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Uncertainty Analysis in CFD, Uncertainty Assessment Methodology

1. PURPOSE OF PROCEDURE
 

 To provide a methodology for estimating
the uncertainty in a simulation result.

2. INTRODUCTION

Discussion and methodology for
estimating errors and uncertainties in CFD
simulations has reached a certain level of
maturity with increased attention and recent
progress on common concepts and
terminology (AIAA, 1998), advocacy and
detailed methodology (Roache, 1998), and
numerous case studies (e.g., Mehta, 1998).
Progress has been accelerated in response to
the urgent need for achieving consensus on
concepts and terminology and useful
methodology, as CFD is applied to
increasingly complex geometry and physics
and integrated into the engineering design
process. Such consensus is required to realize
the goals of simulation-based design and other
uses of CFD such as simulating flows for
which experiments are difficult (e.g., full-scale
Reynolds numbers and off-design conditions).
In spite of the progress and urgency, the
various viewpoints have not converged and
current methodology falls short of providing
practical procedures and methodology for
estimating errors and uncertainties in CFD
simulations.

The approach reported by the 21st RC
(ITTC, 1996) was more pragmatic in
providing verification procedures for making

quantitative estimates for simulation numerical
errors and uncertainties. Some RC members
have continued their work in CFD uncertainty
analysis methodology development. In
particular, a new approach to CFD validation
has been developed (Coleman and Stern,
1998) and was recently combined with
extensions and more rigorous foundation for
verification to provide the framework for
overall procedures and methodology for
verification and validation of CFD simulations
(Stern et al., 1999a, b). These are the overall
procedures and methodology along with an
example for resistance and flow recommended
for interim adoption.

3. VERIFICATION AND VALIDATION
METHODOLOGY

Verification (Section 3.2) and validation
(Section 3.3) methodology is presented for
CFD simulation results from an already devel-
oped CFD code applied for specified objec-
tives, geometry, conditions, and available
benchmark information.  Section 3.1 discusses
concepts and definitions for errors and uncer-
tainties and verification and validation, which
provide the mathematical framework for the
verification and validation methodologies.

3.1 Concepts and Definitions
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Accuracy indicates the closeness of
agreement between a simulation/experimental
value of a quantity and its true value.  Error δ
is the difference between a simulation value or
an experimental value and the truth.  Accuracy
increases as error approaches zero.  The true
values of simulation/experimental quantities
are rarely known.  Thus, errors must be
estimated.  An uncertainty U is an estimate of
an error such that the interval U± contains
the true value of δ 95 times out of 100.  An
uncertainty interval thus indicates the range of
likely magnitudes of δ but no information
about its sign.

For simulations, under certain conditions,
errors can be estimated including both sign
and magnitude, which is referred to as an
error estimate δ*.  Then, the uncertainty
considered is that corresponding to the error
in δ*.  When δ∗ is estimated, it can be used to
obtain a corrected value of the variable of
interest.

Sources of errors and uncertainties in re-
sults from simulations can be divided into two
distinct sources -- modeling and numerical.
Modeling errors and uncertainties are due to
assumptions and approximations in the
mathematical representation of the physical
problem (such as geometry, mathematical
equation, coordinate transformation, bound-
ary conditions, turbulence models, etc.) and
incorporation of previous data (such as fluid
properties) into the model.  Numerical errors
and uncertainties are due to numerical solu-
tion of the mathematical equations (such as
discretization, artificial dissipation, incom-
plete iterative and grid convergence, lack of

conservation of mass, momentum, and en-
ergy, internal and external boundary non-
continuity, computer round-off, etc.). The
present work assumes that all correlations
among errors are zero, which is doubtless not
true in all cases, but the effects are assumed
negligible for the present analyses.

The simulation error Sδ  is defined as the
difference between a simulation result S and
the truth T.  In considering the development
and execution of a CFD code, it can be
postulated that Sδ  is comprised of the
addition of modeling and numerical errors

SNSMS TS δ+δ=−=δ (1)
A derivation of the simulation error equation
(1) is provided in Appendix A of Stern et al.
(1999b). The uncertainty equation corre-
sponding to error equation (1) is

2
SN

2
SM

2
S UUU +=    (2)

where SU  is the uncertainty in the simulation
and SMU  and SNU  are the simulation modeling
and numerical uncertainties.

For certain conditions, the numerical error
SNδ  can be considered as

  SNSNSN εδδ += * (3)

where *
SNδ  is an estimate of the sign and

magnitude of SNδ  and εSN is the error in that
estimate (and will be estimated as an
uncertainty since only a range bounding its
magnitude and not its sign can be estimated).
The corrected simulation value SC is defined
by

*
SNC SS δ−=                          (4)

with error equation
SNSMCS TS

C
εδδ +=−= (5)
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The uncertainty equation corresponding to
error equation (5) is

222
NSSMS CC

UUU += (6)

where 
CSU  is the uncertainty in the corrected

simulation and NSC
U  is the uncertainty

estimate for εSN.

