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This article addresses the information available at the wall in the problem of state estimation in
wall-bounded incompressible flows. It is shown that, if precise measurements are made of the
two components of wall skin friction, ∂u

�
∂y and ∂w

�
∂y, and the wall pressure, p, all terms in the

Taylor-series expansions of the flow state near the wall may be determined. Combining this fact
with the analyticity of solutions of the Navier-Stokes equation on the attractor, in theory complete
reconstruction of a turbulent flow in a channel at time t is possible given only precise measurements
of the flow at the wall in a neighborhood of time t. Implications of this result, in light of the standard
framework for adjoint-based state reconstruction in turbulent flow systems, are discussed.

1 Introduction

During the last 10 years, there has been a flurry of activity in controlling both laminar and turbulent flows in
certain idealized settings. The goal of this research thrust has been twofold: to learn more about fundamental
flow physics, and to begin to shed light on how to control fluid flow in practical engineering applications with
model-based control strategies. For recent surveys of this active field of research, see, e.g., Gad-el-Hak (2001)
and Bewley (2001), and the references contained therein.

An important and largely unsolved problem in model-based feedback control of turbulence is the estimation
of the flow state based on the available flow measurements. From the literature survey we have performed (see
the above-mentioned review articles for several examples), it appears that, to date, all efforts to control and/or
estimate wall-bounded flows with information available at the wall only have used measurements of either wall
skin friction1 or wall pressure. The purpose of the present note is to show that much more complete information
about the state of the system is available if measurements of both components of wall skin friction and the wall
pressure are used.

In §2, it is shown that, if precise measurements are made of the two components of wall skin friction, ∂u
�
∂y

and ∂w
�
∂y, and the wall pressure, p, an arbitrary number of terms in the Taylor-series expansions of the flow state

near the wall may be determined. In §3, it is shown using a high-fidelity DNS database of an Reτ � 180 turbulent
channel flow that higher-order terms in truncated Taylor-series expansions uniformly improve the quality of the
static reconstruction of the turbulent flow state near the wall when accurate measurements at the wall are available.

In practice, measurements are noisy, and dynamic estimation of the state, such as Riccati-based extended
Kalman filters and adjoint-based methods for model predictive estimation, are much better behaved than Taylor-
series expansions for the purpose of estimating the state based on noisy measurements. Such techniques assimilate
the information contained in the available measurements into the estimate of the state without differentiation of
the measurements. In §4, algorithms are presented by which all three types of available wall measurements may
be accounted for in these types of state estimation strategies.

1.1 Governing equations

The present paper considers the problem of incompressible flow in a channel with known Dirichlet boundary
conditions on the velocity field at the walls, � uw � vw � ww � , known forcing � F1 � F2 � F3 � on the interior of the flow,
and known measurements of the skin-friction and pressure distributions on the walls, � M1 � ∂u

∂y � w � M2 � p � w � M3 �
∂w
∂y � w � . Initial conditions on the flow are unknown; we desire to reconstruct (or estimate) the flow in the channel
based on the other information which is available.

Without loss of generality, §2 and 3 analyze the region adjacent to one of the walls, defining the x � y � z
coordinate system such that y is the wall-normal direction, with the wall located at y � 0. In the sections that
follow §3, we switch to an x1 � x2 � x3 coordinate system, and consider the flow in the entire channel � 0 	 L1 
 	
��� 1 	 1 
 	�� 0 	 L3 
 .

1Note that referring to the boundary values of ∂u 
 ∂y and ∂w 
 ∂y as “wall skin friction” is, admittedly, a bit sloppy notationally, as the cor-
responding components of the shear-stress tensor at the wall, τxy � µ � ∂u 
 ∂y � ∂v 
 ∂x � and τzy � µ � ∂w 
 ∂y � ∂v 
 ∂z � , both include contributions
from the (prescribed) boundary values of v on the wall and are scaled by the viscosity µ. We assume the viscosity µ and the value of v at
the wall are known in this work, so ∂u 
 ∂y and ∂w 
 ∂y may easily be determined from measurements of τxy and τzy at the wall. The idealized
problem of a continuous distribution of both actuation and sensing on the wall is not quite physically realizable anyway; how this configuration
might be approximated in a real implementation is an application-specific issue which we will not address here. We will thus use the words
“streamwise and spanwise wall skin friction distributions” to refer to the distributions of ∂u 
 ∂y and ∂w 
 ∂y on the wall without ambiguity, with
apology to the reader for this abuse of notation.



