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Abstract

Several recent studies concerning the role of linear mechanisms in turbulent
flows are discussed from the perspective of how such knowledge could be utilized
for turbulence control. Results from a numerical experiment designed to isolate
the role of an important linear process in wall-bounded shear flows are presented
to substantiate the notion that controlling a linear process in nonlinear flows
can be a viable route for flow control. Other implications of the current design
of linear controllers are also discussed.

1 Introduction

It has been generally accepted that nonlinearity is an essential characteristic of tur-
bulent flows. Consequently, except for special situations in which a linear mechanism
is expected to play a dominant role (e.g., rapidly straining turbulent flows to which
the rapid distortion theory can be applied), the role of linear mechanisms in turbu-
lent flows has not received much attention. Even for transitional flows, a common
notion is that the most a linear theory could provide is an insight into the early stages
of transition to turbulence. But several investigators have recently shown that lin-
ear mechanisms play an important role even in turbulent, and hence fully nonlinear,
flows. Examples of such studies include: optimal disturbances in turbulent boundary
layers (Farrell and his colleagues [2, 3, 4, 5, for example]); transient growth due to
non-normality of the Navier-Stokes system (Henningson and his colleagues [6, 7, for
example|); energy amplification in the linearized Navier-Stokes system [8]; essentially
linear feedback controllers for drag reduction in turbulent boundary layers (Lee et
al. 19, 10]); and successful applications of a linear control theory to transitional and
turbulent boundary layers by the UCLA group [11, 12, 13, 14] and Bewley [15, 16, 17].
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The recent work by Kim and Lim [1] has shown that near-wall turbulence could not
be maintained in turbulent channel flow when a linear mechanism was artificially sup-
pressed, thus further illustrating the essential role of a linear process in the nonlinear
flow.

In this paper, I shall review some of the above-mentioned work on the role of
linear mechanisms in turbulent flows. This review is done from the perspective that
controlling a linear processes in turbulent flows could be a viable route for flow control,
especially for drag reduction in turbulent boundary layers. The reader is referred to
the original references for other significances and implications of linear mechanisms
in turbulent flows.

Examples in this paper, unless explicitly noted otherwise, are drawn from direct
numerical simulations of a turbulent channel flow similar to those described in Kim et
al. [18]. Tshall use (z,y, z) for the streamwise, wall-normal, and spanwise coordinates,
respectively, and (u,v,w) for the corresponding velocity components. Unless stated
otherwise, all variables are non-dimensionalized by a characteristic velocity (either
the wall-shear velocity, u., or the centerline velocity, U.) and the channel half-width,
h, and Re or Re, denotes the corresponding Reynolds number.

2 Non-Normality of the Linearized Navier-Stokes
System

The linearized Navier-Stokes (N-S) equations can be written in an operator form

il -wla) =1 1] 0

where ¢ and @, represent the Fourier-transformed wall-normal velocity and vorticity,
respectively, and L,s, Ls, and L. represent the Orr-Sommerfeld, Squire, and the
coupling operators, respectively (see Kim and Lim [1] for definitions).

Classical stability analysis examines the eigenvalues of the operator A and then
determines the stability of the linearized system based on whether A has a positive
eigenvalue. Although the classical analysis correctly predicts the asymptotic state of
the linearized system, it completely ignores the initial transient period, which could
play an essential role in the stability of the system. This happens because operator
A is non-normal (not self-adjoint) and therefore its eigenmodes are not orthogonal to
each other. When eigenmodes are not orthogonal, even if all individual eigenmodes are
stable and decay asymptotically (i.e., all eigenvalues are negative), an initial condition
consisting of a combination of certain modes (especially those modes almost parallel
to each other) can have large transient growth [2, 6]. This transient growth is ignored
by the classical analysis.

Non-normality of the N-S system is primarily due to the coupling term L. in
equation (1), which make the operator asymmetric. For two-dimensional disturbances
(corresponding to k, # 0 and k, = 0, where k, and k, represent the streamwise and
spanwise wavenumbers, respectively), the coupling term vanishes, but operator A is
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still non-normal because L, itself is non-normal. It has been shown, however, that
the transient growth associated with two-dimensional disturbances is not as large as
that associated with three-dimensional disturbances [2, 4]. An optimal disturbance,
defined as an initial perturbation that has the largest transient growth, corresponds
to k, = 0 and k, # 0. This transient growth was attributed to a possible cause for
subcritical transition in some wall-bounded shear flows. It was also argued that the
transient growth is probably responsible for some bypass transition. One could raise a
question, however, regarding how such an optimal (or worst, depending on the point of
view) disturbance comes to exist in a real system. This issue was addressed by Bamieh
and Dahleh [8], who have shown analytically that three-dimensional disturbances
corresponding to k, = 0 and k, # 0 can achieve O(Re?) energy amplification in
response to stochastic excitation, which was introduced into the linearized N-S system
as a representation of background noise. The large amplification was due to the non-
normality of the linearized N-S system.

