小型発電機用スターリングエンジンの開発に関する基礎研究^{*} (第2報 シミュレーション計算によるエンジンの性能予測法)

平田 宏一*1, 浜口 和洋*2, 岩本 昭一*1

Basic Study on Development of Stirling Engine for Small Portable Generator (2nd Report, Engine Performance Prediction by Simulation Model)

Koichi HIRATA, Kazuhiro HAMAGUCHI and Shoichi IWAMOTO

A 100 W Stirling engine was developed as a prime mover of a portable generator set. Special bayonet-type heat exchangers whose inner tubes move inside of the outer tubes, were applied for the engine's heater and cooler. An annular regenerator was located in a displacer piston. The engine had already achieved the target performance. To improve the engine performance efficiently, a simulation model for the prototype engine was developed. The pressure in the working space was analyzed by an isothermal analysis which takes into account a gas leakage between the buffer space and working space, and a pressure losses in the heat exchangers. For the pressure loss in the regenerator, the model can treat the effects by the velocity distribution in the regenerator matrix. To estimate the engine output, the model calculates the mechanical loss and the buffer loss which is caused by a pressure change in the buffer space. The buffer loss was calculated with three models, an isothermal, an adiabatic and a simple heat transfer model to determine a suitable model for the buffer space. The analysis results were compared with the experimental data carefully.

Key words: Stirling Engine, Irreversibility, Friction, Simulation, Engine Performance, Mechanical Loss, Pressure Loss

1.緒 言

前報⁽¹⁾において、小型ポータブル発電機の動力源として、100 Wの出力を有する小型スターリングエンジンの開発経過並びにその性能特性について報告した。 そして、供試エンジンは、再生器をディスプレーサピストンに内蔵し、内管が移動する新型のバヨネット式 熱交換器を設けた 形とすることで、可搬性を有する 小型発電機用エンジンの開発に目途がつけられた。さらに、熱・流体的諸損失を考慮した解析により、小型 エンジンの設計に必要な特性を概ね評価できることを 明らかにした。

一方、より詳細にエンジンの性能特性を評価し、エ ンジン性能の向上策を検討する場合、図示出力のみな らず、軸出力も正確に予測することが望まれる。その ためには、正確に図示出力を評価することはもちろん のこと、パワーピストンの背面の空間(以下、バッフ ァ空間と称す)の圧力変化による非可逆的熱損失(以 下、バッファ損失と称す)及び駆動機構における機械 損失を精度よく評価する必要がある。しかし、作動空 間内の圧力変化の解析手法⁽³⁾や機械損失の解析手法⁽³⁾ についての報告は数多くあるものの、バッファ損失の 解析手法についての報告は少ない。

また、一般動力用あるいはヒートポンプ駆動用の定 置式の高出力スターリングエンジン⁽³⁾では、十分な大 きさのバッファ空間を設けることができる。しかし、 可搬式の小型発電機の動力源に用いるエンジンでは、 エンジンを小型化するためにバッファ空間をできるだ け小さくする必要がある。そのことにより、バッファ 空間の圧力変動は増大し、バッファ損失はエンジン性 能に大きく影響することが予想される。

前報では、エンジンの設計に必要な加熱・冷却の熱 量並びにエンジンの基本的な特性を解析することを主 眼とした。本報では、実用的かつ簡易的な性能予測法 の確立を目的として、従来の解析手法では評価するこ とが困難であったバッファ損失及び機械損失を考慮し た解析モデルを提案する。そして、この解析モデルに よる計算結果と実機による実験結果とを比較・検討し、 本解析モデルの妥当性並びに小型スターリングエンジ ンの性能予測法について考察する。

2.供試スターリングエンジン

供試エンジンの構造、目標性能及び主要項目は、前 報⁽¹⁾と全く同一のものである。そして、このエンジン は、アニュラ型再生器をディスプレーサピストンの内

原稿受付平成年月日日

^{*1} 正員、埼玉大学(〒338 浦和市下大久保255) *2 正昌 明星大学(〒191 日野市程久保2-11)

² 正員、明星大学(〒191 日野市程久保 2-1-1)

