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Numerical simulations are carried out in order to make clear the drag reduction mechanism by microbubbles.  Some
simulation methods are developed to consider effects such as the slip velocity on the bubble surface, the
compressibility of the bubbly liquid, the density fluctuation and the bubble deformation and discuss these effects on
the drag reduction by parametric studies.   

 
 
 
 
 
1. Introduction 

About 80% of the total propulsion resistance of a ship like a tanker is due to friction with the surrounding water.  
It will be a great contribution to the environment to reduce the fuel consumption of ships as a means of mass 
transportation by reducing the frictional drag.  There are several devices for reducing the frictional resistance such as 
passive type devices like riblets or active type devices like the combination of micro sensors and actuators.  Among 
these methods, we consider the microbubble injection method is most suitable for ships.   

Over the last three decades, a lot of experiments have been performed on the microbubble drag reduction.  
McCormick and Bhattachryya (1973) found the skin friction reduction of the submerged body by injecting the 
microbubbles produced by the electrolysis.  The microbubble drag reduction has been also observed in the developing 
turbulent boundary layer flows on a flat plate (Bogdevich et al., 1977; Madavan et al., 1984; Pal et al., 1988) and the 
fully developed turbulent channel flows (Guin et al., 1996; Takahashi et al., 1997; Kodama et al., 2000).  As they 
have reported, the efficiency of the microbubble drag reduction is positively correlated with the void fraction and 
reaches as much as 80%.  For the industrial application of such the phenomena, it is important to make clear what is 
the governing factor for the drag reduction since a lot of factors are involved.  However, experiments tend to be highly 
specialized and, consequently, measured correlation is often limited.   Besides the presence of the microbubbles 
strongly hinders optical measurements.   

Over the last two decades, some theoretical studies have been performed in order to explain the drag reduction 
mechanism.  Legner (1984) proposed a simple model coupling with the mixing length model used in the turbulent 
boundary layer flow and the effective viscosity model for the liquid-gas mixture fluid.  He concluded that there were 
three factors for the drag reduction, corresponding to the decrease of the Reynolds stress due to the decrease of the 
density, the increase of the effective viscosity due to the increase of the void fraction and the turbulent modulation by 
the bubble-water interaction.  Madavan et al. (1985), Marie (1987) and Yoshida et al. (1997) have proposed similar 
models and predicted the drag reduction.  However, such the models are too simple to make clear the drag reduction 
mechanism since the local interactions of the mass, the momentum and the energy between the liquid and gas phases 
are neglected.   

With the recent development of computer performance, predicting fluid flows by numerical simulation is gaining 
popularity.  Using the numerical simulations of the bubbly flow gives basic advantage of investigating the 
microbubble drag reduction because local interactions between the liquid and gas phases can be easily considered.  
Our objective is to elucidate the drag reduction mechanism, which is not yet clear, by numerical simulations.  We 
develop some simulation methods to consider effects such as the slip velocity on the bubble surface, the compressibility 
of the bubbly liquid, the density fluctuation and the bubble deformation and discuss these effects on the drag reduction 
by parametric studies.   
 
2. Effect of slip velocity on the bubble surface 
  In order to discuss the effect of the slip velocity on the bubble surface on the drag reduction, it is useful to compare 



flows around undeformable spheres or cylinders between no-slip and free-slip boundary conditions.  We have 
developed the simulation method for the no-slip boundary problem using a rectangular grid system (Sugiyama et al, 
2001).  However, setting the free-slip boundary condition for a sphere or cylinder with the rectangular grid system, 
which is not fitted the boundary, has been numerically unstable.  In the present study, we develop a new method for 
cylinders with the free-slip boundary using the rectangular grid system and carry out the numerical simulation of the 
Couett flows with cylindrical bubbles for both no-slip and free-slip boundary conditions. 
 
