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ABSTRACT 
In this article, a second order finite difference scheme was employed for the DNS study of the 
drag-reducing Giesekus fluid flow in a two-dimensional channel. A second-order bounded 
scheme, MINMOD, was used to discretize the convective term in the constitutive equation.  
The instantaneous stress and flow structures at different Weissenberg numbers are compared.  
Effects of Weissenberg number on various turbulence statistics such as turbulence intensities, 
Reynolds shear stress and two-point correlation coefficients are also presented.   
 
INTRODUCTION  
It is well known that a small amount of chemicals such as water-soluble polymers or 
surfactants cause dramatic suppression of turbulence when they are added to the liquid flow at 
large Reynolds numbers (Toms, 1948). In recent two-decades, the application of surfactant to 
the heat transportation system such as district heating/cooling system is attracting the interest 
of researchers. It has been revealed that 70% of pumping power to drive the hot water in 
primary pipeline of district heating system was saved by adding only few hundred ppm of 
surfactant into the circulating water.  
This technological achievement requires a new designing strategy for pipe line network, 
fittings and heat exchangers to handle the drag reducing liquid flow. For the case of 
Newtonian fluid such as water or air, the knowledge to design fluid system is well 
accumulated and the accuracy of numerical prediction is sufficient. In the other hand, the 
designing method of viscoelastic fluid system is far from satisfaction. For example, the 
friction factor of specific solution in the straight pipe becomes not only a function of 
Reynolds number but also the pipe diameter. We cannot predict how much drag reduction will 
be achieved when it flows in straight tube from liquid sample.         
The authors are making the investigation of the drag reduction by additives using the 
experimental and numerical approach. The final target is offering the designing strategy of 
viscoelastic fluid system at high Reynolds number and find the controlling method of 
turbulence suppression. This research may also possible to offer some common understanding 
for the turbulence suppression/enhancement and drag reduction/increase mechanism realized 
by variety of methods such as wall modification, particle suspension, bubble mixture or 
individual eddy control. Experimental study to clarify the turbulent structure and heat transfer 
mechanism and to find the termination method of turbulent suppression in heat exchanger are 
now undergoing. In this article, the part of numerical study is presented. 
  
Recently some direct numerical simulations have been performed to investigate the basic 
mechanism of additive-induced drag-reduction flow.  Orlandi (1995) and DenToonder et al. 
(1997) employed elongational viscosity models to study the turbulent drag-reduction channel 
flow and pipe flow, respectively.  Sureshkumar et al.(1997) and Dimitropoulos et al. (1998) 
used viscoelastic models (FENE-P model and Giesekus model).  In order to prevent 



numerical breakdown, artificial terms were added into the constitutive equations 
( Sureshkumar et al.(1997) and Dimitropoulos et al. (1998) ).  An onset criterion, 
12 5 25. < <Weτ ,was proposed by Sureshkumar et al. (1997) and Dimitropoulos et al. (1998) 

based on the numerical solutions.  Min et al. (2001) obtained a smaller onset Weissenberg 
number by using a high-order compact difference scheme with local artificial diffusion term 
in the constitutive equation. The present authors, for the first time, used a high-resolution 
scheme, MINMOD, for the viscoelastic turbulent flow (Yu et al. (2002)).  It is found that by 
using the MINMOD scheme, the calculation procedure becomes more stable and the results 
have more spatial resolution than those by the artificial diffusion method.   
 
The authors have been performing experimental analysis on drag-reducing flow by additives 
(Li et al.(2001) ) and rheological properties of the solution. We find the Giesekus model can 
qualitatively describe our measured apparent shear viscosity and extensional viscosity.  
Based on the experimental results, properties of the surfactant solution do not confrict to those 
of a Giesekus fluid.  Our final aim is to use the model parameters obtained from the 
experiments to simulate our experimental drag-reducing flow, and now the exact parameters 
are in the analyzing procedure. In this article all the model parameters are set artificially.  
The purpose of the present study is to numerically study the effect of Weissenberg number on 
the drag-reducing Giesekus fluid flow. 
 
GOVERNING EQUATIONS AND NUMERICAL METHOD 
We simulated the drag-reducing flow in a 2D channel.  The flow geometry and the 
coordinate are shown in Figure 1, in which x, y and z are the streamwise, normal and spanwise 
direction respectively.  The height of the channel is h2 .   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Coordinate system in channel 
 
The fluid is assumed incompressible, isothermal with constant properties.  The 
dimensionless governing equations for the unsteady incompressible Giesekus fluid are as 
follows:  
Continuity equation:  
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Constitutive equation:  
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 where *t  is the time, +p  the hydrostatic pressure, +
iu  the velocity component and +

ijc  the 
conformation stress. ( )* is normalized by h and ( )+ is normalized by µτ ,u  and ρ .  The 
parameter β  is the ratio of solvent contribution to the total zero-shear viscosity.  The 
Reynolds number and Weissenberg number are defined as: µρ ττ /Re hu=  and 
Weτ τρλ µ= u2 / , where ρ , µ , λ , τu and h are the fluid density, the solvent contribution to 
the viscosity, the relaxation time, the friction velocity and half of the channel height 
respectively.   Our computations are carried out for 150Re =τ , 9.0=β and four 
Weissenberg numbers: Weτ = 2 12 5 30, . ,  and 45 .