The Navier-Stokes equation governing the flow is given by
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where ∆ � ∂2 � ∂x2 � ∂2 � ∂y2 � ∂2 � ∂z2. The continuity equation (2) constrains the three velocity components
� u � v � w � , which evolve according to the momentum equations (1a)-(1c), to lie in a divergence-free subspace.
This constraint is applied through the influence of the pressure p in the momentum equations, which acts as a
Lagrange multiplier in these three equations in such a way that the continuity equation is satisfied at every point in
space and every instant in time. We thus see that the Navier-Stokes equation effectively admits only two degrees of
freedom per spatial location. Noting this fact, it is common to represent solutions to incompressible Navier-Stokes
systems in a reduced, divergence-free form, thus applying the continuity equation implicitly.

One popular divergence-free form, convenient in terms of the imposition of Dirichlet boundary conditions on
the velocity at walls, is the “v-ωy” form, in which the wall-normal component of velocity, v, and the wall-normal
component of vorticity, ωy � ∂u

�
∂z � ∂w

�
∂x, are retained as the two independent degrees of freedom per spatial

location. From these two fields and the appropriate boundary conditions, u and w may be reconstructed exactly,
and p may be determined up to an arbitrary constant. In the v-ωy formulation, evolution equations governing v
and ωy are found by appropriate manipulation of (1) and (2). The right-hand sides of these equations may be
interpreted as functions of v and ωy only by substitution of the appropriate formulae for the reconstructions of u,
w, and p.

The fact that the variables u, v, w, and p are not all independent in incompressible flows can easily lead to
the mistaken impression that wall measurements of ∂u

�
∂y, ∂w

�
∂y, and p must in some sense be redundant. The

purpose of the present note is to dispel this mistaken impression. To do this, we will show that the complete
Taylor-series expansions of the velocity, vorticity, and pressure fields can be obtained from the three available
wall measurements, though these expansions must be truncated at extremely low order if any of these three mea-
surements is omitted.

2 Taylor-Series expansions of velocity, vorticity, and pressure

2.1 The general case

The Taylor-series expansions at the wall of the individual components of the velocity and vorticity vectors and the
pressure may be written the following form:
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We now seek to express the expansion coefficients � an � bn � cn � dn � en � fn � gn � as a function of the externally-applied
forcing, � F1 � F2 � F3 � , and the available data on the wall, which includes the boundary conditions on the veloc-
ity � uw � vw � ww � and the measurements � M1 � ∂u

∂y � w � M2 � p � w � M3 � ∂w
∂y � w � . We will begin by computing the

expansion of the velocity and pressure fields; once these are found, the expansion of the vorticity field follows
immediately.

We first observe that computing ∂n � ∂yn of the continuity equation (2) results in
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Thus, bn � 1 � � ∂an
�
∂x � ∂cn

�
∂z; i.e., higher-order expansion coefficients for v may be expressed as a simple

function of lower-order expansion coefficients for u and w. We note also that the zeroth- and first-order expansion
coefficients for u and w and the zeroth-order expansion coefficient for v and p are given by the boundary conditions
and measurements. We therefore have
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The second-order expansion coefficients for u and w and the first-order expansion coefficient for p may be obtained
by rearranging the momentum equations (1) in the following form:
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where the surface Laplacian is defined such that ∆s � ∂2 � ∂x2 � ∂2 � ∂z2. Evaluating at the wall, it follows that
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Note that, to simplify the derivation, dn is computed after bn � 1. We proceed further by taking ∂
�
∂y of (4) and

appropriately rearranging the resulting expressions:
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Note that the chain rule has been applied to compute ∂