Debate on verification and validation has
included discussion on whether errors such as

SNδ  are deterministic vs. stochastic and thus
how they should be treated in uncertainty
analysis was unclear.  In the approach given
by equations. (3)-(6), a deterministic estimate

*
SNδ  of SNδ  and consideration of the error εSN

in that estimate are used.  The approach is
analogous to that in EFD when an asymmetric
systematic uncertainty is “zero-centered” by
inclusion of a model for the systematic error in
the data reduction equation and then the
uncertainty considered is that associated with
the model (Coleman and Steele, 1999). In the
“uncorrected” approach given by equations
(1)-(2), any particular SNδ  is considered as a
single realization from some parent population
of SNδ 's and the uncertainty SNU  is interpreted
accordingly in analogy to the estimation of
uncertainties in EFD (with a similar argument
for εSN and 2

NSC
U ).

Verification is defined as a process for
assessing numerical uncertainty SNU  and,
when conditions permit, estimating the sign
and magnitude of the numerical error

∗
SNδ itself and the uncertainty in its error

NSC
U . Iterative and parameter convergence
studies are conducted using multiple solutions

with systematic parameter refinement.
Verification methodology is described in
Section 3.2.  Analytical benchmarks can be
defined as the truth and are useful in
development and confirmation of verification
procedures and methodology and in code
development, but can not be used for
validation and are restricted to simple
equations. Results from the use of analytical
benchmarks are provided in Appendix C of
Stern et al. (1999b).

Validation is defined as a process for
assessing modeling uncertainty SMU  by using
benchmark experimental data and, when
conditions permit, estimating the sign and
magnitude of the modeling error SMδ  itself.
The comparison error E (difference between
data D and simulation S values) and the
validation uncertainty VU (combination of
uncertainties in data and portion of simulation
uncertainties that can be estimated) are used
in this process. Validation methodology is
described in Section 3.3.

3.2 Verification

For many CFD codes, the most important
numerical errors and uncertainties are due to
use of iterative solution methods and specifi-
cation of various input parameters such as
spatial and time step sizes and other parame-
ters (e.g., artificial dissipation).  The errors
and uncertainties are highly dependent on the
specific application (geometry and condi-
tions).
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The errors due to specification of input
parameters are decomposed into error
contributions from iteration number Iδ, grid
size Gδ , time step Tδ , and other parameters

Pδ , which gives the following expressions for
the simulation numerical error and uncertainty

∑
=

δ+δ=δ+δ+δ+δ=δ
J

1j
jIPTGISN (7)

∑
=

+=+++=
J

1j

2
j

2
I

2
P

2
T

2
G

2
I

2
SN UUUUUUU (8)

Similarly, error estimates δ* can be
decomposed as

∑
=

∗∗∗ +=
J

j
jISN

1

δδδ  (9)

which gives the following expressions for the
corrected simulation and corrected simulation
numerical uncertainty

SNSM

J

j
jIC TSS εδδδ ++=+−= ∑

=

∗∗ )(
1

(10)

∑
=

+=
J

j
jINS CCC

UUU
1

222 (11)

Verification is based on equation (10),
which is put in the form

)(
1

∑
=

∗∗ ++=
J

j
jICSS δδ (12)

Equation (12) expresses S as the corrected
simulation value SC plus errors. SC is also
referred to as a numerical benchmark since it
is equal, as shown by equation (10), to the
truth plus simulation modeling and presumable
small error εSN in the estimate of the numerical
error ∗

SNδ .  Power-series expansions about SC

for each input parameter using multiple
solutions are used to obtain estimates for the

∗
jδ ’s in equation (12).  ∗

Iδ  must be accurately
estimated or be negligible for each solution.

3.2.1 Convergence Studies

Iterative and parameter convergence
studies are conducted using multiple (m) so-
lutions and systematic parameter refinement
by varying the kth input parameter kx∆ while
holding all other parameters constant.  The
present work assumes input parameters can be
expressed such that the finest resolution cor-
responds to the limit of infinitely small pa-
rameter values. Many common input parame-
ters are of this form, e.g., grid spacing, time
step, and artificial dissipation. Additionally, a
uniform parameter refinement ratio

12312 −∆∆=∆∆=∆∆= mkmkkkkkk xxxxxxr
between solutions is assumed/required.

