スターリングエンジンの簡易性能予測法

Simple Performance Prediction Method of Stirling Engines

正 平田 宏一(船舶技研) 正 岩本 昭一(早大理工総研) 正 戸田 富士夫(埼玉大)

Koichi HIRATA , Ship Research Institute, Shinkawa 6-38-1, Mitaka, Tokyo Shoichi IWAMOTO, Advanced Research Institute for Science and Engineering, Waseda University, Tokyo Fujio TODA, Saitama University, Urawa, Saitama

The authors have been manufactured and developed five kinds of high- and low temperature difference type Stirling engines. Their engine performance was investigated by experimental operations. And in order to consider about parameters affected to the engine performance, the experimental results were discussed and compared with the calculated results by analysis simulation methods. This paper shows an arrangement method for the experimental results, and considers about a simple performance prediction method, which is used in an early design process. One of the non-dimensional numbers in the prediction method is calculated from the engine specifications including specifications of the working gas. Then, the prediction method has the characteristics that are able to predict the engine speed, the output power, effects of kinds of the working gas and the operating conditions.

Key words:Stirling Engine, Heat Exchanger, Friction, Engine Design, Mechanical Loss, Pressure Loss

1.緒 言

スターリングエンジンの設計に際して、決められたエン ジンの主要目より、エンジンの性能特性を精度よく推測す ることは、極めて重要である。一般に、エンジンの性能特 性に関する設計計算は、エンジンの主要目が決定し、熱交 換器及び機構各部の主要部分の予備設計が完了してから行 われる。しかし、設計の実務作業の出発点においては、エ ンジンの主要目の決定と同時に性能特性に関する設計計算 を行い、事前にエンジンの出力特性を十分に把握しておく 必要がある。そこで、著者らは、形式の異なる高温度差形 及び低温度差形エンジン5種類を設計・試作し、これらを 運転してその性能特性を調べ、シミュレーション計算によ るそれとを比較検討し、エンジンの出力特性を支配する因 子について調査した。本報はこれらの結果より、エンジン の性能特性試験による実測値を整理する手法を提案し、性 能特性に関する設計法の構築を目的としている⁽¹⁾。

2.実測値の整理法

著者らが、現在までに開発した高温度差形及び低温度差 形スターリングエンジンの性能特性試験を行い、さらにエ ンジンの性能解析並びにシミュレーション計算を行って、 これらを比較検討した結果、作動ガスの圧力損失と機構各 部の摩擦による機械損失とが、軸出力特性に大きな影響を 及ぼしていることがわかった⁽²⁾⁻⁽⁹⁾。これらを支配する物理 量を、次のように定め、エンジンの運転試験における実測 値を整理する。

2・1 作動ガスの圧力損失 エンジンの図示仕事は、作 動空間内の平均圧力 P_m、エンジンの大きさ(寸法)及び膨 張空間内のガス温度 T_Eに依存し、熱交換器における作動

ガスの圧力損失は、図示仕事の大小に大きく関係する。こ の圧力損失は、熱交換器内の作動ガスの密度、動粘度 及び熱交換器の形状に影響されるが、過去に設計・製作さ れた数多くの熱交換器は、類似した形状のものが多く、そ れらの諸寸法は、エンジンの大きさに依存しているものと 見られる。そして、膨張空間の容積は、一次的に決められ ることが多いので、熱交換器の寸法はエンジンの大きさ(寸 法)に依存するものと考え、それを表す代表的な量として、 膨張空間の行程容積 V_{SE}を採ることにする。また、膨張空 間内における作動ガスの平均密度を m、温度を T_E、平均 圧力を P_m 、そしてガス定数を R とすれば、 $m = P_m / (RT_F)$ なる関係にあるので、圧力損失に影響を及ぼす作動ガスの 物性値を表す量として、ガス定数 R 及び作動ガスの動粘度 を採ることにする。

2・2 機構各部の摩擦による機械損失 これはクーロン 摩擦と粘性摩擦とより成り立っていると考えられる⁽³⁾。ク ーロン摩擦による摩擦係数µ "は、同形式の機械要素で構 成されるエンジンにおいては、ほぼ同一の値で、また粘性 摩擦係数 cvi は、エンジンの寸法によって一義的に決まるも のと考えられるので、c_{vi}の値は、膨張空間の行程容積 V_{se} の大小によって決まるものと思われる。そこで、機械損失 を表す代表的な物理量として、膨張空間の行程容積 V_{SF}を 採ることとする。