部に挿入し、内管が移動するバヨネット式熱交換器を 採用することで、構造の簡単化・小型化を実現した 形エンジンである。運転時には、作動空間内及びバッ ファ空間内に作動ガスを加圧して封入する。また、供 試エンジンは、バッファ空間とクランク室とを兼用し ている、いわゆるクランク室加圧型⁽³⁾と呼ばれる形式 である。この形式は、バッファ空間に駆動機構の機械 部品等が設置されるため、バッファ空間内作動ガスの 温度分布は複雑になることが予想され、その伝熱特性 を詳細に把握することは困難である。

3.解析モデル

供試エンジンの詳細な性能特性を評価するために、 以下に述べる解析モデルを開発した。

3・1 図示出力 本研究は、簡易性能予測法の確立 を目的としているため、作動空間のガス圧力の解析に は、計算が容易な等温モデルを用いる。さらに、より 詳細な性能評価を行うために、作動空間とバッファ空 間との間の作動ガスの漏れ及び再生器端部での流路の 拡大・縮小を考慮し、熱交換器における圧力損失を評 価している。

図1に解析モデルを示す。同図に示すように、作動 空間を膨張空間(ヒータを含む)、再生器空間、圧縮空 間(クーラを含む)、連結空間及びパワーピストン空間 の5つの空間に分割する。それぞれの空間内のガス温 度は、一様で同一に保たれると仮定すると、損失を考 慮しない場合の作動空間内圧力Pは、全ガス質量をM_T、 ガス定数をR、それぞれの空間の容積をV、そしてガ ス温度をTとすれば、次式で算出される。

$$P = \frac{M_{T}R}{\frac{V_{E}}{T_{E}} + \frac{V_{R}}{T_{R}} + \frac{V_{C}}{T_{C}} + \frac{V_{CP}}{T_{CP}} + \frac{V_{P}}{T_{P}}}$$
(1)

ここで、添字 E、R、C、CP 及び P はそれぞれ膨張空間、再生器、圧縮空間、連結空間及びパワーピストン

Fig. 1 Analysis model

空間を示している。

次に、作動空間とバッファ空間とを仕切っている、 パワーピストンのピストンリング部及び軸シール部か らのガス漏れについて検討する。ガスの漏れ量の計算 には、ピストンリング部及び軸シール部の隙間から漏 れる流路を、それらの隙間面積に等しい断面積 a_{leak}を 持ったノズルに置き換え、ノズル内の流れの計算式を 用いる。そして、各瞬間で定常流れの式が適用できる ものとし、さらに流れを等エントロピ流れと仮定すれ ば、ピストンリング部及び軸シール部の隙間を漏出す るガスの質量流量 m_{leak} は次式で算定される⁽⁴⁾。

$$\frac{P_{2}}{P_{1}} \leq \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}} \mathcal{O}^{\frac{1}{2}} \mathbb{B}^{\frac{\kappa}{\kappa-1}} \cdots \mathbb{B}^{\frac{\kappa}{\kappa-1}} \mathbb{O}^{\frac{1}{2}} \mathbb{B}^{\frac{\kappa}{\kappa-1}} \cdots \mathbb{B}^{\frac{\kappa}{\kappa-1}} \mathbb{E}^{\frac{\kappa}{\kappa-1}} \mathbb{E}^{\frac{\kappa}$$

ここで、 P_1 及び T_1 は流入側空間の圧力及び温度、 P_2 は流出側空間の圧力、 は比熱比、である。また、断 面積 a_{leak} は、それと同一面積を持つ円孔に置き換えた 場合の直径 d_{leak} (以下、等価直径と称す)を用いて次 式で表される。

$$a_{leak} = \frac{d_{leak}^2 \pi}{4}$$
(3)

したがって、式(2)及び(2')により求まる質量流量 m_{leak} を式(1)の M_{T} 及び後述するバッファ空間の全ガス 質量 M_{B} に加味することで、エンジン性能に及ぼすガ スの漏れの影響を推定することができる。