Parameter refinement ratio 2rk =  is ideal
as it provides large parameter refinement and
enables use of the coarser-parameter solutions
as initial guesses for the finer-parameter
solutions without interpolation; however,
parameter doubling is often impractical.
Alternatively, 2rk =  is suggested which
also provides fairly large parameter refinement
and at least enables prolongation of the
coarse-parameter solution as an initial guess
for the fine-parameter solution. Selection of
grid refinement ratio is dependent on the level
of iterative convergence. As grid refinement
ratio rG approaches unity (i.e., as the three
grids become nearly identical), solution
changes ε due to grid refinement go to zero
such that iterative errors can become
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dominant.  For this reason, it is recommended
that grid refinement ratio be sufficiently large.
However, for relatively large grid refinement
ratio, the finest grid size may be prohibitively
large if the coarsest grid is designed with
sufficiently small step size.  Also, in general,
as the step size is reduced the errors also
reduce. However, typical iterative methods
require more iterations on finer step sizes to
reach the same level of iterative uncertainty.
Therefore, it becomes more
difficult/resourceful to reduce the iterative
error to at least one order of magnitude less
than the parameter error as the parameter is
refined.

Equation (12) is written for the kth pa-
rameter and mth solution as

∑
≠=

∗∗∗ +++=
J

kjj
jkICk mmmkm

SS
,1

δδδ (13)

Iterative convergence must be assessed and

mkS corrected for iterative errors prior to
evaluation of parameter convergence since the
level of iterative convergence may not be the
same for all m solutions used in the parameter
convergence studies.  Methods for estimating

IU or ∗
Iδ  and 

CIU  are described in Section

3.2.2.  With ∗
mkIδ evaluated, 

mkS is corrected

for iterative errors as

∑
≠=

∗∗∗ ++=−=
J

kjj
jkCIkk mmmkmm

SSS
,1

ˆ δδδ  (14)

Equation (13) shows that iterative errors
∗

mkIδ must be accurately estimated or negligi-

ble in comparison to ∗
mkδ  for accurate conver-

gence studies and that they should be consid-

ered within the context of convergence studies
for each input parameter.

mkŜ  can be calculated for both integral
(e.g., resistance coefficients) and point (e.g.,
surface pressure, wall-shear stress, and
velocity) variables.  If point variables are not
at the same location (e.g., when grid doubling
is not used) or time, interpolation to a
common location and time is required. Roache
(1998) discusses methods for evaluating
interpolation errors. 

mkŜ  can be presented as
an absolute quantity (i.e., non-normalized) or
normalized with the solution as a percentage
change; however, if the solution value is small,
a more appropriate normalization may be the
range of the solution.

Convergence studies require a minimum of
m=3 solutions to evaluate convergence with
respect to input parameter and to estimate
errors and uncertainties. Note that m=2 is
inadequate, as it only indicates sensitivity and
not convergence, and that m>3 may be
required.  Consider the situation for 3
solutions corresponding to fine 

1kŜ , medium

2kŜ , and coarse 
3kŜ values for the kth input

parameter.  Solution changes ε for medium-
fine and coarse-medium solutions and their
ratio Rk are defined by

12

ˆˆ
21 kk SS

k
−=ε

23

ˆˆ
32 kk SS

k
−=ε  (15)

kk 3221kR εε=
Three convergence conditions are possible:

(i) Converging condition: 0 < kR  < 1
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(ii) Oscillatory condition: kR  < 0 (16)
(iii) Diverging condition: kR  > 1

For the converging condition (i), the
solutions exhibit monotonic convergence and
generalized RE is used to estimate kU  or

∗
kδ  and 

CkU . Methods for estimating errors
and uncertainties for the converging condition
(i) are described in Section 3.2.3.

For the oscillatory condition (ii), the
solutions exhibit oscillations, which may be
erroneously identified as condition (i) or (iii).
This is apparent if one considers evaluating
convergence condition from three points on a
sinusoidal curve (Coleman et al., 1999).
Depending on where the three points fall on
the curve, the condition could be incorrectly
diagnosed as either converging or diverging.
Methods for estimating uncertainties kU  for
the oscillatory condition (ii) require more than
m=3 solutions and are described in Section
3.2.4.

For the diverging condition (iii), the
solutions exhibit divergence and errors and
uncertainties can not be estimated. Additional
remarks are given in Section 3.2.5.

Determination of the convergence
ratio kR for point variables can be problematic
since solution changes 

k21ε and 
k32ε can both

go to zero (e.g., in regions where the solution
contains an inflection point). In this case, the
ratio becomes ill conditioned. However, the
convergence ratio can be used in regions
where the solution changes are both non-zero
(e.g., local solution maximums or minimums).

