
海上技術安全研究所研究発表会

ブラックカーボン削減技術に 関するレビュー

環境・動力系 環境分析研究グループ 高橋千織、益田晶子、中村真由子

IMOにおける大気環境規制の動向

海技研における大気環境規制関連研究のうち、 ブラックカーボン(BC)対策として、IMOで議論となっ ている環境規制対策技術についてレビューを行う。

Black Carbon規制の必要性についての検討状況

- 1. BC規制検討の経緯と削減技術調査
- 2. 海技研における今までの実験結果についても紹介する

Black Carbon規制の必要性 についての検討状況

IMOにおける議論の経緯 BC計測法と計測スタディ

IMOにおけるBCに関する議論の経緯(1)

◎IMOへの問題提起

MEPC60(第60回海洋環境保護委員会、2010年3月)

「北極圏における船舶からのブラックカーボン排出削減」 ノルウェー、スウェーデン、米国の共同提案

MEPC62(2011年7月)

「国際海運からのBC排出が北極海域に及ぼす影響とその規制の必要性」について検討することで合意

- ◎ BLG(現PPR)小委員会への検討作業委託
 - ① BCの定義を提案する
 - ② 最も適切な計測法を特定する
 - ③ BC排出を削減する適切な方法の調査を行う

IMOにおけるBCに関する議論の経緯(2)

- ●BCの定義: MEPC68(2015年5月)にて基本合意 Bondらの定義をもとにした定義とする T.C.Bond et al., J. of Geophysical Research: Atmospheres, 118 (2013), 5380-5552
- ▶BCは炭素燃料を燃焼したときの炎の中でのみ形成される炭素 状物質で、以下のような物理的性質を持つ。
- (1) 非常に強く可視光を吸収し、波長550 nmにおける質量吸収 係数が5m²/g以上 光吸収特性
- (2) 熱的に非常に安定で、高温でももとの形態を保つ。気化温度は4000 Kに近い 熱的安定性
- (4) 微小球状の炭素粒子の集合体として存在 存在形態

Black Carbon(BC) = Elemental Carbon(EC)

IMOにおけるBCに関する議論の経緯(3)

● 計測法:

PPR5(2018年2月)にて合意(現時点で一つに特定しない)

- •フィルタスモークメータ法(FSN)
- 光音響 (PAS) 法
- ・レーザー誘起白熱(LII)法
- 各国での計測スタディ実施:継続中
 - →計測スタディのための報告プロトコル作成(PPR5)
 EUROMOTのHPからエクセル版をダウンロード可

https://www.euromot.eu/how-we-work/marine-seagoing-engines/

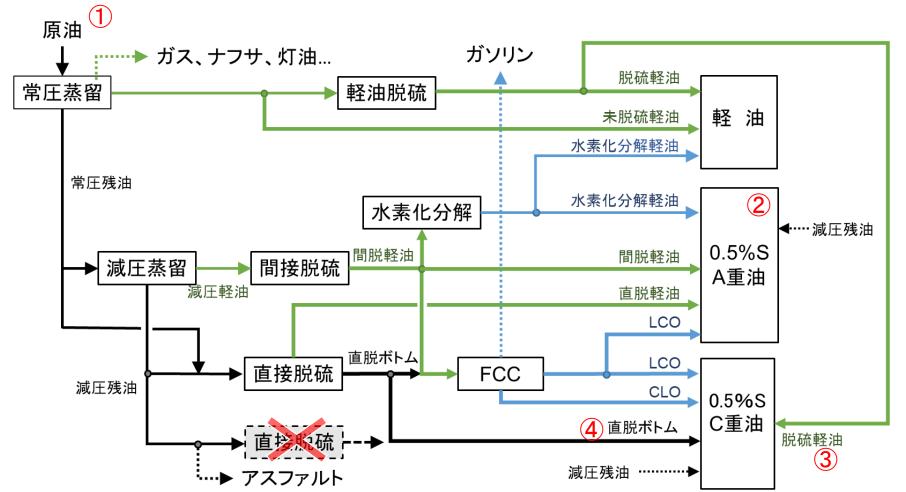
● 削減技術の調査:

PPR6(2019年)にて検討予定

→現在、CGにおいて意見及び情報を集約中 feasibility, safety, availability and effectiveness

Black Carbon規制の必要性 についての検討状況

削減技術の調査

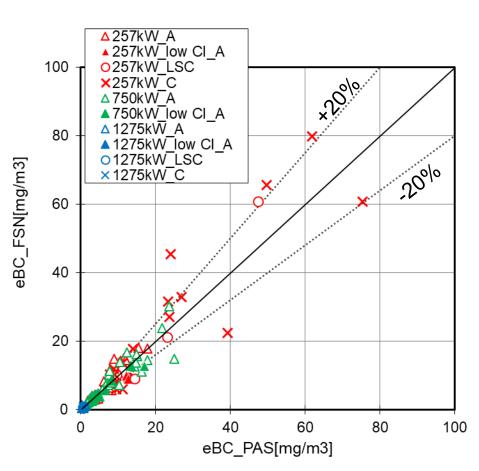


1. 燃料転換

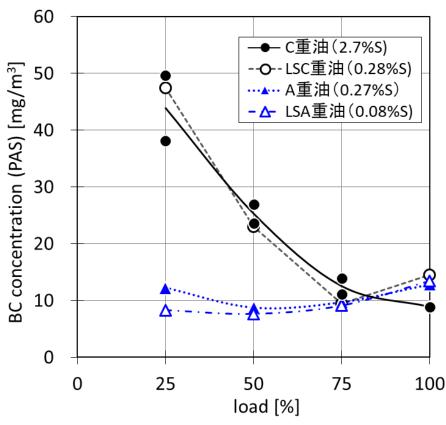
	期待されるBC削減率	Note	NMRI
燃料油転換	HFOからMDOの場合 ~85%(複数の文献より) 33% ¹⁾ 60%(30%負荷) ²⁾	2ストロークと4ストロークエンジン、負荷で異なる。 最新の電子制御エンジンでは効果なしとの報告も。 燃料グレードを考慮した評価、ハイブリッドタイプの 燃料油では更なる評価が必要	0
水利用技術	50-90%(エマルジョン燃料) ¹⁾ 45-50% ³⁾ 高負荷で効果あり(海技研)	CO ₂ 削減18%以下	0
LNG	90%以上、93.5% ¹⁾	CO ₂ 削減20%強	0
LPG			
バイオ燃料	50-75%(100%の場合) ¹⁾ 10-30%(20%ブレンド) ¹⁾ 50%程度(30%ブレンド) ³⁾	再生可能エネルギー BCは減るが、NOxは増える	0
メタノール	97%(DME) ¹⁾	常温常圧で液体、再生可能エネルギー	
電池	100%		0
燃料電池	100%	NOx、SOx、PMはほぼゼロ	0
水素			0
核燃料	95%以上		

2020年以降の舶用燃料油のブレンド例

低硫黄化のための手段:


- ①原油の低硫黄化、②留出油タイプ(DMBグレード)、③既存C重油を脱硫軽油で希釈、
- 4直脱ボトムをベース(ハイブリッドタイプ)

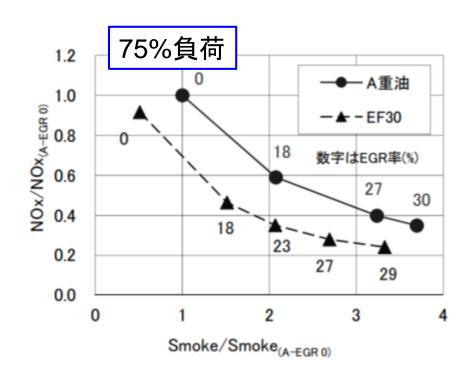
参考: 第3回燃料油環境規制対応連絡調整会議, 資料3-1 http://www.mlit.go.jp/common/001220665.pdf.



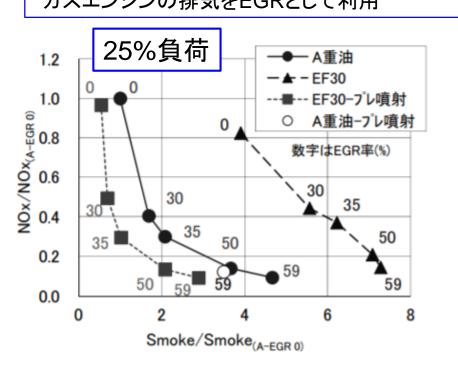
燃料油の種類によるBC排出への影響

中速4-stroke エンジンの計測例

様々な燃料を使用した時のFSN法とPAS法 の計測値比較(2014年~2017年のデータ) 中速4-stroke エンジン(257kW/420rpm)

