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1. Introduction 

About 80% of the total propulsion resistance of a ship like a tanker is due to friction with the surrounding 

water. It will be a great contribution to the environment to reduce the fuel consumption of ships as a means 

of mass transportation by reducing the frictional drag. There are several devices for reducing the frictional 

resistance such as passive type devices like riblets or active type devices like the combination of micro 

sensors and actuators. Among these methods, we consider the microbubble injection method is most 

suitable for ships. 

There is relatively large extent of literature on the microbubble drag reduction. McCormick et al.1) found 

that the drag of a submerged body was reduced by microbubbles produced by electrolysis. Madavan et al.2) 

investigated the relation between the drag reduction and the mean void ratio for a developing turbulent 

boundary layer on a flat plate. Guin et al.3) experimentally showed that the drag reduction is better 

correlated with the void fraction near the wall than the mean value. Takahashi et al.4) investigated the 

microbubble drag reduction for a fully developed turbulent boundary layer in a channel. 

The drag reduction rate for given amount of microbubbles must be improved in order to make the 

microbubble drag reduction method fit for practical use. For this purpose, it is important to understand the 

mechanism of the microbubble drag reduction. Decrease in the mean density, increase in the effective 

viscosity, and modulation of turbulence are assumed to be responsible. However, convincing answers are 

still missing.  

For developing an advanced model to explain and predict the microbubble drag reduction, more detailed 

experimental data is needed. However, since the presence of microbubbles strongly hinders measurements 

by LDV or PIV, the numerical simulation is expected to be an effective alternative approach. 

In this study we aim at obtaining a detailed data of the velocity field of turbulent flow modified by 

A new computational method for investigating interactions between bubbles and

turbulence has been developed. Both liquid and gas phases are treated as

incompressible continuum fluids and solved by a finite volume method, while the

interface between the phases is resolved by a front-tracking method. The accuracy

of the method is validated for the problem of a single rising bubble. The method

has been applied to a direct numerical simulation (DNS) of a fully developed

turbulent channel flow containing bubbles, and some preliminary results have been

obtained. 



microbubbles. 

Two-phase flow simulation methods are classified into three categories. The first way is to solve 

phase-averaged equations of fluid motion, and the second way is to model bubbles by point force 

distributions. These approaches are valid for predicting macroscopic feature of the flow, or in particular 

cases when the size of bubbles can be assumed infinitely small. The third way is to simulate the two-phase 

flow directly with implementing the continuity of mass and momentum across the air-water interface. Fig. 

1 shows a snap photo of the flow dealt with in this study. It is noted that the size of bubbles is relatively 

large, and the effect of the deformation of bubbles is supposed to be significant. Therefore, we adopt a 

direct numerical simulation method. Kanai and Miyata5) carried out a direct numerical simulation of 

turbulent Couette flow containing bubbles by use of the marker density method. We apply a similar 

computational method to a fully developed turbulent channel flow containing bubbles. 

 

 
Fig 1. Photograph of bubbles in the channel4) 

 

2. Numerical Method 

2.1 Governing Equations 

Both water and air phases are treated as incompressible fluids, and the continuity of stress is implemented 

at the interface. The governing equations for each phase is the Navier-Stokes equation, 
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and the continuity equation 
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where ix , iu , and p  are the Cartesian coordinate, the velocity components, and static pressure 

respectively. The fluid density ρ and the kinematic viscosity ν  take values of either water or air 

depending on whether the center of the computational cell is water or air. 

 



2.2 Interface Tracking Method 

There are several methods for expressing the moving interface between two fluids, such as the VOF 

method, the level-set method, and the front-tracking method. The VOF and level-set methods are 

categorized as the front capturing methods which track the movement of volume and find the interface in 

an indirect way. One of the merits of the methods of this type is that collision and breakup of interfaces are 

easily treated. On the other hand, the front-tracking method tracks the interface directly allowing more 

accurate calculation of the curvature of the interface, although treatment of surface re-structuring is 

complicated. We use the front-tracking method, since accurate calculation of the interface curvature is very 

important for the case investigated in this study.  