Another approach is to use a global
convergence ratio Rk, which overcomes ill
conditioning, based on the L2 norm of the
solution changes, i.e., 

232221 /
kkkR εε= .

3.2.2 Iterative Convergence

Iterative convergence must be assessed
and simulation results 

mkS corrected for
iterative errors prior to evaluation of
parameter convergence since the level of
iterative convergence may not be the same for
all m solutions used in the parameter
convergence studies.  Methods for estimating

IU or ∗
Iδ  and 

CIU  are described in this
section.  The methods are applicable to both
integral and point variables. For point
variables, an L2 norm over all grid points is
often used as a global metric.  There are many
integral and point variables that can be
monitored to establish iterative stopping
criteria; however, present discussion is
specifically within the context of evaluating

IU or ∗
Iδ  and 

CIU for use in the parameter

convergence study for 
mkS .  Further work is

needed on assessing iterative errors and their
role in parameter convergence studies and for
assessing iterative errors and uncertainties for
unsteady flows.

Typical CFD solution techniques for
obtaining steady state solutions involve
beginning with an initial guess and performing
time marching or iteration until a steady state
solution is achieved. For time-accurate
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calculations using implicit methods,
convergence of the solution is required at each
time step. Care must be exercised in
evaluating iterative convergence based solely
on solution residuals, i.e., change in solution
from iteration to iteration. Small time steps
and/or relaxation parameters can result in
small solution residuals while iterative error
can be large (Ferziger and Peric, 1997).   If

mkS is a primary dependent variable, an
alternative approach that removes this
problem is to use the residual imbalance of the
discretized equations (i.e., the difference in the
left- and right-hand sides) as a measure of
convergence; since, the iterative error satisfies
the same equation as this residual imbalance.

The number of order magnitude drop and
final level of solution residual (or residual
imbalance) can be used to determine stopping
criteria for iterative solution techniques.
Iterative convergence to machine zero is
desirable, but for complex geometry and
conditions it is often not possible. Three or
four orders of magnitude drop in solution
residual to a level of 10-4 is more likely for
these cases. Methods for estimation of
iterative errors and uncertainties can be based
on graphical, as discussed below, or
theoretical approaches and are dependent on
the type of iterative convergence: (a)
oscillatory; (b) convergent; or (c) mixed
oscillatory/convergent.

For oscillatory iterative convergence (a),
the deviation of the variable from its mean
value provides estimates of the iterative
uncertainty based on the range of the
maximum US  and minimum LS  values

)(
2
1

LUI SSU −=  (17)

For convergent iterative convergence (b),
a curve-fit of an exponential function can be
used to estimate IU or ∗

Iδ  and 
CIU  as the

difference between the value and the
exponential function from a curve fit for large
iteration number ∞CF

0, =−=
−=

∞
∗

∞

Cmk II

I

UCFS

CFSU

δ
 (18)

For mixed convergent/oscillatory iterative
convergence (c), the amplitude of the solution
envelope decreases as the iteration number
increases, the solution envelope is used to
define the maximum US  and minimum LS
values in the Ith iteration, and to estimate

IU or ∗
Iδ  and 

CIU

0),(
2
1

)(
2
1

=−−=

−=

∗
Cmk ILUI

LUI

USSS

SSU

δ
 (19)

An increase in the amplitude of the solution
envelope as the iteration number increases
indicates that the solution is divergent.

Estimates of the iterative error based
on theoretical approaches are presented in
Ferziger and Peric (1997) and involve estima-
tion of the principal eigenvalue of the iteration
matrix. The approach is relatively straightfor-
ward when the eigenvalue is real and the so-
lution is convergent. For cases in which the
principal eigenvalue is complex and the solu-
tion is oscillatory or mixed, the estimation is



ITTC - Quality Manual
4.9 – 04
01 – 01

Page 9 of 18ITTC 1999
22nd CFD General

Uncertainty Analysis in CFD
Uncertainty Assessment Methodology

Effective Date Revision
00

not as straightforward and additional assump-
tions are required.

3.2.3 Convergent Condition: Generalized
Richardson Extrapolation

For the converging condition (i) in
equation (16), generalized RE is used to
estimate kU or ∗

kδ  and 
CkU .  RE is

generalized for J input parameters and
accounting for the effects of higher-order
terms, as summarized in the following.
Appendix B of Stern et al. (1999b) provides a
detailed description.

