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Abstract 

First, we introduce the research works recently conducted by the SR 239 Research Committee: 
(1) a full-scale microbubble experiment on the Seiun-Maru, and (2) an air-sheet experiment. We 
discuss possible mechanisms of frictional resistance reduction by microbubbles. When the size of 
microbubbles is of the order of 0.1mm, the viscosity increase caused by microbubbles seems to be 
the governing mechanism. When the size of microbubbles is much larger than 0.1mm, the 
homogenization effect by microbubbles may be the governing mechanism.  
 
 
1. Introduction 
 
  The present joint research work started 4 years ago in 1999. It is both important and instructive 
to review the 4-year development of experimental as well as theoretical research on microbubbles as 
a skin friction reduction device.  

During that period, some of the members also engaged in another research project on 
microbubbles, which was performed by the SR 239 Research Committee of the Japan Shipbuilding 
Research Association. The purpose of the project was to find practical methods for skin friction 
reduction of ships. The research was conducted for 4 years, from April 1998 to March 2002, with the 
participation of many major Japanese shipbuilding companies, universities and the National 
Maritime Research Institute. We introduce the results on microbubbles, focusing on the full-scale 
experiment on the Seiun-Maru (Kodama et al. (2002b), Nagamatsu et al. (2002)), and air sheet.  
We then proceed to discuss the skin friction reduction mechanisms of microbubbles, based on the 
findings already obtained and the questions to be answered through future research. 
 
 
2. The SR239 Full-Scale Microbubble Experiment 
 
Experimental results 
  Numerous laboratory experiments have shown that microbubbles are very effective in skin 
friction reduction. However, no full-scale experiment had been conducted until the SR 239 Research 
Committee performed a full-scale experiment using the Seiun-Maru in September 2001. Since the 
practical application of microbubbles to ships is the final goal of the current research project, the 
experiment is described here in detail, based on the published reports already referenced. 
  The Seiun-Maru is a training ship that belongs to the National Institute for Sea Training, Japan 
(Fig. 1). The particulars are shown in Table 1. Three horizontal air duct branches were installed on 
each side (port and starboard) of the Seiun-Maru for air ejection, as shown in Fig. 2. Six sets of 
mobile air compressors on the deck supplied air to the ducts, totaling 110m3/min (nominal) at the 



maximum compressor power. The air was ejected into the boundary layer on the hull surface 
through small holes drilled in the horizontal part of the branch ducts. 
  Figure 3 shows the airflow along the hull predicted using CFD. The air bubble flow, shown in red, 
goes down to the bottom before the middle part at around SS 7 (Square Station 7) and comes up 
again in the stern part at around SS 3. According to the calculation the air bubbles cover the hull 
surface well. The calculation was one-way coupling, which took into account the effect of buoyancy 
and drag of individual bubbles. 
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half of the maximum power (ALL 1/2 MAX). It is seen that all the symbols corresponding to the 
bubble ejection cases lie to the left of the non-bubble symbols, and when compared at a constant 
speed, the non-bubble curve is located at the bottom of the three, which means that thrust increase 
was needed in the bubble cases in order to maintain the same speed. But fortunately there were 
only a few cases in which the reduction of ship drag (propeller thrust) was obtained. Figure 5 shows 
the reduction of the propeller thrust at about 13.5knots. The solid triangle shows the case in which 
the bubbles were ejected from both the upper and lower ejection ducts at 1/4 compressor power 
(28m3/min) (All 1/4 MAX). The open triangle shows the case in which the bubbles were ejected only 
from the upper branch duct at the maximum compressor power (Upper MAX), but the amount of air 
was 38 m3 (max of the ejection branch). It should be noted that the amount of air was much less 
than the total capacity of all the air compressors. The open square shows the lower branch, the 
maximum compressor power case (Lower MAX). Broken curves show the speed squared relation 
passing through each symbol, correspond to the speed-thrust curves. 
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Figure 6 shows the local shearing force measured by th
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Fig. 6 Local shearing force on hull surface (Nagamatsu et al., 2002)



Figure 7 shows the void distribution across the boundary layer on the bottom surface at SS 6, 
measured by a void sensor. The peak location in the distribution is between 5 and 10mm from the 
surface, which means that there is a gap between the bubble layer and the surface. There was no 
reduction of the skin friction measured using the shear stress sensor No.6 positioned only 0.76m 
away from the void sensor. The void distribution in the boundary layer of a flat plate measured in 
the towing tank of the NMRI is shown in Figure 8. Two types of air ejection ducts, designed 
respectively by Mitsubishi and by the NMRI, were tested. The peak of the void distribution was 
very close to the bottom surface in the both cases. There was a 15-18% reduction of skin friction by 
microbubbles (Kodama et al. (2002b), Kato et al. (2003)). Therefore it is suspected that, in the full 
scale experiment, the skin friction did not reduce because there was a gap between the bubble layer 
and the hull surface. 
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Fig. 8 Void distribution in the boundary layer
of a flat plate (Kato, et al., 2003) 