�
∂y of the nonlinear terms. Evaluating at the wall, we obtain
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Comparing (5) and (6), a pattern begins to emerge. For all higher-order terms in the expansions of u, v, w, and
p, a general formula may now be derived. With n � 4, we proceed further by taking ∂n � 2 � ∂yn � 2 of (4) and



appropriately rearranging the resulting expressions:
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Note that the binomial theorem2 has been applied to compute ∂n � 2 � ∂yn � 2 of the nonlinear terms. Evaluating at
the wall, we obtain
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Combining this result with (3), (5), and (6), it is seen that we may determine all terms in the Taylor-series ex-
pansions for u, v, w, and p from the current values of the wall measurements of ∂u

�
∂y, ∂w

�
∂y, and p and the

derivatives of these quantities in x, z, and t, together with knowledge of the externally-applied momentum forcing
and the velocity boundary conditions.

The Taylor-series expansions for the vorticity field follow directly from the Taylor-series expansions for the
velocity field. Noting the definitions
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inserting the Taylor-series expansions for the velocity and vorticity components, and matching like powers of y, it
follows immediately for all n that
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2.2 The case with homogeneous boundary conditions

The expressions given above simplify greatly if we take uw � vw � ww � 0 and F1 � Px � t 
 , F2 � F3 � 0, as in the
case of uncontrolled turbulent channel flow. Defining the notation
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the first four nonzero terms in the expansions for the velocity, vorticity, and pressure can be written as
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Ṗx � ∆s

∂M2

∂x
�

M1Dd
�

2M3
∂M1

∂z � � O � y5 
 �

v � y 
 � � y2

2ν
νDs � y3

6ν
∆sM2 � y4

24ν � LDs � ν∆sDs �
� y5

120ν

�
L

1
ν

∆sM2 � ∆s∆sM2
� ∂

∂x
� M1Ds 
 � ∂

∂z
� M3Ds 
 � 4

�
∂M1

∂x
∂M3

∂z
� ∂M3

∂x
∂M1

∂z � � � O � y6 
 �

w � y 
 � yM3
� y2

2ν
∂M2

∂z
� y3

6ν

�
LM3 � ν

∂Ds

∂z � � y4

24ν

�
L 1

ν
∂M2

∂z
� ∆s

∂M2

∂z
� M3Dd

�
2M1

∂M3

∂x � � O � y5 
 �

p � y 
 � M2 � yνDs � y2

2
∆sM2

� y3

6
ν∆sDs

� O � y4 
 �
ωx � y 
 � M3

� y
ν

∂M2

∂z
� y2

2ν
LM3

� y3

6ν

�
L 1

ν
∂M2

∂z
� M3Dd

�
2M1

∂M3

∂x � � O � y4 
 �

ωy � y 
 � � yR � y3

6ν
LR

� y4

24ν

�
M3∆sM1 � M1∆sM3 � ∂

∂x
� M1R 
 � ∂

∂z
� M3R 
 � � O � y5 
 �

ωz � y 
 � � M1 � y
ν

∂M2

∂x
� y2

2ν
LM1 � y3

6ν

�
L 1

ν
∂M2

∂x
�

M1Dd
�

2M3
∂M1

∂z � � O � y4 
 �
2.3 The importance of pressure measurements

A natural question to ask as this point is “Can the wall pressure M2 � pw appearing in the above formulae ac-
tually be computed from the other information available in this problem, namely � uw � vw � ww � M1 � ∂u

∂y � w � M3 �
∂w
∂y � w � F1 � F2 � F3 � , and therefore not be measured?” The answer to this question appears to be “No”, though math-
ematical proof remains an open problem. Via simple combination of the Navier-Stokes and continuity equations,
it is possible to write a 2D Poisson equation for the pressure on the wall. However, in the nonlinear case, it does
not appear to be possible to write this 2D Poisson equation in such a manner that the right-hand side depends only
on the other information available in this problem formulation. Wall pressure therefore appears to be a key flow
measurement which is independent of the wall skin-friction measurements M1 and M3.