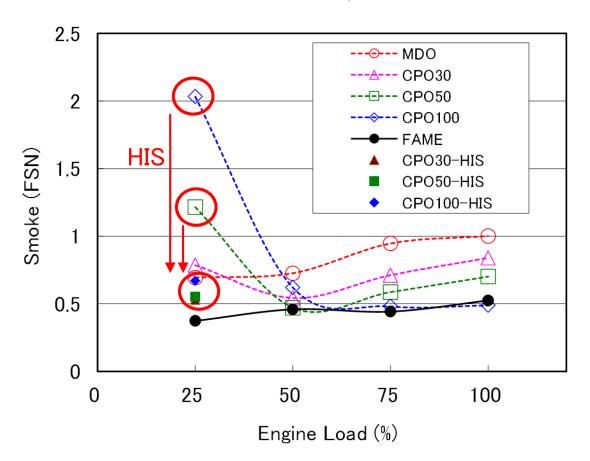


S分とグレードの異なる燃料を 使用した時のPAS計測結果


水利用技術

- ◆水エマルジョン
- ◆ 水噴射(Direct Water Injection)
- ◆給気加湿

実験条件: 257kWエンジン使用 A重油、エマルジョン燃料(A重油70%+水30%) ガスエンジンの排気をEGRとして利用

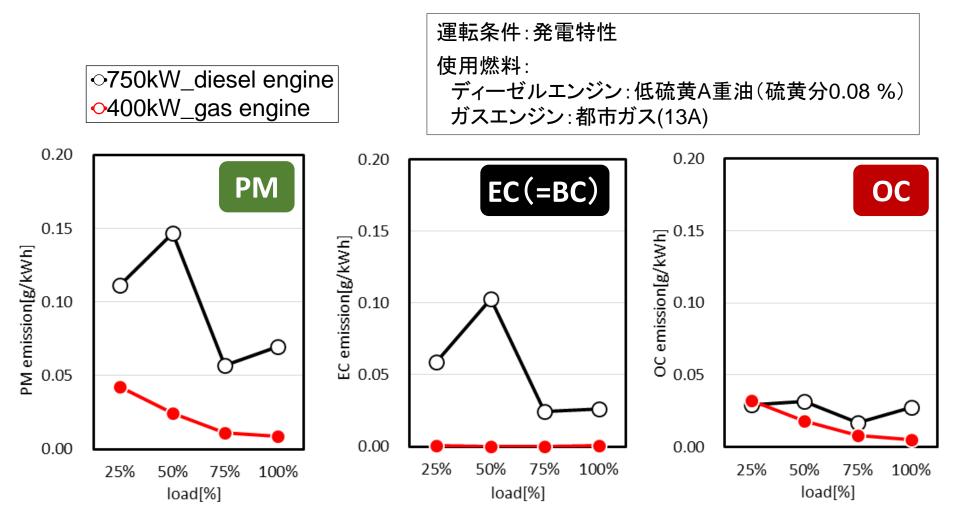

• スモークについては、高負荷運転(75%負荷率)でのエマルジョン燃料の使用は、 スモーク低減効果があるが、低負荷運転(25%負荷率)でのエマルジョン燃料の使 用は逆にスモークを増加させる。

西尾ら, 日本マリンエンジニアリング学会誌, 第52巻 第5号(2017), 666-677

◆ FAMEはBC削減効果があるが、CPOは工夫が必要

使用燃料 A重油 (MDO) FAME (100%) Crude Palm Oil (CPO) CPO30 (MDO:CPO=70:30) CPO50 (MDO:CPO=50:50) CPO100 (CPO100%)

*HIS: Hybrid Injection System機械式の燃料噴射装置に自動車用のコモンレールを適用して、電子燃料噴射装置を後付け


バイオ燃料の課題:酸化による劣化などを改善するには、水素化処理などが 必要だが、さらに生産コスト増になる。

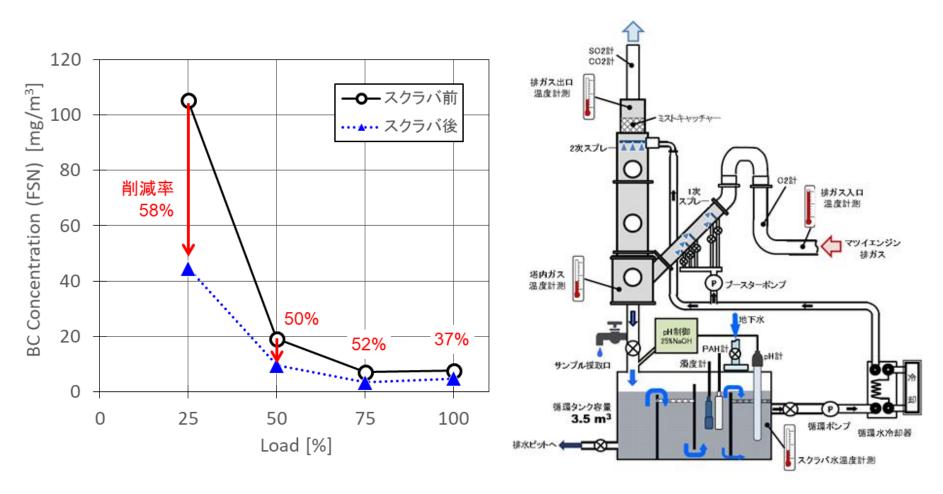
S.Nishio, T.Fukuda, A.Zuhdi and M.Fathallah, ISME 2017 Tokyo, AS1-104

