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ABSTRACT

In this paper, we present two successful results from active controls of flows over a circular cylinder, a sphere
and a model vehicle. The Reynolds number ranges considered are 40 ∼ 3900 for flow over a circular cylinder and
425 ∼ 105 for flow over a sphere, respectively, based on the free-stream velocity and cylinder or sphere diameter,
whereas it is 4200 for flow over a model vehicle based on the free-stream velocity and body height. The successful
active control methods are a distributed (spatially periodic) forcing and a high-frequency (time periodic) forcing.
With these control methods, the mean drag and lift fluctuations decrease and vortical structures are significantly
modified. For example, the time-periodic forcing at a high frequency (larger than 20 times the vortex shedding
frequency) produces 50% drag reduction for the flow over a sphere at Re = 105. The distributed forcing applied to
the flows over a circular cylinder and a model vehicle results in significant drag reductions at the Reynolds numbers
investigated, indicating that this control method can be applicable to a broad class of two-dimensional bluff bodies.

INTRODUCTION
The drag and noise increase very rapidly with increasing speed of vehicles. Therefore, control of flow over

a bluff body for drag and noise reduction has been considered one of the major issues in fluid mechanics. In the
present study, we consider three kinds of bluff-body flows: flow over a circular cylinder, flow over a sphere, and
flow over a model vehicle (two-dimensional body with a blunt trailing edge). A circular cylinder and a sphere
are the representative bluff bodies of two and three dimensions, respectively. On the other hand, in the flow over
a two-dimensional body with a blunt trailing edge, the separation point is always fixed at the trailing edge due
to its blunt shape near the base surface and the flow is changed suddenly near the trailing edge from a flat-plate
boundary layer flow to wake, which is quite different from the flow over a circular cylinder. Hence, most of the
characteristics observed in flows over two- and three-dimensional bluff bodies are contained in these three flows.

So far, many researchers have applied three kinds of control methods to flow over a bluff body: passive,
active open-loop (i.e. non-feedback) and active feedback controls (Gad-el-Hak 2000). Among them, we restrict
our control method to a category of the active open-loop control method in this paper and consider two types of
active open-loop control methods. The first is a time-periodic forcing whose frequency is either near the vortex
shedding frequency (low-frequency forcing) or similar to or larger than the frequency corresponding to the shear-
layer instability (high-frequency forcing). The second is a steady but distributed (i.e. spatially varying) forcing.
These two control methods are applied to flows over a circular cylinder, a sphere and a model vehicle, in order to
investigate the control effect on the drag, lift and flow structures.

The Reynolds number ranges considered are Re = u∞d/ν = 40 ∼ 3900 for flow over a circular cylinder and
Re = 425 ∼ 105 for flow over a sphere, respectively, where Re is the Reynolds number, u∞ is the free-stream
velocity, d is the cylinder or sphere diameter, and ν is the kinematic viscosity. On the other hand, the Reynolds
number of Re = u∞h/ν = 4200 is considered for flow over a model vehicle, where h is the body height. For flows
over a circular cylinder and a model vehicle, numerical simulations are conducted for all the Reynolds numbers
investigated, while numerical simulations are conducted at Re = 425 ∼ 3700 and an experimental study is carried
out at Re = 105 for flow over a sphere.

NUMERICAL AND EXPERIMENTAL METHODS
Flow over a Circular Cylinder

Flow over a circular cylinder is studied at Re = 40 ∼ 140 and 3900 using a numerical method. For Re =
40 ∼ 140, the flow is laminar and thus no turbulence model is used. For Re = 3900, large eddy simulation with
a dynamic subgrid-scale model (Germano et al. 1991; Lilly 1992) is carried out. The numerical method used is
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Figure 1. SCHEMATIC DIAGRAM OF THE EXPERIMENTAL SET-UP.

based on a fully implicit fractional step method (Choi and Moin 1994) in generalized coordinates with the second-
order central difference scheme for the discretization of the spatial derivatives. The numbers of grid points used are
320× 120× 16 (spanwise direction) for Re = 40 ∼ 140 and 672× 160× 64 (spanwise direction) for Re = 3900.
Even though the base flows at Re = 40 ∼ 140 are two-dimensional, the computations are carried out in three
dimensions because of the distributed forcing applied in the spanwise direction.