また、ヒータ及びクーラの圧力損失の計算には、前 報⁽¹⁾と同様に、円管内の発達した乱流の式⁽³⁾を採用した。 一方、供試エンジンの再生器マトリックスには、ステ ンレス線を編み込んで製作されるスプリングメッシュ ⁽⁶⁾が用いられている。そのため、再生器における圧力 損失の計算には、スプリングメッシュの試験結果を含 めて整理されている評価式⁽⁶⁾を用いる。この評価式は、 再生器マトリックスの空隙率 及びマトリックスの素 線径 d より算出される水力直径 d_{hy}で整理されており、 水力直径 d_{hy} 及び再生器両端における圧力差 P_R は、 再生器摩擦係数 f_R、再生器の流れ方向の長さ H_R、ガス 密度 _R 及びガス流速 u_Rを用いて、それぞれ次式で表 される。

(a) Heat or and coolor		
Lever 1	Heater	Cooler
Туре	Bayonet type	Bayonet type
Number of tubes	10	24
Diameter of tubes (mm) inser (OD, ID) Outer (OD, ID)	9.5, 7.0 13.8, 12.4	5.0, 4.0 8.0, 7.4
Length of tubes (mm)	54	56
Material	Stainless steel	Copper

Table 1 Specifications of heat exchanger system

(OD: outer diameter, ID: Inner diameter)

(b) Hegenerator	
Regenerator	
Annular housing	
1	
27 66	
35	
Spring Mesh Stainless stool 0.704	

Fig. 2 Section area ratio

$$d_{\rm hy} = \frac{\varepsilon d}{1 - \varepsilon} \tag{4}$$

$$\Delta P_{\rm R} = f_{\rm R} \frac{H_{\rm R}}{d_{\rm hv}} \frac{\rho_{\rm R} u_{\rm R}^2}{2}$$
(5)

ここで、再生器摩擦係数 f_R はレイノルズ数 R_e を用いて、 次式で表される。

$$f_{R} = \frac{26.5}{R_{*}(1-\epsilon)} + \frac{0.246}{\epsilon(1-\epsilon)}$$
(6)

また、再生器内流速 u_R は、再生器内ガスの質量流量 m_R及び再生器ハウジングの断面積 A_R を用いて、次式 で算出される。

$$u_{R} = \frac{m_{R}}{\epsilon A_{R} \rho_{R}}$$
(7)

ここで、レイノルズ数 R_eは次式で定義されている。

$$R_{e} = \frac{d_{hy}u_{R}}{v}$$
(8)

ここに、 :ガスの動粘性係数、である。

さらに、再生器とヒータあるいはクーラとの連結部 による流路断面積の拡大・縮小の影響を考慮する。再 生器ハウジングの断面積 A_R に対する端部の流路断面 積 Bの比を 、端部からの流路方向の距離を x とする と、x における拡大または縮小された面積 S_R と A_R と の比 S_R/A_R は、次式で表される⁽⁷⁾。

$$\frac{S_{R}}{A_{R}} = 1 - (1 - \alpha) \cdot \exp\left(-13.93 \cdot \alpha \cdot x \cdot \sqrt{\frac{\pi}{4A_{R}}}\right)$$
(9)

表1は供試エンジンの熱交換器の諸寸法である。こ れより再生器端部の断面積比 は、ヒータ側で0.135、 クーラ側で0.106となる。図2は、式(9)より得られる 流路断面積比S_R/A_Rをxに対して図示したものである。 これより、再生器長さ方向の流路断面積比の平均値は ヒータ側からの流れでは0.758、そしてクーラ側から の流れでは0.791になり、流れの方向により異なる。 しかし、両流路断面積比にそれ程大きな違いがないの で、計算を容易にするためにヒータ側とクーラ側両者 の平均値0.775を使用して再生器内の作動ガス流速を 補正する。

圧力損失 L_{ploss} は、膨張空間圧力の P_E 、圧縮空間圧力の P_C 及び毎秒当たりのエンジン回転数 n を用いて、次式で定義される。

$$L_{\text{ploss}} = -\oint \left(P_{\text{E}} - P_{\text{C}} \right) \cdot dV_{\text{E}} \cdot n$$
(10)

膨張出力 L_E 、 圧縮出力 L_C 及び図示出力 L_I は、膨張 空間の圧力 P_E 、 圧縮空間の圧力 P_C 、パワーピストン 空間の圧力 P_P (= P_C)及び各空間の容積変化 dV_E 、 dV_C 、 dV_P を用いて次式で算出する。

$$L_{E} = \oint P_{E} dV_{E} \cdot n \tag{11}$$

$$L_{c} = -\left(\oint P_{c} dV_{c} + \oint P_{p} dV_{p}\right) \cdot n$$
(12)