2.1 Simulation method for free-slip boundary 

In order to avoid numerical instability due to the representation of the free-slip boundary condition with the 
rectangular grid system, fluid flows on each grid point outside the cylinder are solved for the Navier-Stokes equation, 
while those inside the cylinder are based on the analytical solutions for the Stokes equation.  The viscosity inside the 
cylinder is treated to be as much as that outside the cylinder.  When expanding the velocity on the cylinder surface 
(r=1) as, 
 

(1) 
the boundary conditions at r=1 are expressed as, 
 

(2) 
The velocity inside the cylinder is given to satisfy the following solution with the free-slip boundary. 
 
 
 
 
 
 
 

(3) 
 

2.2 Some general descriptions of numerical methods 
The 2nd-order finite difference method is employed to solve the partial differential equations.  The discretization 

of variables is carried out on the staggered grid.  The time integral is evaluated using the 2nd order Adams-Bashforth 
method.  In order to calculate  and u , the cylinder surface is divided by 180 points and the velocity on them 
are interpolated by the 5th-order Lagrangian interpolation.  The mode number for cosn� and sinn� is considered up to 
10.  The grid points per a cylinder radius is 10.   
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Fig. 2  Magnification ratio of the wall friction vs. void fraction

 
Fig. 1  Shear stress components on the cylinder surface

 
 
 
 
 
 
 
 
2.3 Validation of the present numerical method 

In order to evaluate the validation of the present numerical method, the laminar Couette flow with free-slip 
cylinders is solved.  Figure 1 shows the typical result of the shear stress components of  and �  on the 
cylinder surface obtained by the present numerical method.  If the free-slip boundary condition is satisfied, their sum 
is to be zero.  As shown in Fig. 1, the free-slip boundary condition is almost satisfied.   
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Figure 2 shows the magnification ratio of the wall friction ((�*-�0)/�0) for various void fractions (�), where �0 
represents the wall friction without cylinders and �* that with cylinders.  The no-slip results are obtained by the 
method developed by Sugiyama et al. (2001).  The Reynolds number scaled by the cylinder radius and the shear rate 



is 0.1.  At such the small Reynolds number, (�*-�0)/�0 can be theoretically derived by the theory of the effective 
viscosity for suspension fluids (Batchelor, 1967), where the increase of the viscous dissipation due to the increase of the 
void fraction is considered.  Theoretical solutions of (�*-�0)/�0 for the no-slip and free-slip boundary conditions are 
equal to 2� and � , respectively.  Lines and symbols in Fig. 2 correspond to theoretical and present numerical results, 
respectively.  As shown in Fig. 2, the present numerical results show good agreement with the theoretical ones.  
From this result, the difference between the no-slip and free-slip condition can be captured by the present simulation 
method.   
 

 
 

Fig. 3 Schematic figure of the present simulation 

 
 
 
 
 
 
 

 
Fig. 5  Magnification ratio of the wall friction vs. b/a 

(Free-slip bubble) 

 
Fig. 4  Magnification ratio of the wall friction vs. b/a 

(No-slip bubble) 

 
 
 
 
 
 
 
 