Flow over a Sphere
Flow over a sphere is studied at Re = 425 and 3700 using a numerical method and 105 using an experimental

method, respectively.
For Re = 425, the flow is laminar unsteady and thus no turbulence model is used. For Re = 3700, large eddy

simulation with a dynamic subgrid-scale model (Germano et al. 1991; Lilly 1992) is carried out. The numerical
method used is based on a newly-developed immersed boundary method by Kim et al. (2001) with the second-
order central difference scheme for the discretization of the spatial derivatives. The number of grid points used for
Re = 425 is 449×161×40, and that for Re = 3700 is 577×141×40, respectively, in the streamwise, radial and
circumferential directions.

For Re = 105, an experimental study is conducted. Figure 1 shows the schematic diagram of the present
experimental set-up, consisting of an open-type wind tunnel, sphere, supporter, speaker, load cell and traversing
unit. The diameter of a sphere is 150 mm, and the free-stream velocity is 10 m/s. A two-dimensional slit of
0.65 mm (about 0.5o) width is located on the sphere surface at the angle of 76o from the stagnation point, which
is an upstream location of the separation line. A supporter attached to the sphere base is linked to a speaker
chamber through latex. Then the speaker induces a time-periodic blowing and suction at a specified frequency at
the slit. The forcing frequencies ( f ) applied are from 10 Hz to 370 Hz by increments of 10 Hz, corresponding to
St(= f d/u∞) = 0.15 to 5.55 by increments of 0.15. For all the frequencies, the maximum velocity at the slit is
tuned to be 1 m/s (10% of the free-stream velocity). The drag on the sphere is directly measured using a load cell
(Cass BCL-1L), and the velocity field is measured with an in-house x-type hot-wire probe and a two-dimensional
traversing unit that operates at variable horizontal angles. We also separately place a trip composed of two 0.5
mm-thick wires, respectively, at 55o and 60o to examine the effect of trip on the drag.

Flow over a Model Vehicle
Large eddy simulation with a dynamic subgrid-scale model is also performed for flow over a model vehicle at

Re = 4200. In this computation, only the flow field over the rear part of the bluff body is chosen to be simulated
with a turbulent boundary layer flow of Reθ = u∞θ/ν = 670 (θ is the momentum thickness) introduced at the
domain inlet, instead of the entire flow field around the bluff body. Since the nose section of the bluff body is
not included in this simulation, direct measurement of drag is not possible and thus drag increase or decrease
is assessed rather indirectly by the recovery of the base pressure. The numerical method is based on a semi-
implicit fractional step method in Cartesian coordinates with the second-order central difference scheme for the
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Table 1. FORCING CASES.

Cylinder Sphere Model vehicle

Low-frequency Re = 100 & 3900 Re = 3700 (NUM) –

forcing (NUM)

High-frequency Re = 100 & 3900 Re = 3700 (NUM) –

forcing (NUM) & 105 (EXP)

Distributed Re = 40 ∼ 140 Re = 425 (NUM) Re = 4200 (NUM)

forcing & 3900 (NUM)

Here NUM and EXP denote the numerical and experimental studies, respectively.

discretization of the spatial derivatives. The number of grid points used is 340×240×64 (spanwise direction).

CONTROL METHODS
The control methods used in this study are explained in this section: one is a time-periodic forcing and the

other is a distributed forcing. For a time-periodic forcing, the disturbance is provided to the base flow either from
the free-stream or from a slot on a bluff-body surface in a following manner:

φ(t) = αsin(2π f t), (1)

where t is the time, α(= 0.1u∞) is the forcing amplitude and f is the forcing frequency. The forcing frequency
f is selected to be either near the vortex-shedding frequency (low-frequency forcing) or near or larger than the
frequency corresponding to the shear-layer instability (high-frequency forcing).