2·3 無次元量の導出 上述の考察より、エンジンの性 能は、次の関数関係によって成り立っているものと考える。 $\pi = W_{s}^{\pi 1} \cdot P_{m}^{\pi 2} \cdot V_{sE}^{\pi 3} \cdot R^{\pi 4} \cdot T_{E}^{\pi 5} \cdot \nu^{\pi 6} \cdot n^{\pi 7}$ (1)ここに、W_s; 1 サイクル当たりの軸仕事(J)、P_m; 作動空 間内の平均圧力(Pa)、V_{SE};膨張空間の行程容積(m³)、R; ガス定数(J/kgK)、 T_E ;膨張空間内のガス温度(K)、 :温

度 T_E 及び圧力 P_m における作動ガスの動粘度(m^2/s)、 n;

エンジン回転数(rps)、である。

エンジン回転数及び軸仕事の無次元量を導出することに 着目し、次元解析法を適用した結果、次の3つの無次元量 が得られた。

$$n^{*} \equiv \frac{n V_{SE}^{2/3}}{v}$$
(2)

$$w_{S}^{*} \equiv \frac{W_{S}}{P_{m}V_{SE}}$$
(3)

$$s^{*} = \frac{T_{E}RV_{SE}^{2/3}}{v^{2}}$$
(4)

ここで、n^{*}をエンジンの無次元回転数、w_s^{*}をエンジンの無次元軸仕事と呼ぶことにする。

一方、ピストンリングや軸シールなどのシール装置の寸 法及び仕様は、設計時に設定される作動空間内の最大負荷 時の平均圧力 P_{lim}により決定され、またエンジンの運転条 件は、作動圧力及び温度によって与えられる。そして機械 損失は、運転条件によって大きく左右されるので、運転条 件を表す無次元量として、無次元圧力 P^{*}及び無次元温度 T^{*} を次のように定義する。

$$P^* \equiv \frac{P_m}{P_{lim}}$$
(5)

 $\mathbf{T}^* \equiv \frac{\mathbf{T}_{\mathrm{E}} - \mathbf{T}_{\mathrm{C}}}{\mathbf{T}_{\mathrm{E}} + \mathbf{T}_{\mathrm{C}}} \tag{6}$

ここに、T_c: 圧縮空間内のガス温度である。

3.実測値の整理結果並びに考察

著者らによって開発された 100 W 級の小型エンジン^{(2),(3)} を運転し、計測された圧力や温度等々の実測値を、先に定 義された各無次元量を用いて整理する。

図 1 は、作動ガスにヘリウムを使用し、無次元温度 T^{*} が 0.42 の場合、無次元回転数 n^{*}と無次元軸仕事 w_s^{*}との関 係を示している。図中の各線は、作動ガスの圧力損失及び 機械損失等を考慮したシミュレーション計算⁽³⁾によって 求めた結果である。これより、無次元軸仕事 w_s^{*}は、無次 元回転数 n^{*}の上昇に伴って低下することがわかる。これは、 熱交換器内における圧力損失及び粘性摩擦による機械損失 が、n^{*}とともに大きくなっているためであると考えられる。 また、無次元軸仕事 w_s^{*}は、無次元圧力 P^{*}が低くなるほど 小さくなるが、これはピストンリング等のシール装置の仕 様が、設計時に P^{*}=1 となるように決められているためで、 それ以下の無次元圧力では、シール装置部のクーロン摩擦 損失の割合が、増加しているためであると考えられる。

図 2 は、作動ガスにヘリウムを使用し、無次元圧力 P^{*} が 0.73 の場合、無次元回転数 n^{*}と無次元軸仕事 w_s^{*}との関 係を図示したものである。これより、無次元軸仕事 w_s^{*}は、

Fig. 1 Effects of non-dimensional pressure

Fig. 2 Effects of non-dimensional temperature

図1と同様、無次元回転数n^{*}の上昇に伴って低下し、さら に無次元温度T^{*}が低いほど小さくなる、ということがわか る。これは機械損失が、膨張空間内のガス温度T_E、すなわ ち無次元温度T^{*}に影響を受けず、無次元回転数n^{*}の上昇に 伴って軸出力に対する機械損失の割合が増加するためであ る、と考えられる。

以上、図1及び2は、一例として100 W級エンジンに おいて、ガス温度及び平均圧力をパラメータとして整理し た結果であるが、さらに運転条件の違った場合や温度レベ ルの異なるエンジンについても同様の図が得られるので、 実測値はn^{*}とws^{*}とで整理できることがわかった。