2.4 Effect of the deformation of bubble  

In order to investigate the effect of the bubble deformation on the drag reduction, the laminar Couette flow with 
flat bubbles is solved for various lengths of bubbles.  The schematic figure shows in Fig. 3.  Assuming the infinite 
flat bubble layer with the free-slip boundary is located, the force on the wall is 0.  Thus, we can easily imagine the 
drag reduction will occur when the b in Fig. 3 is long enough.  Figures 4 and 5 shows the relation between the 
magnification ratio of the wall friction ((�*-�0)/�0) and b/a, corresponding to the results for the no-slip and free-slip 
bubbles, respectively.  The Reynolds number scaled by a and the shear rate is 10.  As shown in Fig. 4 for the no-slip 
bubble, (�*-�0)/�0 becomes larger with the increase of b/a.  It is because the flow space between the bubble and the 
wall becomes narrower with the increase of b/a.  On the other hand, as shown in Fig. 5 for the free-slip bubble, 
(�*-�0)/�0 becomes smaller with the increase of b/a.  For the cylindrical bubble, the effective viscosity increases with 
the increase of the void fraction, which is influenced by the increase of the viscous dissipation due to the vorticity 
generation on the bubble surface.  The vorticity is generated on the round region of the bubble surface, while it is not 
generated on the flat region.  The decrease of the wall friction for the free-slip bubbles is resulted from the decrease of 
the vorticity generation.  It is seen from Fig. 5 that the drag reduction occurs when the b/a is longer than 2.5.  The 
present bubble aspect ratio for the onset of drag reduction is is much lager than that observed in the experiment 
(Takahashi et al., 1997).  Therefore, the drag reduction mechanism may be qualitatively explained by the deformation 
of the bubble, although it is necessary to involve the turbulence effect for quantitative discussions. 
 
3. Effect of compressibility of bubbly liquid 

It is wellknown that the sonic speed of the bubbly liquid quite goes down even in the low void fraction (Brennen, 
1995).  In the air/water system, the Mach number at the flow velocity of 15m/s is about 0.2 and 0.5 at the void 
fractions of 1% and 10%, respectively.  According to the theoretical study on the inviscid stability of parallel bubbly 
flows (d'Agostino et al., 1997), the bubble compressibility promotes the stability of the flow.  Therefore, the 
compressibility of the bubbly liquid is considered to attenuate the turbulence intensity and alter the turbulence structure.  
In this section, the turbulent channel flow simulation is carried out to investigate whether the bubble compressibility 
affects the drag reduction or not.   
 



3.1 Assumptions 
In this study, the following assumptions are employed to formulate the governing equations. 
・The bubble number density is constant.   
・The bubbly liquid is homogeneous.   
・Damping effect of the bubble radial motion is considered.   
・The deviation of the pressure and the bubble radius from the initial values is small enough.   

 
3.2 Governing equations 
○Mass conservation equation: 
 

(4) 
○Momentum conservation equation: 
 

(5) 
○Void fraction: 
 

(6) 
○Relation between mixture density and void fraction: 
 

(7) 
○Relation between pressure and equilibrium radius of bubble: 
 

(8) 
○Equation of bubble radial motion: 
 

(9) 
The mean pressure is controled to keep constant total volume.   
3.3 Pressure equation 

The procedure to solve the pressure field is analogous to the SMAC (Simplified-Marker-and-Cell) method.  The 
equation for the pressure variation �p is expressed as,  

 
 

(10) 
The pressure, the bubble rasius and the momentum are renewed using �p expressed as,  
 
 

(11) 
3.4 Relaxation time of bubble radial motion 

In order to formulate relaxation time of the bubble radial motion, the thermal viscosity of the gas bubble is 
considered under the assumption that the amplitude of bubble radial motion is small.  According to Prosperetti et al. 
(1988), the effective viscosity �E is obtained from the perturbed equations of the Rayleigh-Plesset equation and the 
temperature inside the bubble and expressed as,  
 

(12) 
where �T is the thermal viscosity as a function of the gas pressure, the gas temperature, the bubble radius, the specific 
heat ratio and the heat transfer coefficient. � in Eq. (9) is expressed as,  
 

(13) 
The relaxation time of the bubble radial motion is equal to 1/�� . 
 



3.5 Solution algorithm 
The 4th-order finite difference method is employed to solve the partial differential equations.  The discretization 

of variables is carried out on the staggered grid.  The time integral is evaluated using the 2nd-order Adams-Bashforth 
method.  

