて運用した。 24 年度から海域における放射性物質の分布状況の把握に関 する調査研究を開始した[2]。さらに、平成25年度から原子 力規制庁が「海域における放射性物質の分布状況把握に関す る調査研究」を開始し、海技研が受託し、東大生研、金沢大 学環日本海域環境研究センターと共同で、平成 27 年度まで の3年間モニタリング調査研究を実施した。従来の海域モニ タリングでは、海水や海底土を定期的に定点で採取して分析 する調査が主流であったが、本研究調査における曳航型ガン マ線スペクトロメータを適用した海底土放射能計測は連続 的に海底土放射能濃度をモニタリングできることが特徴で ある。本発表では、海技研と東大生研が中心となって実施し た曳航型ガンマ線放射能測定の調査、データ処理方法の概要 を示し、福島県沖の海底土放射能の経時変化について議論す る。

2. 調査方法

1F 近傍南北 50 km, 東西 20 km の海域において放射能調査 及び海底地形調査を実施した。1F 近傍海域の沖合では400ト ン級の調査船、沿岸域では20トン未満の漁船を使用した。放 射能調査では図1に示すように船尾からガンマ線スペクトロ メータを海域に投入し、海底面に接触させながら船で曳航す る方式で海底土から発生するガンマ線を測定した。放射線検 出器から得られるガンマ線計数率に、検出器のガンマ線応答 を考慮した計数率・放射能換算係数(換算係数)を掛け合わ せることで海底土の放射能を導出した。併せて、海底地形及 び地質と海底土放射能分布状況との関係を調べるためにサ イドスキャンソナーと単素子音響測深器で海底地形と土質 を調査した。

2.1 曳航型スペクトロメータ

曳航型スペクトロメータは、ガンマ線スペクトロメータ、 錘、ゴムホースから構成される。ガンマ線検出器として、 NaI(T1)シンチレータに光電子増倍管を結合させたもの、ガ ンマ線スペクトルを表示するための信号処理系として、検出

器の後段の信号処理回路、マルチチャンネルアナライザ、デ ータ処理 PC 及び電源を用いた。検出器及び信号処理系は、ア 力福島第一原子力発電所(1F)事故により、原子力発電所から ルミニウム合金の水密・耐圧容器に格納した。また、ガンマ 海域に放出された放射性物質の分布状況を把握し、中長期的 線検出器が海底面に常に接触する必要があるため、錘を分散 して格納し海底面からの浮き上がりを防ぐようにして全体 タを取得するため、海上技術安全研究所(海技研)と東京大 の水中質量を 115 kg となるようにした。これらを曳航時に 受ける衝撃から保護するために、直径15 cm、長さ8 mのゴ

図1 曳航型ガンマ線計測の概念[1]

2.2 曳航型スペクトロメータの運用方法

曳航型スペクトロメータの速度は、放射線検出器の検出効 率を考慮すると遅いほうが、検出器と海底面の接地時間が伸 びるため有利である。しかし、船舶を2ノット未満で航行さ せ、針路を一定に保つことは海流の影響もあって難しいこと と、1日あたりの計測距離が短くなることから、船速2ノッ トで曳航することとした。

曳航時に繰り出すワイヤー長は、水深の3倍程度を目安と し、深度に応じて長さを調整するようにした。船舶に装備さ れている衛星測位システム (GPS) の緯度・経度情報、船速、 深度、ワイヤー長から曳航体の緯度・経度を割り出すことと した。

2.3 曳航式ガンマ線スペクトロメータの解析方法

曳航型スペクトロメータによって得られるガンマ線スペ クトルの一例を図 2 に示す。スペクトルには、¹³⁷Cs 以外に ¹³⁴Cs からのガンマ線が検出されていることがわかる。本研究 ことで¹³⁷Csの正味の計数率を導出した。

また導出したピーク計数率(cps)から放射能(Bq/kg)に変 換する必要があるため、ピーク計数率を検出器応答(単位放 射能濃度あたりのピーク計数率)で割ることで算出した。

検出器応答はモンテカルロ放射線輸送シミュレーション によって導出した[3]。しかし、本研究の測定条件では海底土 放射能の水平分布しか得られず、海底土の鉛直分布に関して 考慮されないため、曳航調査と並行して海底土のコア採泥を 実施し、得られた底質資料に放射能分析をすることで鉛直分 布情報を得た。求めた検出器応答と海底土の鉛直分布情報を 組み合わせることで採泥地点における換算係数を得て、採泥 地点間の鉛直分布情報は補間によって得た。

図2ガンマ線スペクトル

2. 4 地形調查·土質調查

海底土中の放射能濃度分布は、海底地形及び土質と関係す ると考えられる。また、安全な曳航測線の設定、採泥地点の 検討にも海底地形及び土質の情報が必要であるため海底地 形調査を実施した。海底地形は、マルチビーム音響測深器に よる測定データ、土質には超音波の後方散乱・反射速度の測 定データ及び採泥調査で得られたサンプルの観察結果によ って評価した。

3. 調査結果

平成 25 年 12 月に得られた 1F 近傍海域の¹³⁷Cs 濃度分布測 定結果を図3に示す。1Fの極近傍に放射性物質濃度が集中し た分布が存在し、沖合6 kmの測線において、表層から3 cm 深さの平均値で最大 2000 Bg/kg-wet(平成 25 年度時点)の ¹³⁷Cs を観測し、図 4 に示すように沖合 4 km の測線では、¹³⁷Cs 濃度 1000 Bq/kg-wet (平成 25 年度時点)を超える箇所が 20 程 見つかった。また、沖合6 kmの測線については、全体で40 km 以上の連続的な分布を計測する事ができたが、海底地形に 段差がある箇所の底に集中的に¹³⁷Csが堆積しており、その海 底土の性状は泥質であった。さらに平成24年度の調査で約8 mの段差の底(図3中赤線で囲った領域)に集中的に¹³⁷Cs が 堆積した事を観測したが、平成25年度以降の調査でも同様 に堆積し、放射性物質濃度もほとんど変化が無かった。以上

では、¹³⁴Csのガンマ線ピーク、バックグラウンドを指し引くのことからくぼみ地形の泥質部分に¹³⁷Csが集中的に堆積し やすいことが分かった。

> また、平成24年度から平成27年度にかけて、海域全体の 平均放射能濃度を算出しているが、平成24年度で、150±40 Bq/kg-w であったのに対して、平成 27 年度では、45±12 Bq/kg-wと70%減少したことが分かった。

図4平成25年度調査における沖合4kmの調査測線、縦軸深 度、横軸船舶移動距離、矢印は放射能が比較的集中した箇所

4. まとめ

平成 24 年度から東大生研と共同で実施した海底土放射能 調査に合わせて平成 25 年から平成 27 年度まで福島県 1 F 近 傍海域の放射能調査を実施した。測線総延長は最大 970 km で 曳航調査を実施した。調査の結果、海底土放射能はくぼ地の 泥質で集中することが分かり、濃度は減少しにくい傾向にあ ることが分かった。また、全体の平均放射能濃度は平成24年 度から平成27年度までに70%減少したことが分かった。

謝辞

本研究は、原子力規制庁受託事業の一環として実施された ものである。関係者並びに漁業者の皆様の御協力に深く感謝 いたします。

参考文献

- 1) B. Thornton, et al., Mar. Pollut.Bul. 74(1) (2013)344
- 2) B. Thornton, et al., Deep Sea Res. I 79, (2013)10
- 3) S. Ohnishi et al., Nucl. Instrum. Meth. A819, (2016)111