For a distributed forcing, the disturbance is provided from a slot located on a bluff-body surface: for a cylinder
and a model vehicle

φ(z) = αsin(2π
z
λz

) (2)

and for a sphere

φ(θ) = αsin(mθ), (3)

where z is the spanwise direction of the body, θ is the circumferential direction of the sphere, λz is the wavelength
of the forcing in the spanwise direction, and m is an integer (m = 1,2, · · ·).

RESULTS
Table 1 illustrates the forcing cases investigated in this study. In the below, we briefly describe the results from

the controls listed in Table 1.
With low- and high-frequency forcings applied to the flows over a cylinder and a sphere were not successful

in producing drag reduction at low Reynolds numbers (< O(104)) because the low-frequency forcing enhanced
the vortex shedding and the high-frequency forcing increased the shear-layer instability after flow separation. On
the other hand, the high-frequency forcing applied to the flow over a sphere at Re = 105 reduced the mean drag by
50%. This result will be described in more details in this section.

The distributed forcing (spatially periodic forcing in the spanwise direction) was applied to the flow over
a circular cylinder as shown in Table 1 with varying the forcing wavelength. With this control, the drag was
significantly reduced when the base flow contained vortex shedding (i.e. Re ≥ 47). It also produced a substantial
amount of the base-pressure recovery in the flow over a model vehicle. These results will also be presented in
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Figure 2. VARIATION OF THE DRAG COEFFICIENT WITH THE FORCING FREQUENCY.
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this section. Unlike the cases of the circular cylinder and the model vehicle, the distributed forcing applied to
the flow over a sphere slightly increased the drag for m = 1,2 and 3 (Equation 3). This difference in the control
results between the cases of the cylinder (or the model vehicle) and sphere is mainly attributed to the very different
vortical structures, indicating a significant dependence of the control method on the shape of a bluff body.

In the below, we present the results from two successful controls applied to the flows over a sphere, a circular
cylinder and a model vehicle.

Flow over a Sphere: High-Frequency Forcing at Re=105

Figure 2 shows the variations of the drag coefficient (CD) with respect to the forcing frequency in the absence
and presence of trip. Here the drag coefficient is normalized by that of the basic sphere (i.e. without forcing in
the absence of trip; CD,b) and St = 0 corresponds to the case of no forcing. The drag coefficient measured on the
basic sphere is about 0.51, which is in good agreement with the result of Achenbach (1972). In the absence of trip,
the drag abruptly decreases by about 50% at a critical forcing frequency of Stc(= fcd/u∞) = 2.85 and becomes
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Figure 4. STATIC-PRESSURE DISTRIBUTION ON THE SPHERE SURFACE.

nearly constant for St > Stc. On the other hand, the drag is reduced by 30% in the presence of trip, but the forcing
does not reduce the drag further. Strikingly, the amount of drag reduction from the forcing in the absence of trip is
larger than that from the forcing in the presence of trip. The reason for this will be explained later in this section.

Figure 3 shows the variations of the drag coefficient due to active and passive devices as a function of the
Reynolds number. It was shown in Achenbach (1974) that with surface roughness the drag coefficient rapidly
decreases and then increases with increasing Reynolds number, showing a local minimum at a critical Reynolds
number (Rec). This critical Reynolds number decreases with increasing roughness. Also, the drag coefficient
at Re > Rec increases more sharply at larger roughness and approaches 0.4. On the other hand, dimples reduce
the drag coefficient even at a lower Reynolds number than surface roughness does (Bearman and Harvey 1976).
After its decrease by dimples, the drag coefficient remains almost constant at about 0.25. In the present study,
for different Reynolds numbers, we fix the forcing frequency to be f = 330 Hz ( f d/u∞ = 4.95 at Re = 105) and
the forcing amplitude to be 1 m/s. It is shown in Figure 3 that the result of the present forcing is very similar to
that with dimples. After its rapid decrease due to the present high-frequency forcing, the drag coefficient remains
almost constant at about 0.24.