 $L_{i} = L_{E} - L_{C} \tag{13}$

3・2 バッファ損失 バッファ損失を評価するため に、バッファ空間内部の圧力変化を解析する。供試エ ンジンはクランク室加圧型であるため、バッファ空間 には発熱を有する多くの機械部品が含まれている。そ のため、バッファ空間の壁面やガスの温度分布は極め て複雑である。したがって、バッファ空間の壁面及び 機械部品と内部のガスとの伝熱を詳細に評価すること は難しい。そこで、本解析モデルでは、バッファ空間 のガス圧力の計算に、等温モデル、断熱モデル並びに バッファ空間の壁面及び機械部品からの伝熱を簡易的 に考慮したモデル(以下、伝熱モデルと称す)の3種 類の計算手法を試み、バッファ損失の評価手法を検討 する。

i) 等温モデル バッファ空間内のガス温度 T_B は

サイクル中、常に一定であると仮定すれば、バッファ 空間圧力 P_B はバッファ空間ガス質量 M_B 及びバッファ 空間容積 V_B より、次式で算出される。

 $P_{\rm B} = \frac{M_{\rm B}RT_{\rm B}}{V_{\rm B}}$ (14)

ii) 断熱モデル バッファ空間内のガスが断熱的 に変化すると仮定すると、バッファ空間におけるエネ ルギ式は、次式で表される。

$$c_v \frac{d(M_B T_B)}{dt} = c_p m_{leak} T_l - P_B \frac{dV_B}{dt}$$
 (15)

ここに、c_v:定容比熱、c_p:定圧比熱である。そして、 上式より、次式が導かれる。

$$\frac{dT_{\rm B}}{dt} = \frac{\kappa}{M_{\rm B}} m_{\rm leak} T_1 - (\kappa - l) \frac{T_{\rm B}}{V_{\rm B}} \frac{dV_{\rm B}}{dt}$$
(16)

ここで式(16)を解くことにより、バッファ空間内のガ ス温度 T_B を算出し、式(14)よりバッファ空間圧力 P_B が求められる。

iii) 伝熱モデル バッファ空間に含まれる機械部 品は大きな熱容量を有するので、バッファ空間の壁面 上及び機械部品の表面上では、温度分布は存在するも のの温度はサイクル中、変化しないものと考えられる。 そこで、伝熱に寄与するバッファ空間内の全壁面上で は、どこでも同一温度 T_{WB}に保たれると仮定すれば、 バッファ空間におけるエネルギ式は、次式で表される。

$$c_{v} \frac{d(M_{B}T_{B})}{dt} = c_{p}m_{leak}T_{l} - P_{B} \frac{dV_{B}}{dt} + hA_{B}(T_{WB} - T_{B})$$
(17)

ここで、h:熱伝達率、 A_B :バッファ空間内部の全伝 熱面積である。上式を変形して、次式が導かれる。

$$\frac{dT_{B}}{dt} = \frac{\kappa}{M_{B}} m_{leak} T_{1} - (\kappa - 1) \frac{T_{B}}{V_{B}} \frac{dV_{B}}{dt} + \omega \kappa N_{tu} (T_{WB} - T_{B})$$

ここに、 は回転角速度、N_{tu}は次式で定義されるユニット数である。

(18)

$$N_{\rm tu} = \frac{hA_{\rm B}}{2\pi nc_{\rm p}M_{\rm B}} \tag{19}$$

ここで、ユニット数 N_{tu} の値を適宜仮定し、式 (18)を解 くことにより、バッファ空間内のガス温度 T_B 及びバッ ファ空間内の圧力 P_B が求められる。