 The periodic boundary conditions are imposed in both the streamwise and spanwise direction, 
while nonslip condition is adopted for the top and bottom walls. The computational domain 
size is hhhLLL zyx 5210 ××=×× .  Uniform grids are used in the streamwise and spanwise 
directions.   Nonuniform grids are used in the normal direction with denser mesh near the 
wall to resolve small eddies.  A transformation is used as follows: 
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where a  is an adjustable parameter of the transformation and 2N  is gird number in the 
normal direction.  A constant value of 95.0=a  is adopted herein.  Figure 2 compares the 
mean velocity profile and turbulence intensities by using two sets of grids: 646464 ××  and 

6412864 ××  grids (in the x-,y- and z- direction respectively).  It can be seen that the results 
for the two sets of grids agree well with each other.  To save computational time, the 

646464 ××  grids are used in the present study. 

Figure 2: Left: The mean velocity profile and Right: Root mean square velocity 
fluctuations for β τ τ= = =0 9 150 30. ,Re ,We  and α = 0 001.  with two different 
grids: 64 64 64× ×  grids (black solid line) and 64 128 64× ×  grids(red dash line). 

 
Numerical simulations of viscoelastic flow are prone to break down at high Weissenberg 
number due to the hyperbolic nature of the constitutive equations.  To overcome this trouble, 
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artificial diffusion spectral method (Sureshkumar et al.(1997) and Dimitropoulos et al. (1998)) 
and local artificial diffusion finite difference scheme (Min et al. (2001)) were employed.  We 
compared the performance of artificial diffusion scheme with a high-resolution scheme, 
MINMOD, for the 2D drag-reducing flow (Yu et al.(2002)).  It was found that MINMOD 
scheme is much more stable and has higher spatial resolution than the artificial diffusion 
method.  In this study, the MINMOD scheme is used to discretize the convective term in the 
constitutive equations. 
 
The staggered grids are used to prevent zigzag pressure field.  For time integration, 
Adams-Bashforth scheme is used for all the terms except that implicit method is used for the 
pressure term.  The MAC method is used to couple velocity and pressure. 
 
 
RESULTS AND DISCUSSION 
Figure 3 compares the statistical steady values for 9.0=β , 150Re =τ  and four 
Weissenberg numbers Weτ = 2 12 5 30, . ,  and 45 .  For comparison, the case for 
Newtonian fluid, i.e., 0.1=β  is also presented.  The streamwise mean velocity profiles are 
shown in Figure 3 (a).  It is seen at We 2τ = , the nondimensionalized velocity profile is 
slightly smaller than that of Newtonian case.  This means not any drag-reduction occurs and 
a slightly drag- enhancement.  For Weτ = 12 5 30. ,  and 45 , the velocity profiles are up 
shifted at the buffer and logarithmic layers as compared to that of the Newtonian case.  The 
larger flow rates means drag-reductions occur.  In this study, we define the drag-reduction 
rate as the decrease percentage of the friction factor as compared to Newtonian fluid flow at 
the same mean flow Reynolds number base on the height of the channel, 
Re / Rem m mu h u= = +2 2ρ µ τ .  The calculated mean Reynolds numbers and the 
corresponding friction factors are shown in Table 1.  We did not do the calculations for the 
Newtonian cases for those mean Reynolds numbers.  But we can estimate the friction factors 
at those Reynolds numbers by using the experimental correlation f m= −0 073 0 25. (Re ) . (Dean, 
1978).  Then the drag-reduction rates are obtained and listed in Table 1.  Apparently the 
drag-reduction rate at Weτ = 12 5.  is appreciable.  We did calculation for the case Weτ = 8 , 
not appreciable drag reduction was observed.  Thus using MINMOD scheme, the onset 
Weissenberg number obtained in the present study is around 10.  Note that not any 
appreciable drag-reduction is obtained at Weτ = 12 5.  by artificial diffusion spectral method 
(Sureshkumar et al.(1997) and Dimitropoulos et al. (1998)).  A higher onset Weissenberg 
number 12 5 25. < <Weτ  was predicted.  This indicates the artificail diffusion term 
deterioates the solution accuracy.  Moreover it is clear from Figure 3(a) that the larger the 
Weissenberg number, the larger the buffer layer becomes.  
  