 
3.6 Simulation conditions  

Before introducing the compressibility effect, a fully developed single-phase turbulent channel flow at the 
Reynolds number Re� (=�LDu�/�) of 150.  The half width of the channel D, the friction velocity u�, the driving force H 
and the liquid density �L are used to calculate dimensionless parameters and all of them are fixed to be 1 in the 
simulation.  The dimensionless viscosity � is 1/150.  The size of the simulation domain is set to 2	 x 2 x 	 divided 
by 64 x 64 x 64 grid points, in the streamwise (x), wall-normal (y) and spanwise (z) directions, respectively.  The 
profiles of the mean velocity and the turbulent intensities obtained by the present simulation show good agreement with 
the DNS results by Kuroda et al. (1990) as shown in Fig. 6. 

Parameters for the compressibility and the relaxation time of the bubble radial motion are equivalently given under 
the conditions that the bubbly liquid consists of air and water, the half width of the channel is 20mm, the flow velocity 
is 15m/s, the mean pressure is 100kPa, the void fraction is 10%, the bubble diameter is 0.5mm and the water 
temperature is 300K.  From these conditions, the mean void fraction �0, the dimensionless static pressure p0 and � are 
0.1, 100 and 500, respectively.  The flow direction is horizontal.  In order to investigate the compressibility and the 
buoyancy effects, three simulations are performed as shown in Table 1. 

 
 

 
Fig. 7  Temporal evolution of mean flow rate 

Table 1  simulation conditions 
      �0 Fr 

Case1 0 ∞ 
Case2 0.1 ∞ 
Case3 0.1 0.022 

 
 
 

 
 

Fig. 6  DNS of single phase channel flow 
Turbulence intensitiesMean velocity 

 
Fig. 8  temporal evolution of the mean shear stress 

 
 
 
 
 
 
 
 
 
 
3.6 Results 

Figure 7 shows the temporal evolution of the mean flow rate averaged over the simulation domain.  The mean 
velocity without bubbles (case 1) is almost constant, while the mean velocities with bubbles (cases 2 and 3) decreases 
after introducing the bubbles at the time of 0.  In the present study, the driving force and the viscosity are fixed so that 
such the decrease of the mean velocity indicates the increase of the friction drag on the wall.  Figure 8 shows the 
temporal evolution of the mean shear stress averaged on the wall.  The mean shear stresses without the buoyancy 
(case 1 and 2) is almost constant, while that with the buoyancy (case 3) decreases at the bottom wall and increases at the 
top wall after introducing the bubbles at the time of 0.  In case 3, the void fraction near the top wall is higher than that 
near the bottom one due to the buoyancy.  Therefore, the frictional drag near the higher void fraction region becomes 
higher.   



 

Fig. 10 Wall-normal rms velocity profile

 
 
 
 
 
 
 

 

 
Fig. 9  Mean velocity profile 

Figure 9, 10 and 11 show the profiles of the streamwise mean velocity u
the Reynolds stress uv�� , respectively.  The sampling time for averaging is 
and 2 correspond to the top and bottom walls, respectively.  It is seen from
intensities are augmented due to the compressibility of the bubbly liquid and stro
Such the turbulence augmentation decreases the mean velocity as shown in Fig. 

As mentioned above, the drag reduction is not observed in the present inves
 
4. Effect of density fluctuation  

The Direct Numerical Simulation (DNS) with much smaller grids than the 
fine flow structures.  However, a lot of numerical resources are consumed 
simulations are unrealistic.  Especially, the dense and sparse regions of bubbl
such the density fluctuation often makes large flow structure beyond the compu
investigate the effect of the density fluctuation, the two-fluid model based on 
1975; Drew, 1983; etc.) is useful.  The conservation equations of the two-flui
Navier-Stokes (NS) equation, thus two-phase interaction due to the inertia diffe
the other hand, equations for bubble motion are not dereived from the NS eq
bubble motion must be modeled in the two-fluid simulation.  In this section, th
is examined comparing with the experiment under the laminar flow condition.  
 