また、バッファ損失 L_B は、バッファ空間の容積変化 dV_B を用いて次式で定義される。

$$L_{\rm B} = -\oint P_{\rm B} dV_{\rm B} \cdot n \tag{20}$$

3・3 機械損失 供試エンジンにおける機械損失の 要因は、図3に示されているように、ピストンリング、 軸シール、オイルシール、メカニカルシール及び各軸 受である。本解析モデルでは、機械損失 L_mは摺動部の 速度に影響されないクーロン摩擦損失 L_{co}と、潤滑油や グリース等の影響により生じる粘性摩擦損失 L_{vi}とで 成り立っていると考え、次式によって算定する。

$$L_{\rm m} = L_{\rm co} + L_{\rm vi} \tag{21}$$

 $L_{co} = 2\pi \cdot K_{co} \cdot n \tag{22}$

 $L_{vi} = 2\pi \cdot c_{vi} \cdot \omega \cdot n \tag{23}$

ここで、 K_{co} :クーロン摩擦による全摩擦トルク、 c_{vi} : 粘性摩擦係数、である。

各機械要素部品 i のクーロン摩擦力 F_{co,i} は、それぞれの垂直荷重 F_{n,i} 及び摩擦係数 µ_iを用いて、次式で表される⁽³⁾。

$$\mathbf{F}_{\rm co,i} = \boldsymbol{\mu}_{\rm i} \cdot \mathbf{F}_{\rm n,i} \tag{24}$$

解析では、クーロン摩擦力 F_{co.i} に基づき、要素部品 i の摩擦トルク K_{co.i}を、次式で算出する。

回転運動部:

$$K_{co,i} = r_i \cdot F_{co,i}$$
 (25)
往復運動部:

$$K_{co,i} = \frac{S_{t,i}}{2} \cdot F_{co,i} \cdot \left| \sin \theta_i \right|$$
(26)

ここで、 r_i : 摺動部の半径、 S_{ti} : ストローク、 $_i$: 各 ピストンの上死点を基準としたクランク角である。ま た、それぞれの垂直荷重 F_n は、以下のように求める。

i) ピストンリング
 ピストンリングの水平方向及
 び垂直方向に作用する力の平衡より、ピストンリング
 の段数 N_{pis}を考慮したシリンダ壁に垂直な荷重 F_nは、
 次式で表される⁽⁸⁾。

$$F_{n} = \frac{\pi DH}{1 \pm \mu^{2}} \left[\frac{1}{2} \Delta P_{pis} \left(1 - \mu \frac{B}{H} \right) + N_{pis} P_{t} \right]$$
(27)

Fig. 3 Factor of mechanical loss

ここで、D:シリンダ径、H:リングの高さ、B:リン グの幅、 μ :摩擦係数、 P_{pis} :ピストンリング上下の 空間の圧力差、 P_t :エキスパンダーリングの圧力、で ある。

ii) 軸シール及びオイルシール 次式により垂直 荷重 F_nを求める。

 $F_n = \pi \cdot D \cdot (f_1 + f_2)$ (28) ここで、D:摺動面の直径、 $f_1 : スプリングによる荷重、$ $f_2 : シール上下空間の圧力差による荷重、である。そ$ $して、<math>f_1 及び f_2 は文献(9)を参照して求める。$

iii) メカニカルシール メカニカルシールの摺動 面に作用する垂直荷重 F_n は、次式で表される⁽¹⁰⁾。 $F_n = (F_S + A_1 - kA_2) \cdot (P_B - P_0)$ (29) ここで、 $F_S : スプリング荷重、A_1 : 受圧面積、k: 圧$ $力減少係数、A_2 : 摺動面積、P_0 : 大気圧、である。$

iv) 軸受 各軸受に作用する垂直荷重 F_nは、図4 に図示されている荷重計算モデルより求める。ここで、 各ピストンに作用する荷重 F_pは、作動空間とバッファ 空間との圧力差、及びピストンの慣性力が考慮されて いる。

一方、供試エンジンにおける粘性摩擦の要因として は、メカニカルシールの潤滑油、軸受内のグリースが あるが、これらは作動部の温度等の影響を顕著に受け るため、解析的にこれらの値を求めることは困難であ る。本解析モデルでは、実機の予備実験結果から粘性 摩擦係数 c_{vi}を 9.0×10⁻⁴ Nms と設定した。

3・4 軸出力 軸出力 L_s は、それぞれ式(13)、(20) 及び(21)により求まる図示出力 L_i 、バッファ損失 L_B 及 び機械損失 L_m を用いて、次式で算出される。 $L_s = L_i - L_B - L_m$ (30)

