熱源の変動に対応した位相差可変スターリングエンジン Performance of a Variable Phase Angle Stirling Engine with Changing of Heat Input

 正
 平田
 宏一(海技研)
 正
 川田
 正國(海技研)

 横川
 嘉徳(技研精機)
 正
 山下
 巌(東京電機大)

Koichi HIRATA and Masakuni KAWADA, National Maritime Research Institute, Shinkawa 6-38-1, Mitaka, Tokyo Yoshinori YOKOKAWA, Giken Seiki Co. Ltd., and Iwao YAMASHITA, Tokyo Denki University

Key words: Stirling Engine, Waste Heat, Variable Phase angle Mechanism and Engine Performance

1.まえがき

高熱効率性,燃料の多様性,低公害性という特徴を持つス ターリングエンジンは,昨今のエネルギー問題や環境問題を 解決する方法として注目されている。本報では,工場等から の排熱を利用するスターリングエンジン発電システムを想定 し,排熱の熱量や温度の変動に応じて,運転パラメータの制 御が可能な位相差可変機構を有する実験用スターリングエン ジンについて概説する。さらに,排熱を模擬した高温空気を 熱源に用いた場合のエンジン特性を測定した結果について述 べる。

2.熱源の変動への対応方法

排熱の熱量が大きく,しかも温度が十分に高い場合,スタ ーリングエンジンは高い温度差で作動できるため,高出力・ 高効率が得られやすい。しかし,排熱の熱量あるいは温度が 低下した場合,スターリングエンジンは低温度差で作動する こととなり,安定した運転は著しく難しくなる。

ディスプレーサ形スターリングエンジンを低温度差で作動 させるためには,作動ガスの伝熱に大きく影響するディスプ レーサの行程容積を大きくすることで,熱交換器内を流れる 作動ガス流量を増加させ,エンジンへの入熱量を増加させる ことができる¹⁾。また,ディスプレーサを持たない 形スタ ーリングエンジンにおいては,膨脹側ピストンと圧縮側ピス トンの位相差を90°よりも大きくすることで,熱交換器内を 流れる作動ガスの流量を増大させることができ,大型ディス プレーサを持つスターリングエンジンと同等の効果が期待で きる。次章で述べる実験用スターリングエンジンは,図1に 示す位相差可変機構²⁾を用いた 形エンジンであり,運転中 に位相差を変化させることができる。

Fig.1, Variable Phase Angle Mechanism

3.実験用スターリングエンジンの設計・試作

図2に設計・試作した実験用スターリングエンジンの構造, 表1に主な仕様を示す。ピストン及びシリンダには,ガラス 製の注射器(50c)を使用しており,再生器を持たない簡易

Fig.2, Structure of Variable Phase Angle Stirling Engine

Table 1, Engine Specifications

Engine Type	Alpha-type
Swept Volume of Exp. Piston	9.98 cm ³
Bore x Stroke	25.2 mm x 16 - 20mm
Swept Volume of Comp. Piston	9.98 cm ³
Bore x Stroke	25.2mm × 20mm
Mean Pressure	101.3 kPa
Working Gas	Air

的な熱交換器が用いられている。以下に述べる高温空気を熱源とした実験においては,ヒータキャップに高温空気を流すための容器を取り付けて運転する。また,ガスバーナ加熱の場合は,容器を取り外し,ヒータキャップを直接加熱する。

位相差可変機構は 4 個のかさ歯車,2 本の出力軸,かさ歯 車を収納するケースから構成されている。出力軸に固定され たかさ歯車は,それぞれのクランク及びコンロッドを介して 膨脹側ピストン及び圧縮側ピストンに連結している。そして, ケースにウォームホイールを取り付け,ウォームを回転させ ることで,ケース自体が回転し,エンジンの運転中にピスト ンの位相差を変化させることができる。

発電運転においては,出力軸Bに平歯車を取り付け,約5 倍に増速した後,小型直流モータを駆動させる。無負荷運転 では,直流モータ及び平歯車を取り外した状態で運転する。

4.実験方法及び実験結果

4・1 実験方法 実験は表2に示す3種類の運転方法で行った。ガスバーナ加熱による無負荷運転では,クランクピンの位置を変えることでピストンストロークを16~20 mm に変化させて非接触式回転計によりエンジン回転数を測定する。高温空気加熱による実験では図3に示す実験装置を使用し,無負荷運転と発電運転を行う。同図に示すように,排熱を模擬したプロアによる送風は,電気ヒータを通過した後,ヒータ部容器に高温空気を送り出す。以下の実験においては,電

Fig.3, Hot Air Heating System

気ヒータへの入熱量を約1 kW 一定に保ち, 空気流量を変化 させて, ヒータ容器入口温度 T_{in}を変化させている。

4・2 ガスバーナ加熱による無負荷運転 図4は,ガスバーナ 加熱運転におけるピストン位相差αに対する無負荷回転数 N の実験結果を示している。これより,回転数に及ぼすストロ ークの影響は少なく,それぞれのストロークにおいて,位相 差が 100~120°の時に最高回転数が得られていることがわ かる。また 本エンジンは十分な熱量の熱源を用いることで, 軽快に運転できることが確認された。以下の実験では,最も 高い出力が期待できる 20 mm のストロークで行う。

4・3 高温空気加熱による無負荷運転 図 5 は , 高温空気加 熱による無負荷運転において,高温空気流量を調整してヒー タ容器入口温度 Tin を変化させた場合, 位相差αに対するエン ジン回転数 Nの実験結果を示している。これより, ヒータ容 器入口温度 Tin が上昇するに従って, 最高回転数が上昇する とともに, 広範囲な位相差での運転が可能となることが確認 できる。また,最高回転数が得られる位相差は,ヒータ容器 入口温度 Tinが低くなるに伴い,大きくなることがわかる。 4・4 高温空気加熱による発電運転 図 6 は , 高温空気加熱 による発電運転におけるエンジン回転数 Nと発電出力 Wgの 関係を示している。本実験において,電気負荷は図3に示す 可変抵抗の値を調整している。これより,測定した範囲にお いて,位相差αを大きくするに従って,高い発電出力が得ら れていることがわかる。しかし,同図に示した位相差よりも

Fig.4, Engine speed as a function of phase angle

Fig.5, Engine speed as a function of phase angle (Hot Air Heating)

Fig.6, Generated power as a function of engine speed

大きくした場合,エンジンは安定した自立運転ができなかった。すなわち,ヒータ容器入口温度 Tinが低いほど,大きい 位相差で最高発電出力が得られており,入熱条件に応じて最 適な位相差が存在することがわかる。熱源の流量や温度に変 動が生じた場合,従来のように位相差が固定されているスタ ーリングエンジンでは,その変動に対応することは難しい。 しかし,位相差可変機構によって,入熱条件に応じた最適な 位相差に調整することができるため,出力を最大限に得るこ とができると考えられる。

5. あとがき

本報では,実験用位相差可変スターリングエンジンを設 計・試作し,その運転特性を調べた。本実験用スターリング エンジンは,大気圧空気を作動ガスとした模型レベルのエン ジンであり,微小な発電出力しか得られておらず,熱効率は 極めて低い。しかし,本報で述べたような位相差可変機構を 高性能スターリングエンジンに適用することによって,熱源 の温度・熱量の変動に応じた位相差の最適制御が実現でき, 排熱の有効利用が可能になると考えている。

文 献

- (1) 岩本ほか,模型スターリングエンジン,山海堂(1997).
- (2) Hirata, K. and et al., Model Stirling Engine with Variable Phase Angle Mechanism, Proc. of 7th ICSC, p.507-512(1995).