Generalized RE begins with equation (14).
The error terms on the right-hand-side of
equation (14) are of known form (i.e., power
series expansion in kx∆ ) based on analysis of
the modified (A.6) and numerical error (A.9)
equations, as shown in Appendix A of Stern et
al. (1999b) equation (A.12), which is written
below as a finite sum (i.e., error estimate) and
for the kth parameter and mth solution

∑
=

∗ ∆=
n

i

i
k

p
kk gx

i
k

mm
1

)()(

)(δ  (20)

n = number of terms retained in the power
series, powers )(i

kp correspond to order of

accuracy (for the ith term), and )(i
kg are

referred to as “grid” functions which are a
function of various orders and combinations
of derivatives of S with respect to Xk.
Substituting equation (20) into equation (14)
results in

∑∑
≠=

∗

=
+∆+=

J

kjj
j

n

i

i
k

p
kCk m

i
k

mm
gxSS

,11

)()(

)(ˆ δ  (21)

Subtraction of multiple solutions
eliminates the ∗

mj
δ terms in equation (21) and

provides equations for SC, )(i
kp , and )(i

kg .
Since each term (i) contains 2 unknowns,
m=2n+1, i.e., for n= 1, m=3 and for n=2,
m=5, etc.  The accuracy of the estimates
depends on how many terms are retained in
equation (20) and the magnitude (importance)
of the higher-order terms.  For sufficiently
small kx∆ , the solutions are in the asymptotic
range such that higher–order terms are
negligible.  However, achieving the
asymptotic range for practical geometry and
conditions is usually not possible and m>3 is
undesirable from a resources point of view;
therefore, methods are needed to account for
effects of higher-order terms for practical
application of RE. Usually ∗

kδ  is estimated for
the finest value of the input parameter, i.e.,

∗
kδ = ∗

1kδ corresponding to the finest solution

1kS .

For m=3, only the leading-order term can
be evaluated. Equations are obtained for ∗

1kδ
and order-of-accuracy pk

1
21

11 −
== ∗∗

k

k

k p
k

REk r

ε
δδ  (22)

)rln(

)ln(
p

k

2132
k

kk
εε

= (23)

Appendix B of Stern et al. (1999b) includes
results for m=5.

Appendix C of Stern et al. (1999b)
provides verification for two analytical
benchmarks (one-dimensional wave and two-
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dimensional Laplace equations). Multiple so-
lutions were used to evaluate the RE error
estimates, including the effects of higher-order
terms.  Solving for the first-order term is rela-
tively easy since evaluation of equations (22)
and (23) only requires that the m=3 solutions
are monotonically convergent, even if the so-
lutions are far from the asymptotic range and
equations (22) and (23) are inaccurate.  Solv-
ing for the higher-order terms (i.e., second-
order term) is more difficult since evaluation
of the m=5 solutions for SC, )2,1( =i

kp , and
)2,1( =i

kg  additionally requires that the solutions
are relatively close to the asymptotic range,
i.e., within about 6% of the theoretical order
of accuracy based on the modified equation

thkp and 
thkq .

The solutions show that equation (22) has
the correct form, but the order of accuracy is
poorly estimated by equation (23) except in
the asymptotic range.  Therefore, one ap-
proach is to correct equation (22) by a multi-
plication correction factor accounting for the
effects of higher-order terms.  Two correction
factors were investigated

1

1

−
−=

estk

k

p
k

p
k

k
r

r
C  (24a)

( )

)1)((

)1)(/(

)1(

)1)(/(

1223

1223

−−
−−

+

−−
−−

=

estkestkestk

kestk

kk

estkestkestk

kestk

kk

q
k

q
k

p
k

p
k

p
k

p
k

q
k

p
k

p
k

q
k

k

rrr

rr

rrr

rr
C

εε

εε

(24b)

estkp and 
estkq  are estimates for the 1st and 2nd

term order of accuracy 1
kp and 2

kp .  The
estimated value can be based either on

thkp and 
thkq or solutions for simplified

geometry and conditions.  In either case,
preferably including the effects of grid
stretching.  Equation (24a) roughly accounts
for the effects of higher-order terms by
replacing pk with 

estkp  thereby providing an
improved single-term estimate.  Equation
(24b) more rigorously accounts for higher-
order terms since it is derived from the two-
term estimate with 1st and 2nd term order of
accuracy 1

kp and 2
kp  replaced by 

estkp and

estkq .  Equation (24b) simplifies to equation
(24a) in the limit of the asymptotic range.
Both correction factors only require solutions
for three parameter values. kC <1 or kC >1
indicates that the leading-order term over
predicts (higher-order terms net negative) or
under predicts (higher-order terms net
positive) the error, respectively. kC  given by
equation (24) may be fairly universal in that it
only implicitly depends on geometry and
conditions.