4.実験方法

上述した解析モデルの妥当性を検討するために、供 試エンジンの性能特性試験を行った。本研究で論じら れる圧力損失は、作動ガスの物性に大きく影響を受け る。そのため、作動ガスにはヘリウムと窒素との2種 類を用いることとした。また、バッファ損失はピスト ンリング等のシール性能に大きく影響を受けるものと 考えられる。そこで、図5に示すように、作動空間と バッファ空間との間にバイパス管を設け、その経路の 途中に設けられたノズルの直径を変化させて作動ガス の漏れを調整した。そして、それぞれのノズル径に対 する等価直径 d_{leak}は、実機を停止した状態で、作動空 間とバッファ空間との間に圧力差を与え、その時の圧 力変化から漏れ速度を測定することにより求めた。以

Fig. 4 Forces working to mechanical parts

Fig. 5 Bypass tube between working and buffer space

Table 2 Experimental condition

Heat source	Electric heater (~1 kW)	
Expansion space gas temp.	430 °C (±5°C)	
Working gas	Helium / Nitrogen	
Mean pressure	0.8 MPa	
Cooling type	Water cooling	
Cooling water flux	3 L/min	
Cooling water inlet temp.	12 °C (±0.5°C)	
Engine speed	500 ~1400 rpm	

上の検討事項を考慮して、実験条件は表2に示されて いるように決めた。なお、実験装置及び実験方法は前 報⁽¹⁾に準じている。

5.実験結果との比較

5・1 圧力損失 図6は、作動ガスとしてヘリウム 及び窒素を使用し、平均圧力0.8 MPa、膨張空間ガス 温度430 において、エンジン回転数と式(10)で定義 される圧力損失との関係を図示したものである。ここ に、実線及び破線は計算、そしてプロットされている 点は実測である。なお、計算に際して、膨張空間、圧 縮空間及びパワーピストン空間のガス温度は、それぞ れ 430 、50 及び 30 とし、バッファ空間の平 均ガス温度は 40 と設定した。また、再生器内ガス 温度は、膨張空間のガス温度と圧縮空間のガス温度と の平均、連結空間ガス温度は、圧縮空間のガス温度と ピストン空間のガス温度との平均とした。そして、等 価直径 d_{leak} は上述した静的試験の結果に基づき、0.20 mm と設定した。これより、作動ガスにヘリウム及び 窒素を用いた場合とも、計算は実測とよく一致してお り、作動ガスの相違がよく評価されていることがわか る。したがって、本研究による圧力損失の解析手法は、 実機のそれをよく模擬できることが確認された。

5・2 バッファ損失 図7は、一例として作動ガス にヘリウムを使用し、平均圧力0.8 MPa、膨張空間の ガス温度430 において、エンジン回転数と式(20)で 定義されるバッファ損失 L_B との関係を図示したもの である。図中、細い実線は等温モデル、二点鎖線は断 熱モデル、一点鎖線は伝熱モデルで N_{tu} =0.05 の場合、 太い実線は伝熱モデルで N_{tu} =0.10 の場合、そして破線 は伝熱モデルで N_{tu} =0.15 の場合、の計算結果である。

Fig. 6 Pressure loss as a function of engine speed

Fig.7 Buffer loss as a function of engine speed

また、プロットされている点は実測結果である。これ より、等温モデル及び断熱モデルより求めたバッファ 損失の計算結果は、実測の約5~10%程度であって、 これらの手法はバッファ空間の解析に適していないこ とがわかる。一方、伝熱モデルによるバッファ損失の 計算結果は、ユニット数 N_{tu}が 0.1の場合には、計算 と実測とは比較的よく対応しているのがみられる。こ れは、作動ガスの種類や平均圧力等実験条件を変えた 場合でも、同様の図が得られ、ユニット数 N_{tu} が 0.1 で実測と計算とは比較的よく一致しているのがみられ た。したがって、バッファ損失は本報で提案した伝熱 モデルを用いることで、概ね評価できると考えられる。