Note that the wall pressure M2 plays an important role in the higher-order terms in the Taylor-series expansions
derived above; without it, these expansions must be truncated at very low order. Thus, the derivation presented
above indicates the key role of pressure measurements in the estimation of the state of the turbulent flow system,
regardless of the technique actually used to assimilate these measurements into an estimate of the state of the
turbulent flow system.

3 Evaluation of truncated taylor series in DNS of turbulent channel flow

We now investigate the range of validity of the Taylor-series expansions computed in §2.2 subject to various
levels of truncation. For this purpose, we use a DNS database for an uncontrolled, constant-mass flux turbulent
channel flow at Reτ � 180 using the spectral/spectral/finite-difference code of Bewley, Moin, & Temam (2001)
on a 256 	 129 	 256 numerical grid. Using the wall information (i.e., the measurements M1, M2, and M3) to
evaluate the coefficients in the expansions listed in §2.2 (truncated after the i’th-order term), we can reconstruct
the velocity and vorticity components and the pressure. The quality of the reconstruction (as a function of the
level of truncation, i, and the distance from the wall, y) may be characterized by the correlation of the perturbation
components of the reconstructed and actual fields, given by

Corry � α �rec � α �act 
 �
� L1

0

� L3
0 α �rec � y 
 α �act � y 
 dxdz� � L1

0

� L3
0 � α �rec � y 
 
 2dxdz

� � L1
0

� L3
0 � α �act � y 
 
 2dxdz

� (7)

where α � denotes the perturbation component (with the mean components subtracted off) of any quantity chosen
from the set � u � v � w � p � ωx � ωy � ωz � , and the subscripts rec and act correspond to the reconstructed and actual fields
respectively. The correlations are computed for the perturbation fields to avoid the bias that might be introduced by
the mean field. Thus, the statistics at a given distance from the wall are computed by averaging the instantaneous
perturbation fields over the streamwise and spanwise directions; upon discretization, this corresponds to averaging
over 216 grid points for each datapoint reported. Spatial differentiation of the wall measurements (in the directions
x and z) was carried out spectrally, and temporal differentiation was carried out using a second-order central-
difference approximation. In Figure 1, we show the dependence of the correlation (7) for all the quantities in the



Velocity and Pressure Correlations, Re =180
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Vorticity Correlations, Re =180
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Figure 1: Correlations of the components of the reconstructed and the actual velocity field, pressure field, and
vorticity field as a function of the distance from the wall in a turbulent channel flow at Reτ � 180. Reconstructions
were computed by retaining the number of terms indicated in the Taylor-series expansions listed in §2.2, and the
correlations were computed according to (7).

set � u � v � w � p � ωx � ωy � ωz � as a function of the distance from the wall y and the order of truncation i. The wall–
normal coordinate is given in wall units as y � � y

ν � uτ
. In all figures we note a systematic improvement of the

reconstruction as more terms are included in expansion. Note that carrying these expansions to even higher orders
will eventually be limited by the accuracy of the numerical database.

4 Dynamic state estimation strategies

The above results (in particular, see the comments made in §2.3) highlight the fundamental importance of using
all three flow quantities available at the wall when attempting to reconstruct the flow inside the channel in the
hypothetical case in which perfect measurements are available on the wall in a neighborhood of time t.

We now make some brief observations concerning the relation of the above findings on the problem of precise
state reconstruction with exact measurements to the problem of practical state estimation with noisy measurements
in chaotic fluid systems. Such a problem is often referred to as “variational data assimilation” or “4D-var”, and
plays a central role in the field of numerical weather prediction (for a recent review of this active field of research,
see, e.g., Li, Navon, & Zhu 2000). There are essentially two model-based approaches to the problem of state
estimation in this setting: adjoint-based strategies and Riccati-based strategies, the latter of which are often based
on extended Kalman filters. Complete description of these two approaches is well beyond the scope of the present
paper. However, in light of the observations made in the present paper concerning the integral role of wall-pressure



measurements in the problem of exact state reconstruction in wall-bounded turbulent flows, it is useful to review
the formulation for adjoint-based state estimation in channel-flow systems with noisy measurements at the wall.