Some investigators further postulated that the same linear process is also respon-
sible for the observed wall-layer streaky structures in turbulent boundary layers [2, 3].
The optimal disturbance looks similar to the near-wall streamwise vortices that create
the streaky structures. However, this optimal disturbance occupies the entire bound-
ary layer, in contrast to the streamwise vortices in turbulent boundary layers, which
are confined to the near-wall region. In order to relate their optimal perturbation
theory to those structures observed in turbulent boundary layers, a time scale corre-
sponding to the bursting process in turbulent boundary layers, which is essentially a
nonlinear process, was introduced as an additional parameter [3]. It was argued that
the transient growth in turbulent boundary layers would be disrupted by turbulent
motions on a time scale corresponding to the bursting process, which is smaller than
the viscous time scale, and hence, the globally optimal disturbance would never have
a chance to grow to its maximum possible amplitude. The notion that commonly
observed wall-layer structures are related to a linear process, although it is the non-
linear process that determines the proper length scale, suggests that the same linear
process may play an important role in fully nonlinear turbulent boundary layers.

3 Linear Controllers for Turbulent Flows

There is other evidence suggesting that a linear process may play an essential role
in turbulent boundary layers. Lee et al. [9] designed a neural network to represent
an inverse model of the Navier-Stokes equations, which was then used as a nonlinear
adaptive controller for drag reduction in turbulent channel flow. A careful exami-
nation of the converged weight distribution and the neural network architecture led
them to consider a simplified linear network. Although the dynamic range of the
weights for the simplified linear network was significantly increased (this makes a
hardware implementation much more difficult, but that is irrelevant for the present
discussion), essentially the same performance as the nonlinear network was achieved,
thus suggesting that the essential wall-layer dynamics responsible for high viscous
drag in turbulent boundary layers could be approximated by the linear model.

11



Lee et al’s [10] application of the so-called suboptimal control also neglected
all nonlinear terms in the Navier-Stokes equations. Nevertheless, simple feedback
controllers derived from this essentially linear procedure were shown to work quite
well for drag reduction in turbulent channel flow. Incidentally, it is worth mentioning
that the final feedback control resulting from this procedure is very similar to that
obtained from the neural network in spite of two completely different approaches
used, one essentially linear and the other nonlinear approach. Interested readers
should refer to Lee et al. [9, 10].

Other evidence that a linear process may play an important role in turbulent
boundary layers can be found in the applications of the linear systems theory to the
control of transitional and turbulent flows by the UCLA group [11, 12, 13, 14, 19].
They have shown that controllers based on a systems theory approach — ranging
from a simple proportional controller to controllers based on the linear-quadratic-
Gaussian /loop-transfer-recovery (LQG/LTR) synthesis — performed remarkably well
in suppressing target disturbances in transitional and turbulent flows. Bewley [16]
also examined the applicability of a linear controller to a nonlinear flow and showed
its success as well as limitations. It is mentioned in passing that Bewley [15, 17]
preferred an H., controller — another linear control theory that can be used to
design controllers minimizing a cost function in the presence of a disturbance that
maximizes the cost function — over the LQG/LTR controllers used by the UCLA
group for its “robustness” against the worst-scenario disturbance that may present
in the system. The UCLA group have used LQG/LTR controllers for their, among
other things, ease of model reduction, which is essential in designing a controller for
a high-order system such as the Navier-Stokes equations.

Although it is not yet understood how controllers based on a linearized model work
so well for nonlinear flows and it is a subject of further investigation, these results
suggest that the essential dynamics of near-wall turbulence may well be approximated
by a linear model. This provides a firm basis that controller designs based on a linear
systems theory can be justified, at least for certain applications where controlling
near-wall dynamics alone can deliver the design objective, such as drag reduction in
turbulent boundary layers.

4 Controlling a Linear Process

Examples presented in Sections 2 and 3 strongly suggest that linear processes must
play an essential role in turbulent flows, particularly in the wall-bounded turbulent
shear flows. Motivated by these observations, Kim and Lim [1] investigated the role
of the linear coupling term, which is a source for non-normality of the linearized
Navier-Stokes equations. In their attempt to isolate the role of the coupling directly,
they solved the following modified Navier-Stokes equations:

alo) =0 )]l 2)

where N, and wa represent the nonlinear terms in the Navier-Stokes equations. This
modified system can be viewed as representing a virtual turbulent flow without the
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Figure 1: Time evolution of mean shear at wall: , upper wall; ----, lower wall.
Thick lines are for a regular channel flow, while thin lines are for a channel flow with
L. = 0 in the upper half of the channel starting from ¢+ = 0.

coupling term, or a turbulent flow with control by which the coupling term is sup-
pressed completely. For instance, surface blowing and suction activated to eliminate
(reduce) the spanwise variation of v (i.e., Jv/Jz) could eliminate (reduce) the effect
of the coupling term. For example, the opposition control used by Choi et al. [20]
could be considered as a control scheme trying to minimize the coupling term by
suppressing the spanwise variation of v in the wall region.