◆ ガスエンジンでのBC削減効果は99%以上、PM削減は限界がある

PS-15 中村真由子ら 舶用ガス機関および舶用ディーゼル機関から排出される粒子状物質の比較

2.エンジン技術

	期待されるBC削減率	Note	NMRI	
	2ストは4ストの1/2-1/10			
エンジンタイプ	大きさと負荷によって、PM排 出率は3桁近く異なり、一般 にエンジンが大きくなるとBC 排出率は小さくなる	Man Diesel &Turbo資料	0	
エンジン負荷率		エンジン負荷率を上げるとBC排出率減	0	
		新しい電子制御エンジンほど燃焼が良く、 BC排出率減	0	
電子制御化	低負荷で80%以上	三菱重工資料(7UEC33LSII)		
	最大70%程度	海技研の実験結果		
エンジンオプション(燃費改善=BC削減)				
スライドバルブ	10-50% ¹⁾			
機関チューニング/ De-rating	1-12% ¹⁾			


3.排ガス後処理装置

	期待されるBC削減率	Note	NMRI
SOxスクラバ	45%(高硫黄燃料) ¹⁾ 37.5%(低硫黄燃料) ¹⁾ ~0%(Finlandの実船計測) ⁴⁾ 25-70% ³⁾ 35-60%程度(海技研)	レポートによって値に差があるのは、エ ンジンとスクラバタイプの組合せによる と考えられる	0
DPF ディーゼルパーティクルフィルタ	99%以上(低硫黄燃料) ¹⁾ 85%(高硫黄燃料) ¹⁾ 70-90% ³⁾	複数の報告から引用 燃料条件などによって異なるとの報告も	0
電気集塵機(ESP)	10-90% ¹⁾	陸上では実用化されているが、舶用市 販品の実績は少ない。 水を使用するタイプもある。	0
SCR (選択的触媒還元)	0-30% ^{1), 3)} Tier IIIエンジンよりSCRを搭載したTier Iエンジンの方がBC少(MAN Diesel & Turbo)	基本的にはSCRに削減効果はないが、 SCRを利用することで、NOxを気にせず、 燃焼改善が行えることからBC削減	0

スクラバによる削減効果

◆ スクラバーによるBC削減効果は35~60%程度にとどまる

•U型タイプのスクラバと257kW中速4ストロークエンジンの組み合わせ C重油使用

4.燃費改善や政策他1)

	期待されるBC削減率	Note	NMRI
船デザイン(新造船) EEDI	10-30%	燃費改善と同等のBC削減効果 2020年までに20%、2025年までに 30%の燃費改善	0
船デザイン (レトロフィット)SEEMP	1-20%	プロペラ最適化、空気潤滑、船底塗料、 クリーニングなど	0
モニタリングオプション	0.5-10%	ウェザ゛ールーティング゛や自動航行システムの アップグレード	0
減速運航 De-Rating	0-30%	燃費は良くなるが、低負荷ではBCが発 生しやすいことに注意	
ECAの拡大 (残渣油の使用禁止)	35-80%		
BC排出基準値の制定			

- ◆IMOでのBCに関する議論は、計測方法の議論が決着する のを待たずに、削減技術の調査も並行して行うことになった。
- ◆計測法については、当所で行った実験結果のみでなく、海外の研究グループの結果も、燃料やエンジンの種類によって、FSNとPAS法の結果のばらつき方に違いがある。現在の"計測法に中立なBC定義"を用いるのであれば、さらに検討が必要と思われる。最終的に計測法を一つにするのであれば、その計測法によってBCを定義するのが妥当。
- ◆削減技術の調査が始まっているが、最終的に何で評価するのかはまだ決まっていない(排出率なのか、燃料消費量あたりの排出量なのかなど)。
- ◆議論を待たず、BCとは別に、油流出の環境影響を懸念して 北極海域でのHFO使用を禁止しようとする議論もされており、 今後のBCの議論がどうなるのかは不明。

ご静聴ありがとうございました。 参考文献 1) PPR 5/INF.7 (Canada) 2) PPR 5/INF.13 (IPIECA) 3) https://www.theicct.org/publications/black-carbon-emissions-global-shipping-2015 4) https://www.vtt.fi/sites/sea-effects

謝辞:

本研究の一部は、日本財団の助成事業である(一財)日本船舶技術研究協会の「2017年度大気汚染防止基準整備のための調査研究(大気汚染防止基準整備プロジェクト)」、及び国土交通省からの受託研究である、平成29年度「船舶からの排ガス常時監視・統合処理システムに関する調査研究業務」によって実施されました。ここに厚く御礼申し上げます。

海上技術安全研究所 環境·動力系 高橋千織 chiori@nmri.go.jp