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1. Introduction 

     The bubbly flow is often observed in many industrial fields, such as chemical plants, bio-reactors, 

and nuclear power plants.  The bubbly flow contains the several characteristic length scales, from a bubble 

diameter (micro-scale) to the large flow structure (macro-scale).  As many researchers reported, the flow 

structure is altered by the injection of air bubbles, and the multi-scale structure of the bubbly flow plays 

important role on the flow modulation.  The mezzo-scale phenomena in a bubbly flow, which are related 

to the bubble-bubble interaction, play an important role on the turbulence induced by the bubble motion.   

     By using the DNS, where the multi-scale phenomena of the bubbly flow are considered, we can 

predict the detailed flow structure.  However, a lot of numerical resources are consumed in the DNS and 

most of the engineering simulations are unrealistic.  Considering the industrial applications, the two-fluid 

model based on the volume-averaged equations (Ishii, 1975; Drew, 1983; etc.) is useful and many 

researchers have carried out the bubbly flow simulations by the two-fluid approach (Matsumoto et al., 

1988; Murai & Matsumoto, 1996; etc.).  In such the method, the conservation equations are directly 

derived from the Navier-Stokes equation so that the two-phase interaction due to the inertia difference may 

be adequately solved.  The two-fluid model is derived by the filter operation in the same manner as the 

Large Eddy Simulation (LES), thus some SGS closure problems are appeared.  However, the SGS 

phenomena related to the mezzo-scale phenomena have been neglected in the conventional studies by the 

two-fluid model due to the lack of knowledge about them.  Therefore, the system of the conventional 

two-fluid approach is not adequate to analyze the bubble-bubble or bubble-liquid interaction and it is not 

appropriate for the analysis of the mezzo-scale phenomena of the bubbly flow.   

     In the present study, the mezzo-scale phenomena of the bubbly flow are numerically studied and 

Bubbly flow has multiple structures in time and spatial scales.  The macro-scale flow structure in 
multi-phase flow is affected by the micro-scale phenomena and also mezzo-scale ones.  The two-fluid 
model based on the volume average of the governing equations for two-phases is often used for the 
industrial applications.  However, the Sub-Grid Scale (SGS) phenomena related to the mezzo-scale 
phenomena have been neglected in the conventional studies by the two-fluid model.  In the present 
study, the multiscale modeling of the rising packed bubbles is conducted.  The Direct Numerical 
Simulation (DNS) are carried out and some averaged quantities are extracted from the result.  The
bubbles are spherical ones with no-slip boundary condition, which correspond to the sub-mm scale 
diameter bubbles in the contaminated water.  A periodic box is used for the simulation to extract the
turbulence in the bubbly flow.  The two-fluid simulation is also carried out at the same condition as the 
present DNS.  Constitutive equations, where not only SGS stresses but also boundary conditions of the
pressure and the vorticity on the interface are taken into account, are derived for the averaged equations.
The turbulent energy spectrum obtained by the present two-fluid model reproduces the DNS result well, 
while the result by the conventional two-fluid model, where the SGS stress and the boundary conditions 
on the interface are neglected, show considerable difference with the DNS one.   



some constitutive equations for the multiscale modeling are derived.  The DNS of the rising packed 

bubbles is carried out and some averaged quantities are extracted from the result.  The two-fluid 

simulation is also carried out in the same condition as the present DNS and the ability of constitutive 

equations for the SGS modeling is discussed.   

2. Assumptions 

     In the present study, the following assumptions are employed to formulate the governing equations: 

(1) Bubble maintains a spherical shape.  (2) Change of bubble volume is not considered.  (3) The water is 

contaminated. Hence, a no-slip boundary condition is imposed on a bubble surface.  (4) Coalescence of 

bubbles is not considered.  (5) Bubble-bubble collision is elastic.   

 

3. Direct Numerical Simulation (DNS) 

     In order to obtain the detained information of the turbulent structure in the bubbly flow, the DNS of 

the packed bubbles in the periodic box is carried out.  

3.1 Governing equations 

Mass conservation equation: 

                                     (1) 

Momentum conservation equation: 

           (2) 

Equation of translational motion of a bubble: 

           (3) 

Equation of angular momentum of a bubble: 

                   (4) 

3.2 Simulation method 

     The algorithm to solve governing equations is same as our previous study (Sugiyama et al., 2000).  