4. 試作エンジンの性能特性並びに性能予測法

前章の結果に基づき、エンジンの主要目と出力特性との 関係を導出するため、次式で定義される無次元軸仕事 W_s* 及び無次元軸出力 L_s*を導入する。

$$W_s^* \equiv \frac{W_S}{P_m V_{SE} P^* T^*}$$
(7)

$$L_{s}^{*} = W_{s}^{*} \cdot n^{*}$$
 (8)

一方、エンジンは許容最高ガス温度 T_{lim}で運転されるこ

	prococy	pe engn	100		
Engine	A	B	C	D	E
Engine type	7	CC .	β	¢ć.	*
Engine specifications	i		S		9.
Permitted pressure Pim (MPa)	0.9	0.55	4.0	1.1	0.25
Permitted temperature Tiin (*C)	650	650	700	130	130
Working gas	Helium Nitrogen	Air	Helium	Nitragen	Air
Swept volums of exp. space, Vac. (om ³)	81.4	98.2	132.7	20100	40200
Operated conditions					
Operated pressure Pm (MPa)	0.4-0.9	0.10.3	3.5	0.3-1.0	0.1-0.2
Operated temp of exp. space, TE (°C)	340~490	290~570	300~500	100	90~100
Engine speed n (rpm)	-1400	-1,200	-1500	-300	-220

 Table 1
 Specifications and operated condisions of prototype engines

Fig. 3 Non-dimensional output power as a function of non-dimensional speed

とを想定し、式(7)において膨張空間内のガス温度 $T_E \epsilon T_{lim}$ に、そして圧力 P_{lim} における作動ガスの動粘度 limに置き換えると、次式が得られる。

$$S^{*} = \frac{T_{lim}RV_{SE}^{2/3}}{v_{lim}^{2}}$$
(9)

ここで、S^{*}はエンジンの仕様によって決まる無次元量となるので、これを無次元エンジン仕様と呼ぶことにする。

表1に、著者らが開発した、エンジンの形式、作動温度 及び圧力、並びに出力レベル等の異なるエンジン5種類の 仕様と運転条件を示す。図3は、表1に示すエンジンの特 性試験を行った結果を、無次元回転数 n^{*}と無次元軸出力 L_s ^{*}とで整理したものである。これより、それぞれのエンジ ンについて、n^{*}に対して L_s ^{*}の最大値 $L_{s,max}$ ^{*}、すなわち最 適条件が存在することがわかる。そして、この最大無次元 軸出力 $L_{s,max}$ ^{*}は、それぞれのエンジンの特性試験において、 最大軸出力 $L_{s,max}$ が得られているときの値であり、無次元 エンジン仕様 S^{*}が大きいほど、無次元回転数 n^{*}の高い領域 にあり、その値自体も大きくなっている。これより、無次 元エンジン仕様 S^{*}に応じて、最大無次元軸出力 $L_{s,max}$ ^{*}を与 える無次元回転数 n_{ont}^{*}を求めることができる。

 Table 2 Engine performance of prototype engines

Engine name	A	A	B	C	D	E
Engine type	Y	Y	ά	β	a	Y
Pressure Pm (MPa)	0.9	0.8	0.55	3.8	1.0	0.22
Expansion space gas temp., Te (°C)	488	464	451	503	95	100
Working gas	He	Nz	Air	He	Nz	Air
Swept volume of exp. spase, Vec (cm ³)	81.4	81.4	98.2	132.7	20100	40200
Non-dimensional engine spec., S'	4.18 × 10 ¹¹	3.52 × 10 ¹²	1.49 × 10 ¹²	1.01 × 10 ¹³	1.51 × 10 ¹⁵	1.24 × 10 ¹⁴
Max.output.power Ls.nov (W)	102	71	59	1241	747	194
Engine speed noet (rpm)	1103	954	560	1407	139	93
Non-dimensional	9.32	6.05	4.74	1.06	1.70	2.95
output power, Lamo"	×10 ¹	× 10 ²	×102	× 10 ³	×104	× 10 ³
Non-dimensional	5,17	3.21	1.52	3.69	7.84	1,76
engine speed, nor	× 10 ²	× 10 ³	×10 ³	× 103	×10 ⁴	×104

表 2 は、表 1 のそれぞれのエンジンで、実測による最大 軸出力 $L_{S,max}$ とその時の回転数 n_{opt} とより、無次元量 $L_{S,max}$ と n_{opt} みび S^{*}を求めた結果を示す。図 4 は、表 2 の n_{opt} と $L_{S,max}$ との関係を示している。図中、実線は各点の値を 基にして最小二乗法によって処理された線図である。これ