4.1 Simulation method 

The present simulation is based on the Eulerian-Lagrangian model develo
The mass and momentum equations are solved in the Eulerian way, while th
motion is solved in the Lagrangian way.  The equation of the bubble tran
equations of the forces on a bubble, e.g. drag and lift forces, etc. In the present s
coefficient CD obtained by Schiller and Naumann (1933) is used and expressed a
 

where Reb is the bubble Reynolds number (Reb =2�L|uG-uL|/�L).  On the lift
equations have been proposed.  The lift force is expressed as,  
 

where CL is the lift force coefficient.  Simulation conditions for CL will be expla
 
4.2 Solution algorithm 

The 4th-order finite difference method is employed to solve the partial diff
of variables is carried out on the staggered grid.  The time integral of the flow v
Adams-Bashforth method.  In terms of the time integral procedure of the tran
Cranc-Nicolson method and the 2nd-order Adams-Bashforth method are emp
bubble velocity, respectively.  The interpolation from the liquid phase to the ga
Lagrangian interpolation.  The local void fraction is calculated by the template-
4.3 Simulation conditions 
Fig. 11 uv��  profile 
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nger in the higher void fraction region.  
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the volume averaged equations, (Ishii, 
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e model equation of the bubble motion 
 

ped by Murai and Matsumoto (1996).  
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tudy, the empirical formula of the drag 
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(14) 
 force FL on a bubble, several model 

(15) 
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erential equations.  The discretization 
elocity is evaluated using the 2nd-order 
slational motion of bubbles, 2nd-order 
loyed for the bubble position and the 
s one is approximated by the 5th-order 
distribution model (Murai et al., 2000).   



The present simulation will be carried out under the same condition of the bubbly channel flow experiments 
performed by Kikugawa et al. (2001).  They measured the mean velocity profile by the laser Doppler velocimetry.  
The flow direction is vertically upward.  The half width of the channel D is 20mm. The Reynolds number Re 
(=UcD/�) in the single phase flow is 950 and the flow is considered to be laminar.  The liquid flow rate in the bubbly 
flow is same as that in the single phase flow.  The mean void fraction (�0) is 0.6%.  The bubble diameter is 1mm. 

The size of the simulation domain is set to 100mm x 40mm x 40mm divided by 50 x 20 x 20 grid points, in the 
streamwise (x), wall-normal (y) and spanwise (z) directions, respectively.   

In the present study, we will examine following four CL models.   
Case 1 : No-lift 
 

(16) 
Case 2 : CL for potential flow (Auton, 1987) 
 

(17) 
Case 3 : Empirical CL of a bubble (Sridhar and Katz, 1995) 
 

(18) 
Case 4 : Numerical CL of a rigid particle (Kurose and Komori, 1999) 
 

(19) 
where � is the rotational angular speed and assumed to be equal to  in the present simulation.  Using the 
data table shown by Kurose and Komori (1999), C

2/|| Lu��

L 
(4) is estimated.   

 
 

 
Fig. 13  Mean velocity profile 

 
 
 
 
 
 Fig. 12  Void fraction profile 
 
 
4.4 Results  

Figure 12 shows the void fraction profile versus the length from the wall y/D for cases from 1 to 4.  The bubble 
motion is affected by the lift force toward the wall due to the velocity gradient of the channel flow and the slip velocity 
of bubbles.  As shown in Fig. 12, the void fraction near the wall becomes high except case 1 neglecting the lift force.  
The peak value of the void fraction strongly depends on the lift force model.  It is experimentally known that the 
behavior of a bubble is markedly changed even by a very small amount of contaminant present in a liquid and that a 
small bubble in a contaminated liquid behaves similarly to a rigid sphere.  Considering that the bubbles size in the 
experiment (Kikugawa et al., 2001) is small enough to be treated as rigid spheres, CL of case 3 or 4 is considered to be 
reasonable.  