The finite difference method (FDM) is employed to solve the partial differential equations.  The grid size 

is smaller than the bubble diameter.  Using the regular rectangular grid system, the no-slip boundary 

condition on a bubble surface is approximated.  The spatial derivative terms are approximated by the 

fourth-order central scheme.  The time integral of the flow velocity is conducted in the fourth-order 

Runge-Kutta method.  In terms of the time integral procedures of the translational bubble motion, the 

second-order Crank-Nicholson method and Adams-Bashforth method are employed for the bubble position 

and the bubble velocity, respectively.   

3.3 Simulation conditions 

     The simulation parameters are the void fraction (fG).  The bubble radius (a), the kinematic viscosity 

(ν) and the gravity (g) are 0.25(mm)，1.0x10-6(m2/s) and -10(m/s2), respectively.  The simulation 

conditions are shown in Table 1.   

 



Table 1   Simulation conditions of multi-bubble motion 

 

3.4 Instantaneous flow structure 

     Figure 1 shows that the instantaneous flow structure of the bubble position and the pressure 

distribution with the variety of the void fraction of 0.833, 3.33 and 10.0(%).  As shown in Fig. 1, in the 

higher void fraction, the pressure contour distorts more strongly in the horizontal direction.  Such a 

distorted pressure contour indicates that the strong bubble-bubble interaction is occurred.   

     In order to estimate the turbulent structure of the bubbly flow, Fig. 2 shows the one-dimensional 

vertical energy spectrum at the void fraction (fG) of 0.833(%).  E11(k1) and E22(k2) indicate vertical and 

horizontal components, respectively.  Symbols and lines in Fig. 2 correspond to the results of case1 and 

case2, respectively.  As shown in Fig. 2, the both results of case1 and case2 agree well each other, thus 

domain size of case1 is considered to be large enough to obtain the turbulent structure induced by the 

motion of bubbles.  It is seen from Fig. 2 that the vertical energy spectrum (E11(k1)) is much larger than 

the horizontal one (E22(k2)) for all conditions since the turbulent structure of the bubbly flow is 

inhomogeneous.   

 
Fig. 1   Instantaneous bubbles and pressure distributions (case2) 

 

Fig. 2   One-dimensional vertical energy spectrum distribution versus wave number.(fG=0.833 (%), case1 and case2) 

3.5 Local SGS stresses induced by bubble motion 

     The most of numerical studies of the bubbly flow have been based on the two-fluid approach using 

the volume averaged equations.  It is wellknown that the SGS stress (or the Reynolds stress) terms are 



appeared by averaging the non-linear terms.  However, these terms has been often neglected in the 

two-fluid simulation.  We previously conducted so-called 'a priori study' of the closure problem for the 

SGS stress of the bubbly flow.  We investigated the correlation between some model SGS stresses used in 

the LES of the single phase flow and the actual SGS stress obtained by the result of the DNS (Sugiyama et 

al., 2000).  The results showed that the model stress based on the non-linear model (τij
(Model)*, Liu et al., 

1994) had higher correlation (more than 0.9 at the void fraction of 0.833(%)) with the actual SGS stress 

(τij
*) than the model stresses based on the Smagorinsky (1963) model and the scale similarity model 

(Bardina et al., 1983).  The actual SGS stress and the present model stress are expressed as  

                           (5) 

                    (6) 
where <> is the grid filter operation with the grid size ∆, XL is the indicator function of 1 at liquid and 0 at 

gas, the superscript * indicates the anisotropic tensor and ‾ is the phase volume averaging.  In Eq. (6), 

the velocity gradient is analytically calculated by using the database of the mean velocity field around 

bubbles ui
(PI).  The velocity field induced by the bubble motion is written by the poloidal vector field 

(Chandrasekhar, 1961) under the assumption that the mean velocity field is axisymmetric.  The velocity 

field around bubbles is expanded by the spherical harmonics and the polynomials.  The radial and 

tangential components of the velocity are expressed as  

                  (7) 

                (8) 

where |uG-uL
∞| is the relative velocity of the bubble to the liquid and unm(r) is the coefficient of the 

spherical harmonics/polynomials expansion.  By using the orthogonal relation of the spherical harmonics, 

the expansion for the θ-direction is carried out.  For the r-direction, the polynomials expansion is carried 

out by the least squire method for a finite domain (a<r< 6a).   