5·3 機械損失 図8は、エンジン回転数に対する 機械損失 L_mを図示したものである。ここに、一点鎖線 はクーロン摩擦損失 L_{co}、破線は粘性摩擦損失 L_{vi}、そ して実線はそれらを合わせた機械損失 Lmの計算結果 であり、プロットされている点は、実測結果である。 これより、クーロン摩擦損失はエンジン回転数の上昇 に対して、ほぼ直線的に増加していることがわかる。 これは、供試エンジンにおいて慣性力の影響が極めて 小さいことを示している。また、機械損失の中で、ク ーロン摩擦損失の占める割合は非常に大きく、エンジ ン回転数が低い場合には、機械損失のほとんどがクー ロン摩擦損失となっている。そして、機械損失はクー ロン摩擦損失と粘性摩擦損失とで成り立っているとい う考え方は、実状をよく模擬できることがわかり、本 解析モデルの妥当性が確認された。

Fig. 8 Mechanical loss as a function of engine speed

5・4 図示出力及び軸出力 図9は、作動ガスにへ リウム及び窒素を用いた場合、エンジン回転数と図示 出力及び軸出力との関係を図示したものである。図中、 実線と一点鎖線は、それぞれへリウムを使用した場合 の図示出力及び軸出力の計算結果、そして、破線と二 点鎖線は、それぞれ窒素を使用した場合の図示出力及 び軸出力の計算結果であり、計算において、バッファ 損失の計算には伝熱モデルを用い、N_{tu}=0.10 としてい る。また、図中、プロットされている点は実測結果で ある。これより、図示出力及び軸出力の計算結果は実 測結果とよく一致しており、作動ガスの違いによる出 力特性の相違をよく示している、ということがわかる。 以上より、本解析モデルは、図示出力ばかりでなく、 軸出力も適切に予測できることが確認された。

6.解析モデルによる性能向上策の検討

次に、本解析モデルを用いて、供試エンジンの性能 向上策並びに小型エンジンの性能予測法について考察 を行う。

6・1 シール性能の影響 図 10 は、作動ガスにへ リウム及び窒素を使用した場合、エンジン回転数 1000 rpmにおいて、等価直径 d_{leak}に対する軸出力及びバッ ファ損失との関係を図示したものである。図中、実線 と一点鎖線は、それぞれへリウムを使用した場合の軸 出力及びバッファ損失の計算結果、そして、破線と二 点鎖線は、それぞれ窒素を使用した場合の軸出力及び バッファ損失の計算結果であり、計算において、バッ ファ損失の計算には伝熱モデルを用い、N_{tu}=0.10 とし ている。また、図中、プロットされている各点は、実 測結果であって、等価直径 d_{leak}の変化は図 5 に示され ているバイパス管に設けられたノズルの直径を調節し

て行っている。これより、等価直径 d_{leak} が約 0.7 mm 以上になると、作動ガスに窒素を用いた方が、ヘリウ ムを用いるよりも高い軸出力が得られることがわかる。 このことは、実測結果からも概ね確認できる。これは、 i) ピストンリング等からの作動ガスの漏れが、ガスの 物性に起因していること、ii) バッファ損失が、ガスの 伝熱特性に依存していること、によって、その影響が 顕著に現れているためであると思われ、解析モデルは それらの特性をよく表している。また、ヘリウムを用 いた場合、ガスの漏れな低減させることは、エンジンの 高性能化に極めて重要であることがわかる。

6・2 バッファ空間容積の影響 供試エンジンは、 可搬式の小型発電機の動力源用を主用途として開発さ れたため、小型・軽量化が要求されている。そのため、 バッファ空間容積比(バッファ空間最小容積と膨張空 間行程容積との比)は、約9.6 であり、従来の高出力 エンジン⁽³⁾と比べて小さく設定されている。それが、 エンジン性能の低下に及ぼす影響を、本解析モデルに よって考察する。

図 11 は、作動ガスにヘリウムを用いた場合、平均圧 力 0.8 MPa、エンジン回転数 1000 rpm において、バ ッファ空間容積比に対する軸出力及びバッファ損失の 計算結果を図示したものである。図中、太い実線と細 い実線は、それぞれ d_{leak}=0 mm の場合の軸出力及びバ ッファ損失、太い破線と細い破線は、それぞれ d_{leak}=0.2 mm の場合の軸出力及びバッファ損失、太い一点鎖線 と細い一点鎖線は、それぞれ d_{leak}=0.5 mm の場合の軸 出力及びバッファ損失、太い二点鎖線と細い二点鎖線 は、それぞれ d_{leak}=1.0 mm の場合の軸出力及びバッフ ァ損失、である。なお、計算条件は図 10 の場合と同じ である。これより、等価直径 d_{leak} が小さくなり、バッ