Each bubble is expressed by its center position and radius distribution around the center as shown in Fig 2. 
Marker particles are placed on each bubble regularly on a two-dimensional spherical grid ),( ϕθ . In the 

beginning of each time step, the positions of the marker particles are updated using the velocity interpolated 

from the rectangular grid for solving the Navier-Stokes equations. After the marker particles are moved, the 
radius at each point ),( ϕθr  is calculated and expanded in a series of spherical harmonic function, 
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in which N  is the number of the deformation modes considered, nmP  is Legendre associate polynomial. 

N  is set to 8 in this study. The coefficients nmA  and nmB  are obtained as follows: 
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The primary merit of this merit is that the curvature of the interface is accurately computed with relatively 

small number of grid points. Another advantage is that deformations of high wave number modes, which 

give rise to numerical instabilities, can be filtered out. Whereas the shortcomings are that the radius must be 

a single-valued function of the altitude and latitude. Therefore, this method cannot deal with deformations 

beyond a certain limit, collision or separation of bubbles. 

 
Fig 2. Schematic sketch of the present front-tracking method 



2.3 Solution Algorithm 

A second-order finite volume method is used for the spatial discretization on a rectangular grid system 

fixed to the space, and a second-order semi-implicit fractional step method is used for the time integration. 

At the beginning of each time step, the positions and shapes of bubbles are determined, and the values of 

density and the kinematic viscosity in each cell are set to values of water or air. Whether a cell-center point 

is inside a bubble or not can be judged from Equation (3). Then the dynamic boundary condition is set in 

cells containing interfaces. The surface tension is treated as a pressure jump across the interface. The 

curvature of the interface is calculated from the expression (3) analytically. Using this interface boundary 

condition the momentum equations (1) are semi-implicitly integrated, and then corrected by solving a 

Poisson equation for the pressure. The Poisson equation for the pressure is solved by a multigrid method. 

 

3. Single Rising Bubble 

The accuracy of the computational method is examined for the problem of a single bubble rising in 

quiescent water. Computations are carried out using 646464 ××  cells for a domain of 4 diameters 
cube, which moves with the center of the bubble. Fig.3 shows a comparison of the computed 
drag coefficient Cd  and an empirical formula proposed by Tomiyama et al.6). Bubbles 
smaller than 1 mm are almost spherical and rise straight up, while larger bubbles are 
deformed and show non-axisymmetric swing motions. Computations reproduce this behavior 
very well, and the calculated Cd  values are in good agreement with the empirical formula. 
Fig 4 shows computed ellipsoidal shape of the bubble. The flatness is confirmed to be also in 
good agreement with experiments. 
 

 

Fig 3. Drag coefficient of a single rising bubble in clean water 

 



 
(a) Diameter : 1 mm             (b) Diameter : 2 mm              (c) Diameter : 5 mm 

Fig. 4 Computation of a single rising bubble in water 

 
 
4. DNS of a Turbulent Channel Flow containing Bubbles 

4.1 Condition of Computations 

A fully developed turbulent channel flow containing bubbles is investigated by the present numerical 

method. Before introducing the bubbles, a fully developed single-phase turbulent channel flow at the 
Reynolds number 180Re =τ , based on the friction velocity τu  and a half width of the channel 
H , was computed. The size of the computational domain is set to HHH 2.324.6 ×× , in the 
streamwise, spanwise and wall-normal directions respectively. A periodic boundary condition 
is used in the streamwise and spanwise directions. The x-, y- and z- axes are taken in the 
streamwise, wall-normal and spanwise directions respectively. The profiles of computed 
mean velocity and turbulence intensity agree well with the DNS results of Kim et al.7) as 
shown in Figs. 5 and 6.  
Computations with bubbles are initialized with the result of the single-phase flow 
computation. The mean pressure gradient is automatically adjusted so that the volume flow 
rate is kept constant. Two computations DNS-1 and DNS-2 with different surface tension 
coefficients are carried out for investigating the influence of the deformation of bubbles. The 
parameters are summarized in Table 1. The influence of the gravitational acceleration is not 
included in the computations. The Reynolds number 360Re =τ  corresponds to the mean 
velocity smU m /42.0=  in the channel of mmH 5.7=  used in the experiment by 
Takahashi et al.4), while assuming HD 5.0= , the Weber number 2.9=We  and 

37=We corresponds to and smU m /42.0=  and smU m /85.0=  respectively. Bubbles 

are suddenly introduced as shown in Fig. 7 at the non-dimensional time 0/2* == ντ tut . 