Table 1 
Mean Reynolds Numbers, Friction Factors and Drag-Reduction Rate 

Weissenberg number  12.5 30 45
Mean Reynolds number 4838 6180 6936
Friction factor 0.00769 0.00471 0.00374
Drag-reduction rate 12.1% 42.8% 53.2%
 



Figure 3 (b)-(d) compares the root mean square velocity fluctuations.  It can be seen that the 
for the smallest Weissenberg number We 2τ = , the turbulence intensities are almost the same 
as those of Newtonian results.  With the increase of Weissenberg number, the root mean 
square velocity fluctuations in the streamwise direction are enhanced.  The larger the 
Weissenberg number is, the larger the urms

+  becomes.  As compared to Newtonian results, 
the location of the maximum +

rmsu  shifts toward the centerline of the channel for 
drag-reduction cases.  The larger the drag-reduction rate, the further the location shifts to the 
bulk flow.  This is corresponding to an increased buffer layer with the increase of  
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(e)                                 (f) 
Figure 3: Statistical steady values for Newtonian fluid flow at Reτ = 150  and 
Giesekus fluid flow at β ατ= = =0 9 150 0 001. ,Re , . and four Weissenberg numbers 
Weτ = 2 12 5 30, . ,  and 45 . (a) mean velocity profile; (b)-(d) root mean velocity 
fluctuations; (e) correlation coefficient of u'+  and v'+ ; (f) Reynolds shear stress. 
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Weissenberg number.  The root mean square velocity fluctuations in the normal direction 
decrease with the increase of Weissenberg number.  On the whole the root mean square 
velocity fluctuations in the spanwise direction also decrease with the increase of Weissenberg 
number except that at the center part of the channel, they are enhanced for Weτ = 30  and 
45  cases.  We can see that the appreciable enhancement of urms

+  and the depression of vrms
+  

and wrms
+ are located at the buffer layers, while in the corresponding logarithmic layers, the 

turbulent intensities do not change very much.  This clearly shows that the polymer/ 
surfactant additives affects primarily to the phenomena occurring in the buffer layer. 
Figure 3(e) compares the velocity correlation coefficients for u  and v .  It is seen that with 
the increase of Weissenberg number the correlation coefficients decrease.  The location of 
the maximum correlation coefficient shifts to the bulk flow as compare to the Newtonian case 
and viscoelastic non-drag-reduction case We 2τ = .  Figure 3 (f) compares the Reynolds 
shear stress profiles.  It is seen that the larger the drag-reduction rate is, the smaller the 
Reynolds shear stress becomes.  The location where maximum Reynolds shear stress attains 
also shifts to the bulk flow for drag-reduction cases as compared to Newtonian results. 
 
Figure 4 shows the instantaneous contour maps of the conformation stress xxc  in the middle 
vertical x-y plane of the channel.  It is seen that with the increase of Weissenberg number, the 
conformation stress value increases greatly.  The stress gradients near the wall become larger 
and larger.  From this picture, we can partly explain why with the increase of Weissenberg 
number, the calculation becomes easy to break down.  The steep stress gradient is difficult to 
be captured.  Using high-order schemes (for finite difference scheme) or spectral method, the 
steep gradient cannot be accurately captured and negative conformation stress values can be 
predicted.  The unphysical values changes the flow dynamics and usually result in the 
breakdowns of the solution.  To prevent the numerical breakdown, artificial diffusion 
methods both for spectral method and finite difference scheme were used by Sureshkumar et 
al.(1997) and Dimitropoulos et al. (1998), and Min et al. (2001) respectively.  The 
calculation did not break down till 50=τWe for the Giesekus fluid by using the artificial 
diffusion spectral method.  However too large artificial diffusion may greatly flatten the 
steep stress gradient (Yu et al. 2002) and the solution accuracy deteriorates.  So the 
high-resolution schemes such as MINMOD, which have been demonstrated to have a good 
capability to capture steep gradients, appear unavoidable choice for the realistic simulation of 
the turbulent viscoelastic flow.   
 

 
 
 
 

   (a)                                        (b) 
  
 
 
 
 

   (c)                                        (d) 
Figure 4: Contours of instantaneous Cxx  in the middle vertical x-y plane of the channel 
for the Giesekus fluid flow at β ατ= = =0 9 150 0 001. ,Re , . and four Weissenberg 
numbers. (a) Weτ = 2 ; (b) Weτ = 12 5. ; (c) Weτ = 30 ; (d) Weτ = 45 . Contour 
levels for Weτ = 2 12 5 30, . ,  and 45 are 1.5-11, 37-545, 68-857 and 107-1520 
respectively.  