Combining equation (22) and (24)
provides an estimate for ∗

1kδ accounting for the
effects of higher-order terms







−

== ∗∗

1
21

11 k

k

k p
k

kREkk r
CC

ε
δδ  (25)

The estimate includes both sign and
magnitude. Equation (25) is used to estimate

kU or ∗
kδ  and 

CkU depending on how close
the solutions are to the asymptotic range (i.e.,
how close kC  is to 1) and one’s confidence in
equation (25).  There are many reasons for
lack of confidence, especially for complex
three-dimensional flows.  Point variables
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invariably are not uniformly convergent, which
is particularly evident near inflection points
and zero crossings.

Equations (24) and (25) need further
testing both for additional analytical
benchmarks and practical applications.  Also
alternative strategies for including effects of
higher-order terms may be just as viable.
Note that equation (25) differs significantly
from the GCI proposed by Roache (1998).
Herein ( )estkestkkkkk qpprCC ,,,,ε= ,
whereas in the GCI, kC  is a constant referred
to as a factor of safety FS which equals 1.25
for careful grid studies and 3 for cases for
which only two grids are used.

For kC  sufficiently less than or greater
than 1 and lacking confidence, kU  is

estimated, but not ∗
kδ  and 

CkU .  Based on the
analytical benchmark studies [Appendix C of
Stern et al. (1999b)], it appears that equation
(25) can be used to estimate the uncertainty
by bounding the error by the sum of the
absolute value of the corrected estimate from
RE and the absolute value of the amount of
the correction

∗∗ −+=
11

)1(
kk REkREkk CCU δδ (26)

For kC  sufficiently close to 1 and having

confidence, ∗
kδ  and 

CkU are estimated.
Equation (25) is used to estimate the error

∗
kδ , which can then also be used in the

calculation of CS  [in equation (10)].  The
uncertainty in the error estimate is based on
the amount of the correction

∗−=
1

)1(
kC REkk CU δ (27)

Note that in the limit of the asymptotic range,

kC =1, 
1

1 k
REkk δδδ == ∗∗ , and 

CkU =0.

3.2.4 Oscillatory Condition

For the oscillatory condition (ii) in equa-
tion (16), uncertainties can be estimated, but
not the signs and magnitudes of the errors.
Uncertainties are estimated based on determi-
nation of the upper ( US ) and lower ( LS )
bounds of solution oscillation, which requires
more than m=3 solutions. The estimate of
uncertainty is based on half the solution range

)(
2
1

LUk SSU −=  (28)

3.2.5 Diverging Condition

For the diverging condition (iii) in equa-
tion (16), errors and or uncertainties can not
be estimated.  The preparation and verification
steps must be reconsidered. Improvements in
iterative convergence, parameter specification
(e.g., grid quality), and/or CFD code may be
required to achieve converging or oscillatory
conditions.

3.3 Validation
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Validation is defined as a process for
assessing modeling uncertainty SMU  by using
benchmark experimental data and, when
conditions permit, estimating the sign and
magnitude of the modeling error SMδ  itself.
Thus, the errors and uncertainties in the
experimental data must be considered in
addition to the numerical errors and
uncertainties discussed in Section 3.2.
Approaches to estimating experimental
uncertainties are presented and discussed by
Coleman and Steele (1999).

The validation methodology of Coleman
and Stern (1997) which properly takes into
account the uncertainties in both the simula-
tion and the experimental data is described in
this section.  The methodology is also dem-
onstrated using an estimated numerical error
and corrected simulation and validation un-
certainty values.

3.3.1 Methodology

The validation comparison for a simulated
and measured result r that is a function of the
variable X is shown in figure 1.  The
experimentally determined r-value of the
( )ii r,X  data point is D and, as before, the
simulated r-value is S. Recall from equation
(1) that the simulation error Sδ is the
difference between S and the truth T.
Similarly, the error Dδ in the data is the
difference between D and the truth T, so
setting the simulation and experimental truths
equal

SD SD δδ −=− (29)
The comparison error E is defined as the

difference of D and S

)( SNSPDSMAD

SDSDE
δδδδ

δδ
++−=

−=−=
(30)

with δSM decomposed into the sum of δSPD,
error from the use of previous data such as
fluid properties, and δSMA, error from
modeling assumptions.  Thus E is the resultant
of all the errors associated both with the
experimental data and with the simulation. For
the approach in which no estimate *

SNδ of the
sign and magnitude of  SNδ  is made, all of
these errors are estimated with uncertainties.
(As will be shown, during the validation
process an estimate of the sign and magnitude
of SMAδ  can be made under certain conditions.)

If ii r,X , and S share no common error
sources, then the uncertainty EU  in the
comparison error can be expressed as

2
S

2
D

2
S

2
2
D

2
2
E UUU

S
E

U
D
E

U +=





∂
∂+






∂
∂= (31)

or

UUUUU SNSPDSMADE

22222 +++= (32)
where subscripts are used in the same manner
as for the δ's .