Figure 13 shows the mean velocity profile versus y/D .  Lines without symbols correspond to the experimental 
results at the void fractions of 0 and 0.6%.  Lines with symbols correspond to the present simulation result.  Due to 
the buoyancy effect, the fluid in the higher void fraction region is driven upward.  As shown in Fig. 13 that the mean 
velocity profile of case 1 almost agrees with the experimental result at the void fraction of 0%.  It is because that the 
void fraction profile is almost independent of y/D  (Fig. 12) and the effect of the local driving force due to the bubble 
buoyancy is weak.  It is also seen from Fig. 13 that the mean velocity profile is sensitively affected by void fraction 
distribution.  The simulation result with the lift fore model proposed by Kurose and Komori (1999), which is 
considered to be reasonable compared with experiment, shows the best agreement with the experiment.  

 



5. DNS of channel flow with deforming bubbles 
5.1 Numerical method 

In this section, we present investigations of bubbly channel flow using a direct numerical simulation. Both liquid 
and gas phases are treated as incompressible fluids and solved by a finite volume method, while the interface between 
the phases is resolved by a front-tracking method specialized for treating deformed bubbles. A more detailed 
description of the method, and validations are found in the previous report (Kawamura and Kodama, 2001). 

The size of bubbles that are used for the microbubble drag reduction is not small compared with the characteristic 
scale of turbulence. For example, the typical bubble size in the experiment of Takahashi et al.(2001) using a channel of 
15 mm in height was 1mm, which is about 240 in the viscous unit. Therefore, we consider that application of the DNS 
is an effective way to investigate the influence of bubbles on turbulence. 

Preliminary results of the DNS method were presented in the previous report , in which numerical simulations of a 
low Reynolds number bubbly channel flow were carried out. The results were found to be in qualitative agreement with 
experimental studies, while problems were that the ratio of the bubble diameter to the channel width was a factor of two 
to five larger than in the experiments. The difference in the size ratio is due to the limitation in the grid resolution. Since 
the DNS method resolves bubbles explicitly, the total number of the grid point depends on the size ratio between 
bubbles and computational domain. In the present study, a computation with a much finer resolution has been 
performed to simulate more realistic bubbly flow in a channel using a parallel computer. 

 
5.2 Condition of simulation 

A fully developed turbulent channel flow containing bubbles was investigated by the present numerical method. 
Before introducing the bubbles, a fully developed single-phase turbulent channel flow at the Reynolds number 
Re�=180 based on the friction velocity u� a half width of the channel H, was computed. The size of the computational 
domain was set to 6.4H, 3.2H and 2H, in the streamwise, wall-normal and spanwise directions respectively. A periodic 
boundary condition was used in the streamwise and spanwise directions. The x-, y- and z- axes are taken in the 
streamwise, wall-normal and spanwise directions respectively. The number of the grid points was 256�128�128. The 
computational domain was decomposed into four blocks in the streamwise direction, and each block of 64�128�128 
grid points was computed on a node of a parallel computer system. The number of the total grid points was 16 times 
more than in the previous study. At the nondimentional time t+ = u�2 t / 
 = 0 bubbles were introduced at random 
locations. The bubble diameter was set to 0.2H, and the number of bubbles was set to 98 bubbles. The mean void ratio 
in the computational domain was 1%. The Weber number based on the bulk mean velocity and the bubble diameter 
was 148. 
 
5.3 Results 

A snapshot of the distribution of bubbles is shown in Fig. 9 for comparing the size ratios among bubbles, the 
channel width and the scale of the streaky structure of near wall turbulence. The ratio of the bubble size to the channel 
width is 0.1, which is on the same order as in the experiments by Guin et al. (1996) and Takahashi et al. (1997), while 
the bubble diameter in the viscous unit is 36, which is about one third of the mean spacing between near wall streaks. 
Since the effect of the gravitational acceleration was not included in this DNS computation, the drift velocity between 
bubbles and liquid phase was very small. 