 
4.2 Results4.2 Results4.2 Results4.2 Results 
Fig. 8 shows the time histories of the normalized wall shear stress. In the case DNS-1 the 
wall shear stress increases by about 20% within 100 non-dimensional time and then keeps a 
constant level with some fluctuation. The computation of the case DNS-2 was performed only 
until 600* =t , when the wall shear stress reached a steady level. However, it is noted 
that the wall shear stress increases more gradually towards a steady level, which is slightly 
lower than in the case DNS-1. In the experiment by Takahashi et al.4), the drag was reduced 



by about 10% at the mean void ratio of 10%. The different trend in the computation may be 
attributed to the small Reynolds number, the large bubble size, and lack of the gravitational 
acceleration.  
The statistics of the flow in the case DNS-2 are not shown in this paper, since the 
computation was stopped before the statistics converged. Fig. 9 shows the profile of the mean 
velocity in the case DNS-1 compared with the case without bubbles. The shapes of the 
profiles are similar, but the log-arithmetic region is shifted downward corresponding to the 
increase in the wall friction. The profiles of the turbulence intensities in the case DNS-1 and 
the case without bubbles are compared in Fig. 10. The peak of the streamwise component of 
the intensity is decreased, while the wall-normal and spanwise components are increased 
with the introduction of the bubbles. The decrease in the streamwise component of the 
intensity has also been observed experimentally by Kato et al.8). 
Figs 11 and 12 show the distribution and shapes of the bubbles at 500* =t  for the cases 
DNS-1 and DNS-2 respectively. The deformation of the bubbles is very small in the case 
DNS-1 due to the strong surface tension. On the other hand, significant deformation is 
confirmed in the case DNS-2. Bubbles near the solid walls are stretched due to the mean 
velocity gradient, while those near the center of the channel are almost spherical. The 
influence of the deformation is confirmed in the transient behavior of the wall shear stress 
shown in Fig. 8, but further examination of the computational results is necessary for 
clarifying the effect on the turbulence modulation. 
 

5. Summary and Conclusions 

A computational method for investigating the interactions between bubbles and turbulence has been 

developed in this study. The method employs a special front-tracking method, which tracks individual 

bubbles by the center positions and radius distributions. The advantage of the new method over 

front-capturing methods is that the interface curvature can be calculated more accurately for a given grid 

resolution. 

This method has been applied to DNS computations of a low Reynolds number turbulent 
channel flow containing 54 bubbles. Contrary to the experiments, the wall shear stress is 
increased by about 20% at the mean void ratio of 8.6%. Supposed reasons for this qualitative 
difference are the large bubble size, the low Reynolds number, and the lack of the 
gravitational acceleration. It has been shown that turbulence intensities are strongly 

Table 1. Condition of computation 
DNS-1 DNS-2 

Reynolds number  νττ /2Re Hu=  360 360 
Reynolds number  ν/2Re HU mm =  5500 5500 
Bubble diameter   D  0.5H 0.5H 
Weber number     σρ /2 DUWe m=  9.2 37 
Number of bubbles BN  54 54 
Mean void ratio    α  0.086 0.086 

    



modified by the introduction of bubbles. The decrease in the streamwise component of the 
intensity qualitatively agrees with the experiment. Although further validation of the 
numerical method is desired, it has been shown that the present numerical method is 
capable of dealing with the full interaction between bubbles and turbulence. This numerical 
simulation technique is expected to be a useful tool for investigating the influences of the 
bubble size or surface tension, since it is very difficult to control such parameters in 
experiments.  
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Fig 5. Mean velocity profile without bubbles     Fig 6. Turbulence intensity without bubbles 
 

 
Fig. 7 Initial distribution of bubbles at 0* =t  

 

 
Fig. 8 Time history of the average wall shear stress 

 



 

    
Fig. 9 Mean velocity profile                 Fig. 10 Turbulence intensities 

 

 

Fig 11. Distribution of bubbles in the case DNS-1 ( 4.9=We ) at 500* =t .  
Flow is from left to right. Colors on the walls show the instantaneous shear stress. 

 

 

 

Fig 12. Distribution of bubbles in the case DNS-1 ( 37=We ) at 500* =t . 
Flow is from left to right. Colors on the walls show the instantaneous shear stress. 