Figure 4 shows the surface-pressure distribution for different forcing frequencies in the absence of trip, to-
gether with those for the basic sphere and in the presence of trip, and the inviscid pressure (denoted as ‘theoretical’
in Figure 4). Unlike the cylinder, the base pressure itself does not contribute to the drag on the sphere because the
area at the base point is zero. Considering the area, the pressures at the angles of 45o and 135o contribute most
to the drag. At the forcing frequencies less than the critical forcing frequency (St < Stc = 2.85), the pressures on
the sphere are similar to that on the basic sphere, indicating negligible or small drag reduction at these forcing
frequencies. On the other hand, for the forcing frequencies larger than Stc, the surface pressures are nearly the
same as the inviscid pressure for φs < 135o, indicating that a significant amount of drag reduction should occur
at these high forcing frequencies. Interestingly, the pressure on the tripped sphere surface approaches that of the
very high frequency forcing at φs < 120o but becomes nearly the same in the downstream surface as that on the
basic sphere. It should be mentioned here that there exists a plateau in the pressure curve around 110o for the high-
frequency forcing cases (St > 2.85). This pressure pattern is very similar to that observed in the critical region
where a separation bubble exists on the sphere surface (Achenbach 1974; Fage 1936; Suryanarayana and Meier
1995; Taneda 1978), suggesting an important clue to the present drag-reduction mechanism by the high-frequency
forcing.

Figure 5 shows an oil flow visualization on the sphere. In the case of the basic sphere, separation occurs
around 80o, whereas for the case of St = 4.95 separation is delayed to occur at 105o − 110o, and then the flow
reattaches to the surface at 110o−115o, forming a separation bubble there. Second separation occurs near 130o for
St = 4.95. In the presence of trip (not shown here), separation occurred around 105o and no separation bubble was
observed near the sphere surface. Achenbach (1974) indicated that the low drag coefficient in the critical region is
due to the existence of a separation bubble: with a separation bubble, reattached flow has high momentum near the
wall with large turbulence intensity and thus delays second separation. The phenomenon occurred in the critical
region of the basic sphere is very similar to the present observation, suggesting that large drag reduction achieved
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Figure 5. OIL FLOW PATTERN ON THE SPHERE SURFACE.
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Figure 6. SCHEMATIC DIAGRAM OF THE DISTRIBUTED FORCING: (a) SIDE VIEW; (b) FRONT VIEW.

for St > Stc is essentially due to the existence of the separation bubble. The existence of separation bubble was
also confirmed from the velocity measurement near the sphere surface (not shown here).

Flow over a Circular Cylinder: Distributed Forcing
Figure 6 shows the schematic diagram of the forcing. Due to the fact that the forcing is applied in the spanwise

direction, the controlled flow is three-dimensional even if the base flow is two-dimensional. Therefore, for Re ≤
140, the computational domain size in the spanwise direction is set to be the same as the wavelength of the forcing.
In the case of turbulent flow (Re = 3900), the computational domain size of the controlled flow is the same as that
of the uncontrolled flow. In this study, we have two different types of forcing: one is the in-phase forcing and the
other is the out-of-phase forcing.

First, the in-phase forcing is applied to the flow over the cylinder at Re = 100. Figure 7 shows the variation
of the drag coefficient with respect to the forcing wavelength (λz = 1 ∼ 10d). The drag is minimum at λz ≈ 5d,
resulting in about 20% drag reduction. We have also applied the in-phase forcing to the flows at Re = 80 and 140.
In these cases, the minimum drag occurred at λz ≈ 6d and 4d, respectively, indicating that the optimum wavelength
of the forcing decreases with increasing Reynolds number. It is interesting to note that the optimum wavelength
is similar to the spanwise wavelength of the mode-A instability (Williamson 1996). The same in-phase forcing is
applied to the flow at Re = 40, where there occurs no vortex shedding in the case of no forcing. In this case, there
is nearly no change in the drag with the forcing, even though three dimensional flow structure appears in the wake
due to the forcing.