Fig. 4 Non-dimensional output power as a function of non-dimensional speed

Fig. 6 Non-dimensional output power as a function of non-dimensional speed

より、最大軸出力とその時のエンジン回転数との関係は、

最大無次元軸出力 $L_{s,max}$ と無次元回転数 n_{opt} とで整理する ことができ、その関係はほぼ正比例の関係にあることがわ かる。したがって、 n_{opt} と $L_{s,max}$ との関係は次式によって 求められる。

 $L_{s,max}^{*} = 0.24 n_{opt}^{*}$ (10)

図5は、表2のそれぞれのエンジンに対して、無次元エ ンジン仕様S^{*}と最大軸出力が得られた際の無次元回転数 n_{opt}^{*}との関係を示している。これより、無次元回転数 n_{opt}^{*} と無次元エンジン仕様S^{*}との関係は、次式で求められる。

$$\mathbf{n_{opt}}^{*} = 6.8 \times 10^{-5} \mathrm{S}^{* \ 0.60} \tag{11}$$

次に、表1の試作エンジン5種の性能特性試験によって 得られた式(10)及び(11)の妥当性を検証するため、既に公 表されている高温度差形エンジンの運転成績⁽¹⁰⁾⁻⁽¹⁷⁾を、本 手法に従って整理し、これと図4及び5との比較検討を行 う。図6は、最大軸出力が得られたときの無次元回転数 n_{opt} と最大無次元軸出力 $L_{s,max}$ との関係を、そして図7は無次 元エンジン仕様S^{*}と n_{opt} *との関係を図示したものである。 これらを見ると、既に公表されているエンジンについても、 実測結果は比較的よくまとまっており、エンジンの形式や 寸法並びに作動ガスや運転条件等々の異なる様々なエンジ ンの性能特性も、式(10)及び(11)で評価できることがわか る。

5.結 言

著者らが開発した、高温度差形及び低温度差形のスター リングエンジンの性能特性試験を行い、性能特性を評価す るための無次元量を導出した。そしてこれらを基に、エン ジンの主要目から性能を予測する手法を誘導し、次の結果 を得た。

- (1) エンジンの軸仕事と回転数との関係は、運転条件を表 す無次元圧力 P^{*}及び無次元温度 T^{*}をパラメータとし て、作動ガスの相違の影響が考慮されている無次元回 転数 n^{*}と無次元軸仕事 w_s^{*}とで整理できる。
- (2) 無次元回転数 n^{*}と無次元軸出力 L_s^{*}との関係は、無次 元エンジン仕様 S^{*}に応じて、L_s^{*}を最大とさせるよう な n_{opt}^{*}が存在する。
- (3) エンジンの主要目が決まれば、最大軸出力L_{S,max}とそのときの最適回転数 n_{opt}とは式(2)~(11)によって容易に求まる。

文 献

- (1) 岩本・ほか2名,スターリングエンジンの性能特性, 機論,投稿中.
- (2) 平田・ほか3名, 機論, 64-621, B(1998), 1600-1607.
- (3) 平田・ほか2名, 機論, 64-621, B(1998), 1608-1615.
- (4) 岩本・ほか2名,日本設計工学会講演論文集,No.96-春期,(1996),11-16.
- (5) S. Tsukahara, et al., 4th ICSE, (1988), 155-160.
- (6) 岩本・ほか3名,第1回スターリングサイクルシンポジ ウム講演論文集, No.97-41 (1997), 47-50.
- (7) S. Iwamoto, et al., 8th ISEC, (1997), 29-38.
- (8) 岩本, 戸田, 機論, 63-611, B(1997), 2578-2586.
- (9) 戸田, 岩本, 機論, 64-619, B(1998), 952-960.
- (10) N. Endo, et al., 4th ICSE, (1988), 315-320.
- (11) P. Lista, 6th ISEC, (1993), 315-320.
- (12) A. J. Organ, Stirling Engine Thermodynamics Design - without the computer, (1993), A.1.1, Regenerative Thermal Machines.
- (13) C. M. Hargreaves, The Philips Stirling Engine, (1991), Elsevier.
- (14) 山下・ほか5名, スターリングエンジンに関する基礎 的研究, 機械技術研究所報告, No.128, (1983), 50-63.
- (15) A. E. Richey, 19th IECEC, (1984), 1942-1948.
- (16) T. Watanabe, et al., 17th IECEC, (1982), 1813-1818.
 (17) C. D. West, Principles and Applications of Stirling Engine, (1986), 113-120, Van Nostrand Reinhold Company.