Define first an (unknown) noise vector w � � w1 w2 w3 
 T and a noisy wall measurement vector m � � m1 m2 m3 
 T ,
where m1 � ∂u1

∂x2 � w
�

w1, m2 � p � w �
w2, and m3 � ∂u3

∂x2 � w
�

w3, distributed in time over an “assimilation window”

� � T � 0 � and in space over the channel walls for an “actual” channel-flow system. We now seek to determine the
(unknown) initial state Φ of a model system everywhere inside the channel such that, when advanced in time over
the interval � T � 0, the model reproduces the observed measurements to the maximum extent possible. We first
write the Navier-Stokes equation (1) governing the model system u � � u1 u2 u3 
 T in the compact form

∂u
∂t

� � u � ∇ 
 u � � ∇p
� ν∆u

�
Pxi � ∇ � u � 0 in Ω 	���� T � 0 
 ;

u � Φ at t � � T ;

u � 0 � x2 � x3 
 � u � L1 � x2 � x3 
 � u � x1 � x2 � 0 
 � u � x1 � x2 � L3 
 � u � x1 � � 1 � x3 
 � 0 on ∂Ω.

(8)

The objective in the present optimization problem is defined mathematically as the minimization over all feasible
initial conditions Φ of a functional J � Φ 
 which represents the “misfit” of the measurements in the actual and
reconstructed systems:

J � Φ 
 � 1
2

� 0� T

�
α1 ���� ∂u1

∂x2
� m1 ���� 2

Γ �2 � α2 ���� p � m2 ���� 2

Γ �2 � α3 ���� ∂u3

∂x2
� m3 ���� 2

Γ �2 � dt � (9)

where the coefficients α1, α2, α3, and the norm �	�
� Γ �2 are defined appropriately to measure the deviation of the

model system from the measurements of the actual flow on the channel walls at x2 � �
1 (denoted here by Γ �2 ). In

the present work we will consider the case in which L2 norms are used such that � f � 2
Γ �2 � �

Γ �2 f 2 dS.

The initial conditions Φ which minimize J � Φ 
 may be found by a gradient-based search using an adjoint-
based algorithm. To identify the gradient, an inner product over Ω must first be defined; in the present work, we
will consider the L2 inner product � f � g 
 Ω � �

Ω f � gdV . The functional gradient DJ
�
DΦ is then defined such that,

for ε � 1 and for any Φ � ,
J � Φ � εΦ � 
 � J � Φ 
 � ε � DJ

DΦ � Φ ���
Ω
� J � Φ 
 � ε

�
Ω

DJ
DΦ

� Φ � dV

� J � Φ 
 � ε
2

� 0� T

�
Γ �2 � α1 � ∂u1

∂x2
� m1 � ∂u �1

∂x2

� α2 � p � m2 � p � � α3 � ∂u3

∂x2
� m3 � ∂u �3

∂x2
� dSdt �

(10)

where the equation governing u � is found by inserting Φ � εΦ � for Φ and u
� εu � for u in (8) and collecting the

terms proportional to ε; assuming ε � 1, this results in

∂u �
∂t

� � u � ∇ 
 u � � � u � � ∇ 
 u � � ∇p � � ν∆u � � ∇ � u � � 0 in Ω 	���� T � 0 
 ;
u � � Φ � at t � � T ;

u � � 0 � x2 � x3 
 � u � � L1 � x2 � x3 
 � u � � x1 � x2 � 0 
 � u � � x1 � x2 � L3 
 � u � � x1 � � 1 � x3 
 � 0 on ∂Ω.