Figure 8 shows the variation of vortical structures at Re = 100 (using the vortex identification method by
Jeong and Hussain 1995) with the forcing wavelength. It is clear that at the optimum wavelength (≈ 5d) the flow
becomes completely steady. The same observation was made for Re = 80. However, for Re = 140, the vortical
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Figure 8. VARIATION OF VORTICAL STRUCTURES WITH THE FORCING WAVELENGTH AT Re = 100.

structures were still unsteady even at the optimum wavelength owing to the strong vortex strength shed behind the
cylinder at this Reynolds number.

Second, the out-of-phase forcing with λz = 5d is applied to the flow over the cylinder at Re = 100. Figure 9
shows the instantaneous vortical structures for the out-of-phase forcing. Unlike the in-phase forcing, the flow with
the out-of-phase forcing shows a clear vortex shedding, resulting in nearly no change in the drag as compared to
that of the base flow.

Lastly, the in-phase and out-of-phase forcings are applied to the flow at Re = 3900. Here the base flow is
three-dimensional and turbulent after separation. The size of the computational domain in the spanwise direction
is πd, and the forcing wavelength is taken to be the same as the domain size. Figure 10 shows the variation of
the drag coefficient owing to the forcing. Surprisingly, the out-of-phase forcing as well as the in-phase forcing
reduces the drag significantly. Instantaneous vortical structures for the base flow and flows with the forcing are
shown in Figure 11. In the case of the out-of-phase forcing, the vortical structures are significantly changed near
the separation point but those in the further downstream are similar to those of the base flow. On the other hand,
the in-phase forcing drastically changes the vortical structures, showing almost no vortex right behind the cylinder
and further delay of vortex shedding in the downstream.
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Figure 9. INSTANTANEOUS VORTICAL STRUCTURES FOR THE OUT-OF-PHASE FORCING (λz = 5d) AT Re = 100.
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Figure 10. VARIATION OF THE DRAG COEFFICIENT DUE TO THE DISTRIBUTED FORCING AT Re = 3900.

Flow over a Model Vehicle: Distributed Forcing
In order to validate the applicability of the distributed forcing to flows over two-dimensional bluff bodies

having a fixed separation, the in-phase and out-of-phase forcings are applied to the flow over a model vehicle (two-
dimensional body with a blunt trailing edge). Figure 12 shows the schematic diagram of the distributed forcing.
The forcing with the amplitude of α = 0.1u∞ and wavelength of λz = 4h is applied at the trailing edge from slots
on the upper and lower body surfaces. The forcing angle is 45o to the free-stream direction and the slot width is
0.1h.

Figure 13 shows the distribution of the time-averaged base-pressure coefficient (Cpb) along the centerline of
the base surface. The base pressure is recovered by about 30% with the in-phase forcing, while the out-of-phase
one leaves the base pressure almost unchanged as compared to that of the uncontrolled flow. It is quite similar to
the result observed in the flow over a circular cylinder at Re = 100. It is also notable that the in-phase forcing yields
a substantial amount of the base-pressure recovery over the entire span of the base surface, although it significantly
activates three-dimensional motions in the wake (see below).

Figure 14 shows instantaneous vortical structures for the uncontrolled and controlled cases. A typical Kármán
vortex shedding is observed in the uncontrolled flow and it is obvious that the in-phase distributed forcing substan-
tially suppresses the vortex shedding. Furthermore, the naturally occurring vortices right behind the body certainly
disappear with the in-phase forcing, which is quite similar to the case of a circular cylinder at Re = 3900 (Figure
11). On the other hand, the out-of-phase one does not seem to influence the vortex shedding very much as com-
pared to the uncontrolled flow. We conjecture that the control performance of the out-of-phase forcing is closely
associated with the boundary layer thickness relative to the body size. For example, in the flow over a circular
cylinder, the boundary layer is quite thick (δ/d ≈ 0.28) at Re = 100 and the out-of-phase forcing neither affects
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Figure 11. CHANGES IN THE INSTANTANEOUS VORTICAL STRUCTURES DUE TO THE DISTRIBUTED FORCING AT Re =
3900.
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Figure 12. SCHEMATIC DIAGRAM OF THE DISTRIBUTED FORCING IN FLOW OVER A MODEL VEHICLE.