Two of Kim and Lim’s [1] observations are worth mentioning here. First, without
the coupling term, turbulence at a low Reynolds number (Re, = 100) could not be
maintained. Starting from an initial condition obtained from a regular turbulent
channel flow, near-wall streamwise vortices quickly disappeared in time and the wall-
shear stress was reduced significantly (see figures 1 and 2). Note that the reduction of
the wall shear in conjunction with the disappearance of the streamwise vortices is a
common feature of many drag-reduced turbulent flows [9]. Turbulence intensities were
also reduced drastically without the coupling term. Second, when they started from
an initial condition consisting of random disturbances, i.e., without any organized
structures, streamwise vortices were first formed before they eventually disappeared,
suggesting that the formation of these structures is not directly related to the missing
linear term.

Kim and Lim [1] also performed a numerical experiment, in which all nonlin-
ear terms were artificially suppressed. In this experiment, streamwise vortices were
formed, but in different scales from the nominal one. They concluded that both
the nonlinear terms and the linear coupling term were necessary for the formation
and maintaining of these structures at their proper scale. The nonlinear terms are
necessary for the formation of streamwise vortices and the linear coupling term is
necessary to generate the wall-layer streaks, the instability of which in turn strength-
ens the streamwise vortices through a nonlinear process. In the absence of either
mechanism, turbulence ceases to exist. The result of this second experiment is con-
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Figure 2: Contours of streamwise vorticity in y — z plane: (a) t* = 0; (b) t* = 20;
¢) tt =200. —80 < w, < 80 with 18 contour levels. Note that L. = 0 only in the
upper-half of the channel.

sistent with Hamilton et al. [21] and Waleffe and Kim [22] in that the formation of
the streamwise vortices is a result of a nonlinear process.

We are currently developing an LQG/LTR controller designed to reduce the role
of different linear mechanisms, including that minimizes the non-normality of the
linearized Navier-Stokes equations. Preliminary results obtained from this type of
controllers were reported in a recent meeting [23]. Further results will be published
in the near future.

5 Concluding Remarks

Several examples illustrating the role of linear mechanisms in turbulent flows have
been discussed. Contrary to the common notion that linear mechanisms may not play
an essential role in nonlinear flows, there are many evidences suggesting otherwise.
This is particularly true for wall-bounded shear flows, for which linear terms in the
Navier-Stokes equations are significant due to the large mean shear present in the
wall region. It should be noted that in most of the near-wall region, the condition
to which the rapid distortion theory can be applied is approximately satisfied with a
large S* = Sq¢*/e. Here, S, ¢?, ¢ denote the mean shear, twice the turbulence kinetic
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energy and dissipation rate of the kinetic energy, respectively, and S* denotes the
ratio of the characteristic turbulence time scale over the mean time scale. There-
fore, the linearized N-S system, from which the linear controllers have been designed,
might be a good approximation to represent some features of the near-wall dynamics.
Furthermore, it deserves to mention that the estimator, which is an essential part of
LQG/LTR controllers (in control community, a controller in this context is actually
referred to as a compensator, which consists of an estimator and a controller), is
designed such that it continuously adjusts (through Kalman filtering) the estimated
state based on continuous measurements (distributed wall shear for the present ex-
ample). In this regard, it is worth investigating more carefully how well the estimator
in each linear controller is doing in estimating the actual nonlinear state subject to
control, and this investigation is currently underway.

Near-wall streamwise vortices are seen to be formed but cannot be sustained
without the linear coupling term. The fact that the coupling term plays an essential
role in maintaining the streamwise vortices, which have been found to be responsible
for high skin-friction drag in turbulent boundary layers, suggests that an effective
control algorithm for drag reduction should be aimed at reducing the effect of the
coupling term in the wall region. As mentioned earlier, the opposition control used
by Choi et al. [20] can be viewed as a control scheme trying to reduce the effect of the
coupling term by suppressing the spanwise variation of v in the wall region. We are
currently designing a control algorithm that directly accounts for the coupling term
in a cost function to be minimized, and preliminary results look promising.

Controllers used in the examples discussed in the present paper have been de-
signed in wavenumber space by taking advantage of the homogeneity present in the
channel flow. This resulted in a so-called centralized approach, which makes it neces-
sary to collect information from all sensors, transform the information into wavespace,
determine control input for each wavenumber, transform the control input into phys-
ical space, and then distribute it to all actuators. There are two issues concerning
the centralized approach. First, many problems, such as spatially developing bound-
ary layers, do not have the homogeneity although the lack of homogeneity can be
circumvented by an approximation. Second, the central processing may not be feasi-
ble nor desirable for real-time control when a large number of sensors and actuators
are involved. Some investigators have been exploring decentralized approaches, in
which a localized kernel function is used to collect /distribute sensor/actuator infor-
mation [17, 24]. Many issues remain to be resolved, but this is definitely a step toward
more practical control.
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