 

4. Two-Fluid Simulation (Effect of SGS Stress) 

     In the present section, we discuss the effect of the SGS stress, which has been neglected in the 

conventional two-fluid simulation.  The two-fluid simulation with the SGS model given by Eq. (6) is 

carried out at the same conditions as the DNS and so-called 'a posteriori study' is conducted.  The 

governing equations and the simulation procedures are almost based on the Euler-Lagrange model 

developed by Murai and Matsumoto (1996).   

4.1 Governing equations 

Conservation equation of gas volume fraction: 

                                   (9) 

Conservation equation of liquid volume fraction: 



                                 (10) 

Restriction condition of volume fraction: 

                                     (11) 

Momentum conservation equation of mixture fluid: 

    (12) 

where the inertia effect of the gas phase is neglected using the relation of ρG/ρL<<1 and τij is the SGS stress 

of the bubbly flow given by Eq. (5).  The formula of the effective viscosity for the dilute suspension 

containing rigid spherical particles (Batchelor, 1967) is used for the viscosity of the bubbly flow.   

                                  (13) 

Equation of a bubble translational motion: 

     (14) 
where the added inertia, pressure, drag and gravitational forces are considered, VG is the bubble volume and 

CD is the drag coefficient on the bubble.  The empirical formula is adopted for CD derived by the Schiller 

and Naumann (1933) and CD is expressed as  

                           (15) 

where Reb is the bubble Reynolds number and is expressed as  

                                (16) 
4.2 Simulation method 

     The FDM is employed to solve the partial differential equations.  The spatial derivative terms are 

approximated by the fourth-order central scheme.  The time integral of the flow velocity is conducted in 

the second-order Adams-Bashforth method.  In terms of the time integral procedures of the translational 

bubble motion, the second-order Crank-Nicholson method and Adams-Bashforth method are employed for 

the bubble position and the bubble velocity, respectively.  The interpolation from the liquid phase to the 

gas one is approximated by the fifth order spline method.   

4.3 Simulation conditions 

     The box size of the simulation domain is 16x16x16 (mm3) divided by 16x16x16 grids.  We carry 

out two simulations: one is the conventional simulation, where the SGS stress (τij) is 0, and the other is 

based on the non-linear model, where the SGS stress is given by Eq. (6).   

4.4 Simulation results 

     Figure 3 shows the vertical component of the one-dimensional vertical energy spectra at the void 

fraction of 0.833%.  Solid and dotted lines correspond to the DNS data without and with the grid filter 

operation, respectively.  Symbols '△' and '○' correspond to the result of the conventional model (τij=0) 

and that of the present non-linear model given by Eq. (6).  It is seen from Fig. 3 that the energy spectra of 

the DNS with the grid filter operation is smaller than that without the grid filter operation.  It is because 



that the turbulent structure induced by the motion of the bubbles is locally distributed near the bubbles and 

such the turbulence is smoothed by the grid filter operation.  The averaged equations are obtained by the 

grid filter operation of the NS equation, thus it is desirable that the result of the two-fluid simulation agrees 

with that of the DNS with the grid filter operation.  The both results obtained by the two-fluid model are 

quite underestimated compared with the DNS results.  It is also seen from Fig. 3 that no significant 

difference between the conventional and the present non-linear models is recognized.  According to the 'a 

priori study' (Sugiyama et al., 2000), the present model stress has high correlation with the actual SGS 

stress and is considered to be good SGS stress model.  However, the present non-linear model does not 

improve the difference between the conventional two-fluid model and the DNS.  Therefore, for the SGS 

modeling of the bubbly flow, we must consider not only the SGS stress (the Reynolds stress) but also 

another effect.  In the next section, we discuss the problem of the previous simulation method based on 

the two-fluid model.   