the flow field very much (Figure 9) nor reduces drag. However, at Re = 3900, the boundary layer becomes thin-
ner (δ/d ≈ 0.07) and the shear layer becomes more susceptible to the external disturbances. Therefore, a certain
amount of drag reduction can be obtained even with the out-of-phase forcing in that case. In the present configu-
ration of flow over a model vehicle at Re = 4200, the boundary layer is also quite thick as compared to the body
height (δ/h ≈ 1.4) and thus the out-of-phase forcing does not work.

It has been known that the detected frequency varies in the spanwise direction when the three-dimensional
motion is activated in the wake (Tombazis & Bearman 1997). Figure 15 shows the power spectra of the transverse
velocity measured at (x/h,y/h) = (3,0) and z = λz/4, λz/2 and 3λz/4. For the uncontrolled flow, there appears
no spanwise variation in the detected frequency and thus the vortex shedding is completely two-dimensional. On
the other hand, the maximum values of the power spectra is significantly decreased with the in-phase forcing,
which again confirms the substantial suppression of the vortex shedding, and the detected frequency becomes
higher at the location of maximum suction (z = 3λz/4). Therefore, the in-phase forcing is believed to enhance the
three dimensionality of the wake. Meanwhile, the out-of-phase forcing has no influence on the vortex shedding
frequency. The activation of the three dimensionality with the in-phase forcing is also observed in turbulence
quantities. Figure 16 shows contours of the Reynolds shear stress (−u′v′) at z = λz/4, λz/2 and 3λz/4 with the
in-phase forcing. The Reynolds shear stress with the in-phase forcing varies significantly in the spanwise direction:
it significantly decreases at the location of maximum suction (z = 3λz/4) due to the stabilization effect. With the
out-of-phase forcing, the Reynolds-shear-stress distribution was almost unchanged as compared to the uncontrolled
flow.
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Figure 14. VORTICAL STRUCTURES: (a) UNCONTROLLED FLOW; (b) IN-PHASE FORCING; (c) OUT-OF-PHASE FORCING.

CONCLUSION
In this paper, we presented the results from both the numerical and experimental studies on active control

of flows over a circular cylinder, a sphere and a model vehicle for drag reduction. The Reynolds number ranges
considered are 40 ∼ 3900 for flow over a circular cylinder and 425 ∼ 105 for flow over a sphere, respectively,
based on the free-stream velocity and cylinder or sphere diameter, whereas it is 4200 for flow over a model vehicle
based on the free-stream velocity and body height. The active control methods investigated were (1) a forcing with
a low frequency near the vortex shedding frequency; (2) a forcing with a high frequency that is much larger than
the vortex shedding frequency; (3) a distributed (i.e. spatially varying) forcing. The control method (1) increased
the mean drag and lift fluctuations at all the Reynolds numbers investigated for flows over a circular cylinder and a
sphere. The result of the control method (2), however, showed a significant dependence on the Reynolds number.
For example, a forcing with a high frequency (larger than 20 times the vortex shedding frequency) produced 50%
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Figure 16. CONTOURS OF THE REYNOLDS SHEAR STRESS WITH THE IN-PHASE FORCING: (a) UNCONTROLLED FLOW;

(b) IN-PHASE FORCING; (c) OUT-OF-PHASE FORCING.

drag reduction for the flow over a sphere at Re = 105, but increased the drag at Re=3700. The control method (3)
applied to the flows over a circular cylinder and a model vehicle resulted in a significant drag reduction at all the
Reynolds numbers investigated, but did not reduce the drag for the flow over a sphere, mainly because of the very
different vortical structures between the flows over a sphere and a circular cylinder (or a model vehicle). From this
study, it is clear that the distributed forcing should be applicable to a broad class of two-dimensional bluff bodies.
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