JBC test data in NMRI

Nobuyuki HIRATA

National Maritime Research Institute

December 2, 2015 Tokyo2015, A Workshop on CFD in Ship Hydrodynamics

< ∃⇒

Summary

- Newly designed hull form(JBC) and circular duct as ESD
- Towing tank tests
 - Resistance and self-propulsion tests
 - Wave pattern measurement
 - Detailed flow measurement (SPIV)
- Concluding Remarks
- Acknowledgement

Summary

- With enforcement of Enrgy Efficiency Design Index (EEDI), Energy-Saving device(ESD) has come into the limelight, but we do not have any common benchmark database for especially detailed flows around a ship with an ESD.
- Geometries of a ship with an ESD and detailed flow data must be open in order that <u>all CFDers can use the flow field</u> <u>database</u> to validate their codes.
- ► Japan Bulk Carrier (JBC) has been newly designed together with a circular duct by mainly NMRI, YNU and SRCJ.
- Resistance, self-propulsion factors, wave pattern and detailed velocity distributions around stern were measured in NMRI towing tank for a ship with and without a duct in resistance and self-propulsion condition.

・日・ ・ ヨ ・ ・ ヨ ・

Design guideline of JBC(Japan Bulk Carrier) and ESD

- Objective is to validate CFD code for a ship with an ESD.
- In order to make strong axial vortex, stern shape should be full.
- ▶ Not care about the latest hull geometry (i.e. *C_B* should be large).
- Simple shape and effective ESD should be adopted.

 \rightarrow

Following this guideline, Cape-size bulk carrier called Japan Bulk Carrier (JBC) with a circular duct was designed as hull form for validation.

高 とう モン・ く ヨ と

Principal particulars and plates of JBC

L _{pp}	280.0	т
L _{wl}	285.0	т
В	45.0	т
D	25.0	т
d	16.5	т
C _b	0.858	
Cp	0.860	
Cm	0.998	
Cw	0.925	

lcb	-2.548	%
Vs	14.5	kn
Z _{shaft}	5.184	т
α	40.0	
Section	MAU	
Dp	8.12	т
H/D	0.70	
AE	0.54	
Ζ	5	

Bodyplan and waterlines of JBC

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Nobuyuki HIRATA

JBC test data in NMRI

Dimensions and plates of circular duct

Duct diameter outlet	0.55 Dp
Chord length	0.30 Dp
Opening angle	20[deg.]
Foil section	NACA4420

Э

Ship resistance/self-propulsion test-1

Towing in calm water condition (pitch and trim free)		
Withour rudder, with/without propeller, with/without duct		
Ship point ($\Delta C_F = 0.12 imes 10^{-3}$ based on ITTC1957 line.		
Model ship speed(design)	<i>V_m</i> =1.179[m/s]	
Froude number(design)	$F_r (=V_m/\sqrt{gL_{PP}}) = 0.142$	
Reynolds number(design)	$R_e~(=V_m L_{PP}/ u) = 7.46 imes 10^6$	

Nobuyuki HIRATA JBC test data in NMRI

æ

Ship resistance/self-propulsion test-2

<ロ> (四) (四) (三) (三) (三)

Ship resistance/self-propulsion test-3

Nobuyuki HIRATA

JBC test data in NMRI

Towing in calm water condition (pitch and trim free)		
Withour rudder, without propeller, without ESD		
Model ship speed	<i>V_m</i> =1.179[m/s]	
Froude number	$F_r \ (=V_m/\sqrt{gL_{PP}}) = 0.142$	
Reynolds number	$R_e~(=V_m L_{PP}/ u) = 7.40 imes 10^6$	
Measuring lines	wave profile, y/L_{PP} =0.1043, 0.1900	
dipping at FP and AP	$\Delta d_F = 12.3$ mm, $\Delta d_A = -0.3$ mm	

fore

ヨト ヨ

▲□ ▶ ▲圖 ▶ ▲ 圖 ▶

Wave pattern measurement-2

・ロン ・回と ・ヨン ・ヨン

Э

Towing in calm water condition (pitch and trim free)		
Withour rudder, with/without propeller, with/without ESD		
Model ship speed	<i>V_m</i> =1.179[m/s]	
Froude number	$F_r \left(= V_m / \sqrt{g L_{PP}}\right) = 0.142$	
Reynolds number	$R_e~(=V_m L_{PP}/ u) = 7.40 imes 10^6$	
Measurement sections	7planes (from SS1/2 to A.P.)	
Measurement items	mean flow (U, V, W)	

æ

Detailed flow measurement-2

Nobuyuki HIRATA JBC test data in NMRI

Measuring sections

Nobuyuki HIRATA JBC test data in NMRI

Э

Comparison of 5 hole pitot-tubes and SPIV without a duct in resistance condition at prop pl.(S5)

Nobuyuki HIRATA JBC test data in NMRI

Comparison of 5 hole pitot-tubes and SPIV with a duct in resistance condition at prop pl.(S5)

Nobuyuki HIRATA JBC test data in NMRI

Mean flow distribution in self-propulsion condition at A.P.(S7)

- ► JBC with a circular duct was designed.
- Based on the resistance/self-propulsion tests. effect of a duct is quite well.
- Wave pattern and wake distribution of mean flow were measured.
- ► Thus, Data base for CFD validation was established.
- ► Turbulence properties will be measured in the future.

This research was carried out jointly by Japan Marine United Corporation, Kawasaki Heavy Industries, Ltd., Mitsubishi Heavy Industries, Ltd., Mitsui Engineering & Shipbuilding, Co. Ltd, National Maritime Research Institute, Osaka University, Shipbuilding Research Centre of Japan, Sumitomo Heavy Industires Marine & Engineering, Co. Ltd., Yokohama National University, and IassNK as part of the ClassNK Joint R & D for Industry Program.

The author also would like to thank Dr. Katsuyoshi Takekuma in Marine Technologist for his valuable advice in design of JBC.