 

Fig. 3  One-dimensional vertical energy spectrum distribution versus wave number.(Vertical component, fG=0.833%) 

 

Fig. 4  Schematic of boundaries in actual and two-phase averaged fields 

5. On Effects of Boundary Condition in Two-Fluid Simulation 

     Figure 4 shows the boundaries of the bubbly flow.  The left figure shows the boundaries of the 

actual bubbly flow and the right one shows those considered in the averaged equations.  Γ shown in Fig. 4 

is the boundary of the simulation domain and ΓΒl is the interface on the bubble l.  In the case of the DNS, 

the governing equations are solved under the proper boundary conditions on the boundary of the simulation 

domain Γ and the bubble interface ΓΒl.  However, in the case of the conventional two-fluid simulation, the 

boundary condition on the bubble interface ΓΒl was not explicitly solved.  Therefore, we must consider not 

only the SGS stress (the Reynolds stress) but also the boundary conditions on the bubble interface for the 

SGS modeling.  Considering the SGS stress modeling, we can find the SGS stress term in the momentum 



equation.  On the contrary, we cannot find any boundary condition effect in the governing equations, thus 

we cannot conduct 'a priori study' for the modeling of the boundary condition effect using DNS results.   

     In the present section, the problem what variables should be taken into account to model the 

boundary condition effect is made clear and the new simulation method for the incompressible bubbly flow 

is proposed.   

5.1 Problem on pressure 

     The following relation is derived by Eq. (11).  

                                  (17) 

From Eqs. (9)(10)(17), the solenoidal condition for the bubbly flow is obtained.   

                               (18) 

In the case of fG =0, Eq. (18) corresponds to the solenoidal condition of the single phase flow.  Using the 

Helmholtz decomposition, the total volume flux is expressed as   

                            (19) 

where φ is the harmonic function (∇2φ=0) and ΦΦΦΦ is the vector function.  In the incompressible bubbly 

flow, the pressure is solved to be satisfied ∇2φ=0.  The restriction condition of the volume fraction (Eq. 

(18)) at the fractional step with a superscript * between N-th and (N+1)-th steps is not satisfied.  Using the 

same method as the Projection MAC one used in the single phase flow, the pressure Poisson equation is 

solved to be satisfied the solenoidal condition at (N+1)-th step.   

                        (20) 

When the conservation equations of the volume fractions (Eqs. (9)(10)) are solved implicitly, gas and liquid 

volume fractions are expressed as  

                        (21) 

                            (22) 

From Eqs (20)(21)(22), the pressure Poisson equation is expressed as  

                           (23) 

Using the Helmholtz decomposition, the total volume flux (fGuGi
(N+1)+ fL uL

*) is expressed as  

                     (24) 
The term including ∇×ΦΦΦΦ* always satisfy the solenoidal condition so that only the term including φ is 

considered for the pressure Poisson equation.  The pressure can be decomposed into,   

                                 (25) 
where  

                            (26) 
The pressure Poisson equation is rewritten as   



                     (27) 

From Eqs. (25)(26), the non-harmonic pressure p(A) is the particular solution to be satisfied∇2p=0.  The 

harmonic pressure p(B), which is not explicitly written in Eq. (26), is the general solution and is determined 

by the pressure distribution on the bubble surface.  In the conventional two-fluid simulation, the boundary 

condition of the simulation domain Γ has been considered, while the bubble interface ΓBl has been treated 

as the uniform and the boundary condition on ΓBl has been neglected.  In order to obtain the pressure 

distribution near the bubbles, we must consider the harmonic pressure p(B) due to the pressure on the ΓBl.   

     If the pressure on the each bubble surface (r=a) is known, we can obtain the harmonic pressure p(B) 

distribution analytically and it is expressed as  

   (28) 
where Ynm

* is the spherical harmonics and p*
nm is the expansion coefficient.  Therefore, the database of the 

pressure distribution on the bubble surface expanded by the spherical harmonics is useful for the closure 

problem on p(B), which is neglected in the conventional two-fluid model.   

5.2 Problem on vorticity 

From the momentum equation (Eq. (12)), the vorticity transport equation is expressed as  

           (29) 

where ωωωωL is the vorticity vector.  The first term of the RHS in Eq. (29) is the source term of the vorticity, 

which is related to the contraction and the expansion of the vortex.  The second term is characteristic one 

of the bubbly flow and is related to the vorticity generation due to the buoyancy and the void fraction 

gradient.  The last term is expressed the diffusion in the bulk region, while this term is related the vorticity 

generation in the vicinity of the bubble.  In the conventional two-fluid model, the two-fluid is treated as 

uniform so that the boundary condition of the vorticity on the bubble interface ΓB is neglected and it is also 

required to be modeled.    