Ideally, we would like to postulate that if
the absolute value of E is less than its
uncertainty EU , then validation is achieved
(i.e., E is “zero” considering the resolution
imposed by the “noise level” EU ).  In reality,
the authors know of no approach that gives an
estimate of SMAU , so EU  cannot be estimated.
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That leaves a more stringent validation test as
the practical alternative.  If the validation
uncertainty VU  is defined as the combination
of all uncertainties that we know how to
estimate (i.e., all but SMAU ), then

UUUUUU SNSPDDSMAEV

222222 ++=−= (33)

If |E| is less than the validation uncertainty
VU , the combination of all the errors in D and

S is smaller than the estimated validation
uncertainty and validation has been achieved
at the VU  level.  VU  is the key metric in the
validation process. VU  is the validation “noise
level” imposed by the uncertainties inherent in
the data, the numerical solution, and the
previous experimental data used in the
simulation model.   It can be argued that one
cannot discriminate once |E| is less than this;
that is, as long as |E| is less than this, one
cannot evaluate the effectiveness of proposed
model “improvements.”

If the corrected approach of equations (3)-
(6) is used, then the equations equivalent to
equations (30) and (33) are

)( SNSPDSMADCC SDE εδδδ ++−=−= (34)
for the corrected comparison error and

UUU
UUU

NSSPDD

SMAEV

C

CC

222

222

++=

−=
(35)

for the corrected validation uncertainty.  Note
that SC and EC can be either larger or smaller
than their counterparts S and E, but 

CEU  and

CVU  should be smaller than EU and VU ,

respectively, since NSC
U  should be smaller

than SNU .

For the data point ( )ii r,X , DU  should
include both the experimental uncertainty in

i
r  and the additional uncertainties in 

i
r arising

from experimental uncertainties in the
measurements of the n independent variables
( )

ijX  in iX .  The expression for DU  that

should be used in the VU  (
CVU ) calculation is

then

( )2

iX

2

i

n

1j j

2
r

2
D ji

U
X
rUU ∑

=






∂
∂+= (36)

In some cases, the terms in the summation
in equation (36) may be shown to be very
small, using an order-of-magnitude analysis,
and then neglected.  This would occur in
situations in which the 

jXU values are of
"reasonable" magnitude and gradients in r are
small.  In regions with high gradients (e.g.,
near a surface in a turbulent flow), these terms
may be very significant and the partial
derivatives would be estimated using whatever
( )ii r,X  data is available.

There is also a very real possibility that
measurements of different variables might
share identical bias errors.  This is easy to
imagine for measurements of x, y, and z.  An-
other possibility is D and S sharing an identical
error source, for example if the same density
table (curve fit) is used both in data reduction
in the experiment and in the simulation.  In
such cases, additional correlated bias terms
must be included in equation (31), (32), (33),
and (35).
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To estimate SPDU  for a case in which the
simulation uses previous data iD  in m
instances, one would need to evaluate

( )2
2

1

2
iD

m

i i
SPD U

D
S

U ∑
=





=
∂
∂

(37)

where the 
iDU  are the uncertainties associated

with the data.

3.3.2 Single CFD Code

Consideration of equation (32) shows that
(1) the more uncertain the data, and/or (2) the
more inaccurate the code (greater SNU  and

SPDU ), the easier it is to validate a code, since
the greater the uncertainties in the data and
the code predictions, the greater the noise
level VU .  However, if the value of VU  is
greater than that designated as necessary in a
research/design/development program, the
required level of validation could not be
achieved without improvement in the quality
of the data, the code, or both.  Also, if SNU
and SPDU  are not estimated, but |E| is less than

DU , then a type of validation can be argued to
have been achieved, but clearly as shown by
the present methodology, at an unknown
level.

If there is a programmatic validation
requirement, denote it as reqdU  since validation
is required at that uncertainty level or below.
From a general perspective, if we consider the
three variables VU , E , and reqdU  there  are

six combinations (assuming none of the three
variables are equal):

1. E  < VU  < reqdU

2. E  < reqdU  < VU

3. reqdU  < E  < VU  

4. VU  <  E  < reqdU  (38)

5. VU  < reqdU  < E

6. reqdU  < VU  < E

In cases 1, 2 and 3, E < VU ; validation is

achieved at the VU  level; and the comparison
error is below the noise level, so attempting to
decrease the error SMAδ  due to the modeling
assumptions in the simulation is not feasible
from an uncertainty standpoint. In case 1,
validation has been achieved at a level below

reqdU , so validation is successful from a
programmatic standpoint.