Figure 5 compares the root mean square of xxC  fluctuations.  It is seen that the 
conformation stress fluctuations become much stronger with the increase of the Weissenberg 
number.  We believe the strong fluctuations at high Weissenberg number may be another 
factor to cause the numerical instability and our calculation broke down for a even higher 
Weissenberg number Weτ = 60 case. 

 
 
 

Figure 5: Root mean square 
fluctuations for conformation 
stress Cxx

+ for the Giesekus fluid 
flow at 
β ατ= = =0 9 150 0 001. ,Re , . a
nd four Weissenberg 
numbers Weτ = 2 12 5 30, . ,  
and 45 . 

 

 

 

 

 

 
Figure 6: Instantaneous velocity fluctuation field in the middle vertical x-y plane of the 
channel for (a) Newtonian fluid flow at Reτ = 150  and Giesekus fluid flow at 

β ατ= = =0 9 150 0 001. ,Re , . and four Weissenberg numbers: (b) Weτ = 2 ; 

(c) Weτ = 12 5. ; (d) Weτ = 30 ; (e) Weτ = 45  
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Figure 6 shows the instantaneous snapshots of the velocity fluctuations fields in the middle 
vertical x-y plane of the channel at different Weissenberg numbers (the streamwise velocity 
components are subtracted by local mean velocity ( )yu + ).  For comparison, an 
instantaneous velocity field for Newtonian case is also presented.  It is clearly seen that the 
flow structure for no drag-reduction case ( Weτ = 2 ) is similar as that of Newtonian case.  
With the increase of the Weissenberg number the vortex structure becomes larger, especially 
in the region near the walls. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)       (b) 
 

 
 
 
 
 
 
 
 
 

(c)     (d) 
 
 
 

 
 
 
 
 
 
 

 
(e) 

Figure 7: Instantaneous snapshot of streamwise velocity fluctuation in the x-z plane at 
15=+y for (a) Newtonian fluid flow at Reτ = 150  and Giesekus fluid flow at 

β ατ= = =0 9 150 0 001. ,Re , . and four Weissenberg numbers: (b) Weτ = 2 ; 
(c) Weτ = 12 5. ; (d) Weτ = 30 ; (e) Weτ = 45 . 

-6.64 -4.50 -2.35 -0.20 1.94 4.09 6.24 8.38

-5.07 -3.26 -1.45 0.36 2.17 3.98 5.79 7.60
-5.40 -3.48 -1.56 0.37 2.29 4.21 6.14 8.06

-5.60 -3.63 -1.67 0.30 2.27 4.23 6.20 8.17

-7.46 -5.73 -3.99 -2.26 -0.53 1.21 2.94 4.68



 
In Figure 6 (e), at the region near the bottom wall, the fluid flows from the right to the left.  
That means there exist elongated low speed streamwise streaks.  To solve the larger flow 
structure, larger computational domain may require.  The effect of computational domain 
size on the solutions is now carrying out in our research group. 
 
Figure 7 shows the instantaneous snapshots of the streamwise fluctuating velocity in the x-z 
plane at 15=+y .  It is seen that with the increase of Weissenberg number, the low speed 
streaks become more elongated and the average spacing of the streaks become wider.  The 
larger spacing is connected with larger flow structure such as that shown in Figure 6.  Figure 
8 shows the two-point correlations of streamwise velocity uuR  in the spanwise direction.  
The separation at which the minimum uuR  occurs can be used to estimate the mean spacing 
between high- and low-speed streaks, that is, the mean streak sapcing is roughly twice of the 
distance to the negative peak.  It is seen more clearly from this picture that with the increase 
of Weissenberg number the streak spacing becomes larger. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:  Two-point spanwise correlation of the velocity component in the 
streamwise direction at y + = 15  for Newtonian fluid flow at Reτ = 150  and 

Giesekus fluid flow at β ατ= = =0 9 150 0 001. ,Re , . and four Weissenberg 

numbers Weτ = 2 12 5 30, . ,  and 45 . 

 
 
CONCLUSION  
MINMOD scheme is used for the DNS study of Giesekus fluid in a 2D channel.  What we 
concern is the effect of elasticity on the flow structure.  Thus in this study we change the 
Weissenberg number Weτ  from 2 to 45 with fixed other parameters β τ= =0 9 150. ,Re  and 
α = 0 001. .  From the numerical simulations, following conclusions can be drawn.  With the 
increase of Weissenberg number the flow structures become larger.  The larger the 
drag-reduction rate is, larger the urms

+  increases and the smaller the vrms
+  and wrms

+  decrease.  
The Reynolds shear stress becomes smaller with the increase of Weissenberg number.   The 
larger the Weissenberg number, the larger the streak spacing become and the larger the 
drag-reduction is.  The onset Weissenberg number obtained in the present study is around 10.  
The maximum drag-reduction obtained in the present study is 53%.   
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