ファ空間容積比が約5以下になると、バッファ損失が 急激に増加するため、軸出力が大幅に低下することが わかる。また、等価直径 d_{leak} が大きい場合には、軸出 力はバッファ空間容積比の影響を、より大きく受ける ことがわかる。

以上の解析及び実験結果より、バッファ損失はガス の漏れやバッファ空間容積比に大きく影響されること がわかった。バッファ損失が、エンジン性能、特に軸 出力に与える影響は、従来の解析手法で評価すること は困難であった。しかし、本解析モデルでは、バッフ ァ損失及び機械損失が、軸出力にどのような影響を与 えるかを容易に推測することができるので、供試エン ジンと同様の構造を有するクランク室加圧型の小型ス ターリングエンジンの設計・開発並びに性能予測に寄 与するところ大である、と考える。

7.結 言

上述のように、クランク室加圧型の小型スターリン グエンジンを対象として、出力特性及び性能予測のた めの解析モデルを開発した。そして、計算と実測とを 比較・検討した結果、以下のことが明らかとなった。

- (1) 作動空間内圧力は、ピストンリング並びに軸シール 部からの作動ガスの漏れ及び再生器端部の流路面 積の変化による熱交換器における圧力損失を評価 すれば、かなり精度よく解析することができる。こ れによって、図示出力を適切に計算することができ る。
- (2) バッファ空間における伝熱特性及び機構部での機 械損失を考慮することで、小型エンジンの性能特性 を適切に評価できる。

- (3) クランク室加圧型の小型スターリングエンジンの バッファ損失は、ユニット数を用いてその内部の伝 熱を考慮することで概ね評価できる。
- (4) 小型スターリングエンジンの機械損失は、クーロン 摩擦と粘性摩擦とで成り立っており、これによって 適切に評価できる。また、クーロン摩擦損失が、機 械損失に占める割合は非常に大きく、エンジン回転 数が低い場合には、機械損失はクーロン摩擦損失が 支配的である。

以上の解析モデルにおいては、作動ガスの漏れやバ ッファ空間での伝熱現象を解析的に解くことは困難で あるので、数値解析的な解法となっている。それらの 諸損失について、より詳細な検討・考察を行うことに よって、さらに簡易的な性能予測法の確立ができるも のと考えている。

なお、本研究の一部は(社)日本機械学会 RC127 研究分科会の研究活動の一環として行われたものであ り、エンジンの設計に関して、協力を頂いた委員の方々、 特に、研究内容を検討して頂いた香川澄(防衛大)及 び山下巌(東京電機大)の各位に深甚なる謝意を表し ます。

文 献

- (1) 平田宏一・ほか3名,小型発電機用スターリングエンジンの開発に関する基礎研究(第1報 エンジンの設計・試作並びに性能特性),機論,投稿中.
- (2) 山下巌・ほか5名, スターリングエンジンに関する 基礎的研究, 機械技術研究所報告, No.128, (1983), 7-13.
- (3) Kagawa, N., et al., Mechanical Analysis and Durability for a 3 kW Stirling Engine, Proc. 24th IECEC, (1989), 2369-2374.
- (4) 豊倉富太郎・亀本喬司,流体力学,(1986),274-280, 実教出版.
- (5) 神坂光男・岩淵牧男, スターリング機関用熱交換器の伝熱特性に関する研究, 機論, 56-531, B (1990), 3451-3456.
- (6) Hamaguchi, K., et al., Basic Characteristics and Applied Tests of 'Spring Mesh' as a New Regenerator Matrix for Stirling Engine, Proc. 8th ISEC, (1997), 51-58.
- (7) 吉川豊・ほか2名,再生器マトリックス中の流速分 布に及ぼす入口面積比の影響,機講論,No.95-54, (1995), 37-39.
- (8) 長尾不二夫,内燃機関講義上巻,(1994),330-331, 養賢堂版.
- (9)株式会社ニシヤマ、オムニシールカタロ グ, (1992).
- (10)日本プラントメンテナンス協会・実践保全技術シリ ーズ編集委員会編,シール技術,(1994),138-160, 日本プラントメンテナンス協会.