Fig. 10 shows the profiles of the average void fraction over planes parallel to the walls at t+=0 and a time-averaged 
value average from t+=100 to t+=300. Though the time-averaged profile still include some fluctuation, it is observed 
that the void fraction peaks at about 0.2H away from the walls. This is probably because of the momentum balance in 
the wall-normal direction. In a turbulent channel flow, the mean normal stress in the wall-normal direction 

''vvp ���  must be constant. Therefore the mean pressure p is lowest where ''vv is highest. Bubbles are 

supposed to move to the low pressure region. The time evolution of the mean distance between bubbles and the wall 
shows that the bubbles are moving towards the walls on average. It is also noted that the bubble distribution has not 
reached statistical steady state. 

The influence of the bubbles on the turbulence intensities are shown in Fig. 10. Though the time for averaging is 
not sufficient, the observed tendencies is that the intensities increase as a whole while the peak of the streamwise 



intensity decreases. This tendency was the same in the previous study for larger bubbles. Fig. 11 shows one 
dimensional energy spectra of u’, v’ and w’ in the streamwise direction at y+=14. The modulation of turbulence by 
bubbles is seen only in the high wave number region. This is consistent with the experimental observations (Serizawa et 
al., 1975). The Reynolds shear stress is slightly increased by bubbles as shown in Fig. 15, resulting in the slight increase 
in the friction coefficient shown in Fig. 16. This tendency was also the same in the previous study. This suggests the 
frictional drag is increased at low Reynolds numbers because of the additional dissipation around due to generation of 
vorticity around bubbles. 

 
6. Conclusions 

Various numerical simulation techniques were used to elucidate the mechanism of the microbubble drag reduction. 
The techniques can be grouped by the ways bubbles and turbulence are modeled. The macroscopic influence of 
bubbles through the decrease in the mean density and the increase in the effective viscosity can be simulated using the 
phase-averaged two-fluid model, moreover it has been shown that accurate profiles of void fraction and mean velocity 
in a laminar flow can be obtained by the proper choice of the lift force model.  

For investigating the smaller scale interaction between bubbles and turbulence, the DNS methods, which resolve 
liquid phase flow and flow around bubbles in a single framework, should be used. DNS has been applied to a laminar 
two-dimensional Couette flow and a three-dimensional low Reynolds number turbulent channel flow in this study. It 
has been shown that the interactions between bubbles and laminar shear flow can be accurately computed, and a 
qualitative agreement has been confirmed in the turbulence modulation by bubbles. 

The present investigations did not identify the origin of the microbubble drag reduction. However, it has been 
shown that the laminar interactions and the effect of compressibility of bubbles can not explain the decrease in the 
frictional drag. This suggests that the interaction between bubbles and turbulence is the source of the microbubble drag 
reduction. Although validations of the DNS method for turbulent flows are not thorough yet, the present study has 
shown that DNS of bubbly turbulent flow is possible by use of the present numerical methods. Further validation 
through quantitative comparisons with experiments, and extension to higher Reynolds number flows probably by 
introduction of sub-grid scale models are needed for elucidation of the phenomena. 
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Fig. 9 Snapshot of bubble distribution at t+=200 in the DNS of bubbly channel flow (Re

�
=180, �=1%). Colors on indicate the streamwise 

component of the instantaneous wall shear stress. 
 

 

 
Fig. 10 Void fraction profiles in the DNS of bubbly channel flow 

(Re
�
=180, �=1%). 

 
Fig. 11 Time evolution of the mean distance between bubbles and 
the wall in the DNS of bubbly channel flow (Re

�
=180, �=1%). 

 

 
Fig. 12 Turbulence intensity profiles in the DNS of bubbly 

channel flow (Re
�
=180, �=1%). 

 
Fig. 14 One-dimensional energy spectra at y+=14 in the DNS of 

bubbly channel flow (Re
�
=180, �=1%). 

 

 
Fig. 15 Profiles of the Reynolds shear in the DNS of bubbly 

channel flow (Re
�
=180, �=1%). 

 
Fig. 16 Time histories of the normalized frictional drag coefficient 

in the DNS of bubbly channel flow (Re
�
=180, �=1%)

 