In cases 4, 5 and 6, VU < E , so the
comparison error is above the noise level and
using the sign and magnitude of E to estimate

SMAδ  is feasible from an uncertainty

standpoint. If VU << E , then E corresponds

to SMAδ  and the error from the modeling
assumptions can be determined
unambiguously.  In case 4, validation is
successful at the E  level from a
programmatic standpoint.

A similar comparison table can be
constructed using |EC |, 

CVU , and reqdU .  Since

EC can be larger or smaller than E, but 
CVU

should always be less than VU , the results for



ITTC - Quality Manual
4.9 – 04
01 – 01

Page 15 of 18ITTC 1999
22nd CFD General

Uncertainty Analysis in CFD
Uncertainty Assessment Methodology

Effective Date Revision
00

a given corrected case are not necessarily
analogous to those for the corresponding
uncorrected case.  That is, a variable can be
validated in the corrected but not in the
uncorrected case, or vice versa.  However, the
band 

CEC UE ±  should always give a smaller
(therefore better) range within which the true
value of E lies than the band E ± UE, assuming
that one’s confidence in using the estimate

*
SNδ  is not misplaced. Furthermore, for cases

4, 5, and 6, one can argue that EC more likely
corresponds to SMAδ .

In general, validation of a code's
predictions of a number (N) of different
variables is desired, and this means that in a
particular validation effort there could be N
different E, EC, VU , 

CVU , and reqdU  values
and (perhaps) some successful and some
unsuccessful validations.  For each variable, a
plot of the simulation prediction versus X
compared with the ( )ii r,X  data points gives a
traditional overview of the validation status,
but the interpretation of the comparison is
greatly affected by choice of the scale and the
size of the symbols. A plot of VU± (

CVU± )

and E (EC), and reqdU  (if known) versus X for
each variable is particularly useful in drawing
conclusions, and the interpretation of the
comparison is more insensitive to scale and
symbol size choices.

3.3.3 Comparison of Multiple Codes and/or
Models

When a validation effort involves multiple
codes and/or models, the procedure discussed
above -- comparison of values of E and VU
(and reqdU  if known) for the N variables --
should be performed for each code/model.

Since each code/model may have a
different VU , some method to compare the
different codes’/models’ performance for each
variable in the validation is useful.  The range
within which (95 times out of 100) the true
value of E lies is EUE ± .  From equation
(32), when SMAU  is zero then EV UU = , so
for that ideal condition the maximum absolute
magnitude of the 95% confidence interval is
given by VUE + .  Comparison of the

( VUE + )’s for the different codes/models
then shows which has the smallest range of
likely error assuming all SMAU ’s are zero.  This
allows appropriate comparisons of (low
E)/(high VU ) with (high E/low VU )
codes/models.
A similar discussion holds if the corrected
values are used.

3.3.4 Predictions of Trends

In some instances, the ability of a code or
model to predict the trend of a variable may
be the subject of a validation effort.  An
example would be the difference in drag for
two ship configurations tested at the same
Froude number.  The procedure discussed
above -- comparison of |E| and VU  for the
drag -- should be performed for each
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configuration.  The difference ∆ in drag for
the two configurations should then be
considered as the variable that is the subject of
the validation.  As discussed in Coleman and
Steele (1999), because of correlated bias
uncertainty effects in the experimental data the
magnitude of the uncertainty in ∆ may be
significantly less than the uncertainty in either
of the two experimentally determined drag
values.  This means that the value of VU  for ∆
may be significantly less than the VU 's for the
drag values, allowing for a more stringent
validation criterion for the difference than for
the absolute magnitudes of the variables.
Choice of the corrected or uncorrected
approach should be made on a specific case-
by-case basis.

3.3.5 Corrected vs. Uncorrected
Simulation Results

If a validation using the corrected
approach is successful at a set condition, then
if one chooses to associate that validation
uncertainty level with the simulation's
prediction at a neighboring condition that
prediction must also be corrected.  That
means enough runs are required at the new
condition to allow estimation of the numerical
errors.  If this is not done, then the
comparison error E and validation uncertainty

VU  corresponding to the use of the
uncorrected S and its associated (larger) SNU

should be the ones considered in the validation
with which one wants to associate the
prediction at a new condition. (Whether to
and how to associate an uncertainty level at a
validated condition with a prediction at a

neighboring condition is very much
unresolved and is justifiably the subject of
much debate at this time.)

As discussed in Section 3.3.2, however,
the band 

CEC UE ± should always give a
smaller (therefore better) range within which
the true value of E lies than the band E ± UE,
assuming that one’s confidence in using the
estimate *

SNδ  is not misplaced.
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Figure 1 Definition of comparison error.
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