荷重度変更法における自航要素推定精度向上の検討

第85回実海域推進性能研究会

海上技術安全研究所 横田早織,黒田麻利子,枌原直人, 深澤良平,濱田達也,辻本勝

発表内容

1. 背景

石重度変更法
 水槽試験

4. 解析結果

5. 波浪中自航要素 6. まとめ

自航要素の表現方法(足達の手法)

荷重度変更法に基づく自航要素の推定法は足達・菅井(1978)、足達・日夏(1983)、足達(1983)、 溝口・田崎(1983)によって開発された。

足達により、運動量理論から伴流係数(1-w)および船体とプロペラの干渉による抵抗増加係数 C_G が $(C_T)^{0.5}$ 型で表現できることが示され、次の式で表される。

$$1-w = U_{a0wc} + C_0(F_r) \times \left[-U_{a0wc} + \sqrt{C_T + U_{a0wc}^2} \right]$$
(1)

$$C_G = B_0(F_r) \times \left[-U_{a0wc} + \sqrt{C_T + U_{a0wc}^2} \right]$$
(2)

$$U_{a0wc} = U_{a0}(F_r) + \Delta U_{a0wc}(\omega, \alpha, \zeta_a, F_r)$$
(3) : スラスト0のときの有効伴流係数

$$1-t = 1 - C_G/C_T$$
(4)

$$C_T = \frac{T}{2} + \frac{T}{2} + \frac{T}{2}$$
(5)

荷重度変更法

平水中自航試験 試験水槽

海上技術安全研究所 三鷹第2船舶試験水槽 (長さ400m、幅18m、深さ8m、造波機-プランジャー式)^{3m}1999

自航試験 対象船(JBC)

<u>7.0m模型</u>

Item	Unit	JBC		Item	Value
Condition	-	designed full load	ballast	Diameter D_p	0.203
				Pitch ratio P/D	0.750
Length between perpendiculars L_{pp}	m	280.0	280.0	Expanded area ratio	0.50
Breadth <i>B</i>	m	45.0	45.0	a_E	
Draft at midship d	m	16.5	8.6	Blade's number Z	5
a_m	111	10.5	0.0	Boss ratio <i>B</i> . <i>R</i> .	0.18
Stern trim t	m	0.0	2.8		

自航試験 <u>対象船(DTC)</u>

<u>8.0m模型</u>

Item	Unit	DTC
Condition	-	designed full load
Length between perpendiculars L_{pp}	m	355.0
Breadth B	m	51.0
Draft at midship d_m	m	14.5
Stern trim <i>t</i>	m	0.0

Item	Value
Diameter D_p	0.200
Pitch ratio P/D	0.959
Expanded area ratio a_E	0.80
Blade's number Z	5
Boss ratio <i>B</i> . <i>R</i> .	0.176

10

荷重度変更法におけるパラメータUa0

・ Ua0も値がまとまっており、C0を速度に対して 線形近似としても問題ない

JBC (バラスト)

1.6

1.8

0.8 1 **c**_T

1.2

1.4

DTC

15

解析結果 (平水中自航試験)

JBC (満載)

—— Initial fitting _ - - - - Fitting with linear approximated BO

解析結果(平水中自航試験) JBC(バラスト)

DTC

発表内容

1. 背景

右重度変更法
 水槽試験
 解析結果
 波浪中自航要素
 まとめ

自航要素の表現方法(波浪中)

規則波中の波によるスラスト0の時の有効伴流係数増加量

$$\Delta U_{a0}' = \frac{U_{a0} - U_{a0s}}{2\zeta_a / d_a}$$

プロペラ断面での船体底部の プロペラ軸高さの
変動水圧振幅 波粒子速度振幅

$$\Delta U_{a0}' = A(\alpha) \frac{P_a(\alpha, \omega)}{\rho g \zeta_a} + B(\alpha) \frac{v_a(\alpha, \omega)}{\rho \sqrt{g / L_{ps}}}$$

$$A(\theta) = A(0) - \Delta A(\theta) = A(0) - \left(C_1 \sin \theta + C_2 \sin \frac{\theta}{2}\right)$$

$$B(\theta) = B(\pi/2) \times \sin \theta$$

$$A(0), C_1, C_2, B(\pi/2)$$

口ペラ배高さの
波粒子速度振することにより求める

波浪中自航試験 試験水槽

海上技術安全研究所 実海域再現水槽

実海域再現水槽 長さ80[m]、幅40[m]、水深4.5[m] 造波機:多分割吸収式フラップ型

波浪中自航要素

<u>回帰分析</u> 波浪中自航試験から得られたΔUa0'を用いて、回帰分析を行った。

回帰式のベースとした船種と船長

船種	船長	
PCC	約190m	
VLCC	約310~330m	
コンテナ船	約300m	
ВС	約160~180m	
一般貨物船	約50m	

280m BC 355m コンテナ船 JBC、DTCでの波浪中自航試験の 結果も用いて回帰分析を行う

回帰分析によって得られた式

$$A(0) = 0.644 + 0.412C_{B} - 0.491C_{wa} - 0.406C_{VP} - 0.189\frac{h_{S}}{d_{aft}}$$

$$B(\pi/2) = 0.858 - 0.049\frac{B_{max}}{d_{mid}} - 0.668C_{VP} - 1.780(1 - C_{B})\frac{d_{mid}}{B_{max}} + 0.038\sigma_{a}\frac{B_{max}}{d_{mid}}$$

$$C_{1} = 1.928 - 0.949C_{B} - 0.358e_{a}' - 2.210K_{m} + 1.269C_{B}\sigma_{a} - 0.009\frac{d_{aft} - d_{fore}}{d_{mid}}$$

$$C_{2} = -0.240 + 0.101\gamma_{a} - 1.553C_{B}\frac{B_{max}}{L_{ps}} + 1.290\frac{2d_{mid}}{L_{ps}} - 0.070\frac{d_{aft} - d_{fore}}{d_{mid}} + 0.720\frac{h_{S}}{d_{aft}}$$

各係数の検証結果

波浪中自航要素

実験値との比較

VLCC (バラスト)

波浪中自航要素

実験値との比較

199GT

く外れた推定結果はない

・ΔUaOの推定精度が向上した

26

-0.1

-0.2

-0.3

-0.4

-0.5

0

0.5

1

 λ/L

1.5

2

荷重度変更法について、水槽試験を実施し、試験結果を解析・調査した。 結果を以下にまとめる。

- ・ 伴流係数に関するパラメータ C_0 を速度に対して線形近似とすると、 U_{a0} および伴流係数 $1-w_m$ もまとまりの良い結果となった。
- 推力減少係数に関するパラメータ B_0 を速度に対して線形近似とすると、 C_G もまとまりの良い結果となった。
- 本試験結果を含めて回帰分析を行うことで、 ΔU_{a0} の推定精度が向上した。