     In the low void fraction, the vorticity is derived by the rotation of Eq. (19).  The 1st term of Eq. (19) 

is the rotation free so that the boundary condition effect of the vorticity is related to the 2nd term ∇×ΦΦΦΦ.  

As mentioned above, the harmonic pressure p(B) is not related to the 2nd term ∇×ΦΦΦΦ.  Therefore, the 

boundary conditions of the harmonic pressure and the vorticity are independent.   

6. Two-Fluid Simulation (Effect of Boundary Condition) 

6.1 Simulation method 

6.1.1 Modeling of harmonic pressure 

     The simulation procedure is based on the Projection MAC method.  The procedures to solve the 

pressure field are divided into two stages.  At the first stage, the harmonic pressure is obtained by using 

the database of the pressure on the bubble interface.  At the second stage, the pressure field is solved to 

satisfy the solenoidal condition of the volume flux.  The second stage procedure is the same manner as the 

conventional two-fluid simulation thus we do not mention it here.  At the first stage, the effects of the 

pressure drag p(PD) and the pressure due to the added inertia p(AI) are considered.  To avoid the double 

count of the bulk pressure p(BK) under the treatment of the uniform flow field, its effect is subtracted at the 



every step.    

     p(PD) at the bubble interface is expressed as  

                         (30) 

where only the axisymmetric component is considered.  Using the relation of p|r→∞→0, p(PD)(r,θ,Re) is 

expressed as  

                       (31) 

We construct database of pn as the function of the Reynolds number before we carry out the two-fluid 

simulation.  p(AI) is expressed as  

                            (32) 

p(BK) is expressed as  

                           (33) 

where p(N) is the pressure at the N-th simulation step.  

6.1.2 Modeling of vorticity generation at bubble surface 

     The vorticity generation on the bubble surface is modeled in connection with the viscous stress 

generation.  The pressure can be mathematically decomposed the non-harmonic part related to the 

solenoidal condition and the harmonic one related to the boundary condition effect because the pressure 

equation is linear.  On the contrary, the vorticity is not able to be decomposed because the vorticity 

transport equation of non-linear.  In the present study, the effective viscous stress of the bubbly flow is 

modeled using the weight function w as the function of the length from the bubble surface and is expressed 

as  

                             (34) 

                           (35) 

                                (36) 
where ξ is the length from the bubble surface and ∆x is the grid size.  σij (∞) and σij (PI) are expressed as   

                         (37) 

                      (38) 

where u(PI) is given by the database of the velocity field around the bubble (Eq. (7)).   

6.2 Simulation results 

     Figure 5 shows the one-dimensional vertical energy spectrum at the void fraction of 0.833%.  Solid 

and dotted lines correspond to the DNS data without and with the grid filter operation, respectively.  The '

△' symbols correspond to the results obtained by the conventional two-fluid model.  The '○' symbols 

correspond to the results obtained by the present model, where the SGS stress (the Reynolds stress) and the 



effects of the boundary condition are considered.  It is seen from Fig. 5 The turbulent energy spectrum 

obtained by the conventional two-fluid model show the considerable difference with the DNS results, while 

the present model reproduces the DNS one well.  Therefore, it is important to consider not only the SGS 

stress (the Reynolds stress) but also the effects of the boundary condition in the multiscale modeling of the 

bubbly flow.   

 
Fig. 5   One-dimensional vertical energy spectrum versus wave number at the void fraction of 0.833%. 

((a) Vertical component, (b) Horizontal component) 

7. Conclusions 

     The DNS and the two-fluid simulation are carried out in order to conduct the multiscale modeling of 

the bubbly flow.   

     The energy spectrum distribution, which is related to the turbulent structure due to the motion of the 

rising packed bubbles, is obtained by the DNS of the multi-bubble system.   

     The new multiscale modeling of the bubbly flow for the two-fluid model is conducted.  The 

constitutive equations, where the SGS stresses and the boundary conditions of the pressure and the vorticity 

on the interface are taken into account, are derived.  The turbulent energy spectrum obtained by the 

present two-fluid model reproduces the DNS result well, while the result by the conventional two-fluid 

model, where the SGS stress and the boundary conditions on the interface are neglected, show considerable 

difference with the DNS one.   
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