(11)

Note that (11) reflects a linear relationship between u � and Φ � , though this linear relationship is not yet expressed
in a convenient form from which the functional gradient DJ

�
DΦ may be identified in (10). For this purpose,

consider the definition of an “adjoint” state via the equation

� ∂u �
∂t

�
u � � ∇u � � � ∇u � 
 T � � � ∇p � � ν∆u � � ∇ � u � � 0 in Ω 	�� � T � 0 
 ;

u � � 0 at t � 0;

u � � 0 � x2 � x3 
 � u � � L1 � x2 � x3 
 � u � � x1 � x2 � 0 
 � u � � x1 � x2 � L3 
 �
u �1 � x1 � � 1 � x3 
 � α1 � ∂u1

∂x2
� m1 � �

u �2 � x1 � � 1 � x3 
 � α2 � p � m2 � �
u �3 � x1 � � 1 � x3 
 � α3 � ∂u3

∂x2
� m3 � �

� ������������������ on ∂Ω.

(12)

Note that, the difficulty involved with numerically solving the adjoint system given above via a backward march
from t � 0 to t � � T is almost the same as the difficulty involved with solving the original system (8). One slight



complication is that the PDE governing q � is a function of q, which itself is computed from (8) via a forward
march from t � � T to t � 0. The need for the storage of q on � � T � 0 � during this forward march in order to
construct the adjoint operator on the backward march can present a significant storage problem. However, this
problem is easily averted with a checkpointing algorithm which saves q only occasionally on the forward march,
and then recomputes q as necessary from these “checkpoints” during the backward march for q � . To see that the
functional gradient DJ

�
DΦ may easily be identified as a simple function of the solution to the adjoint problem

defined in (12), define the state vector q �
�

u
p � , the perturbation vector q � �

�
u �
p � � , the adjoint vector q � � �

u �
p � � ,

and the linear operators

Lq � ���� ∂u �
∂t

� � u � ∇ 
 u � � � u �
� ∇ 
 u � ∇p � � ν∆u �
∇ � u �

��
� L � q � ��� � ∂u �

∂t
�

u � � ∇u � � � ∇u � 
 T � � ∇p � � ν∆u � �
∇ � u � � �

The adjoint operator L � given above may in fact be determined from the linearized Navier-Stokes operator L and
the L2 inner product defined by � f � g 	 Ω 
�� � T 
 0 � � � 0� T

�
Ω f � gdSdt; straightforward integration by parts (see, e.g.,

Bewley, Moin, & Temam 2001) leads to an identity of the form� q � � Lq ��	 Ω 
�� � T 
 0 � � � L � q � � q ��	 Ω 
�� � T 
 0 � �
b � (13)

where the operators L and L � are defined above and the boundary terms resulting from the integrations by parts
are collected in b:

b �
�

Ω
� u � j u � j � ��� t � T

t � 0
dx

� � T

0

�
Γ �2n j � p � u � j �

u �i � u j u �i �
u � j ui � � ν � u �i ∂u �i

∂x j
� u �i ∂u �i

∂x j � �
u � j p ��� dxdt �

Finally, the identity (13) may be used to put all of the pieces together: inserting the perturbation equation (11)
and the adjoint equation (12) into the identity (13) and simplifying, the perturbation of the cost functional given
in (10) may be rewritten in the convenient form�

Ω

DJ
DΦ

� Φ � dV �
�

Ω
u � � t � � T � Φ � dV �

As this derivation is valid for all Φ � , we may finally identify the functional gradient which we seek:

DJ
DΦ � u � � t � � T

�
The purpose of presenting this derivation in the present paper is to illustrate that there are exactly three pos-

sible locations on the boundary for forcing the relevant adjoint equation in this problem, as shown in (12). The
misfits of the three measurements m1, m2, and m3 exhaust all possibilities for the forcing of this adjoint problem
from the wall. Moreover, given the linearity of the adjoint system with respect to the boundary conditions, the gra-
dient information obtained via the misfits of the three different types of measurements in this problem is linearly
additive.
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