Fig. 7 Void distribution in the boundary layer
of Seiun-Maru (Kato, et al., 2003) 

Discussions 
  It is important to discuss some issues possibly related to the fact that the drag and necessary 
engine horsepower increased in many cases. The first issue is the buoyancy effect. It is suspected 
that the ejected air bubbles did not stay in the inner region of the boundary layer well. The 
observation of bubble ejection using an underwater TV camera showed that the ejected bubbles did 
not spread thinly over the hull but flowed like chimney smoke. Figure 7 shows that the bubbles 
were slightly away from the hull surface. Also it is interesting to note that the air ejection rate was 
not maximum when the best result was obtained, as mentioned above. These facts suggest that the 
buoyancy effect of a mass of bubbles is much greater than that of a single bubble in the calculation, 
and acted to move the bubbles away from the hull surface. This hypothesis is further supported by 
the fact that the actual bubble flow trajectory deviated significantly upward from the prediction. 
Although a preliminary test of the air ejection duct was performed in the towing tank of the NMRI, 
the buoyancy effect could not be tested properly, because the air ejector was set on the horizontal 
flat plate. 

The second issue is the reduction of the propeller performance. The efficiency of the propeller was 
reduced 3-6 % by the air ejection. The propeller thrust was also reduced. We anticipated the thrust 
reduction, because the effective density of flow into the propeller reduces by air bubbles, but this 
effect was larger than predicted. In the experiment, we also observed the reduction of efficiency. 
This might have been caused by the decrease of the lift-drag ratio due to air bubbles. 
  By considering all those results, we can conclude that the location of bubbles in the boundary 
layer is extremely important for the skin friction reduction. In other words microbubbles are very 
effective in reducing skin friction, if they can be concentrated in the inner region of the boundary 
layer, close the wall. 
 
 



3. The SR239 Air Sheet Experiment for Skin Friction Reduction 
 
  Another interesting research target of the SR 239 project was an air sheet (air film) as a frictional 
resistance reduction device (Shimoyama, 2002). The project group performed an experiment with 
an air sheet under a horizontal flat plate in a cavitation tunnel. Figure 9 shows a sketch of the air 
sheet behavior. The air sheet formed for a short distance from the outlet, and then disintegrated 
into bubbles further downstream.  
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Fig. 9 Air behavior downstream of air sheet (Shimoyama, 2002) 
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20% at 7 m/s. 

The advantage 

Fig. 10 Photograph of the air sheet in a cavitation tunnel
(Shimoyama, 2002) 

eet is the larger reduction of frictional resistance than microbubbles. However, the formation and 
preservation of the air sheet is extremely difficult, particularly at a higher speed. The air sheet 
length in the flat plate experiment was only about 20cm at 7 m/s. When they increased the air 
ejection rate and increased the air sheet thickness, waves were generated at the air-water interface, 
which caused drag increase. 
  Their interesting finding was substantial reduction of the frictional resistance in the region 
covered by air bubbles that formed downstream of the air sheet.  This suggests the simultaneous 
use of air sheet and microbubbles from a single air source, for better skin friction reduction 
performance. 
 
 
4. Mechanism of Skin Friction Reduction by Microbubbles 
 
 Here, we would like to discuss our present knowledge of microbubbles by listing the related 
findings and questions, in order to understand the mechanism of drag reduction by microbubbles. 
 
Findings: 
1. When microbubbles are present in the turbulent boundary layer, the wall frictional resistance is 

reduced. This reduction can also be observed in duct flow. The reduction rate is more than 50% 
under optimum conditions (Bogdevich et al. (1977), Madavan et al. (1985A), Kato et al. (1995)).  



2. A few experiments showed much more than 50% frictional resistance reduction, but such large 
reduction was observed only near the region of microbubble ejection. To the contrary, the 
frictional resistance reduction can be preserved 50m downstream of the microbubble ejection 
point (Watanabe et al. (1999), Takahashi et al. (2001), Kodama (2002)). 

3. If the diameter of microbubbles is in the range between 0.4 and 2.2mm, the bubble size does not 
affect the reduction of frictional resistance (Moriguchi and Kato (2002)). The void ratio, probably 
the void ratio in the inner region of the boundary layer, is important, and governs the 
mechanism (Guin et al. (1996).  

4. The orientation of the wall also affects drag reduction. The wall-on-top condition gives the 
largest reduction. This can be easily explained by the fact that the bubble buoyancy favorably 
affects on the reduction (Kato et al. (1995)). 

 
  Figure 11 shows the results of the microbubble experiment using a 50m long flat ship at NMRI 
(Kodama et al 2002a). Air was ejected through an Array of Holes Plate (AHP), a plate with many 
1mm diameter holes drilled at 3 to 5mm pitch. Figure 11(a) shows the reduction of the total drag, 
which includes wave and pressure drags.  The horizontal axis is the rate of air ejection in terms of 

the air layer thickness  at

∞

≡
UB
Qt
a

a
a  (mm)       (1) 

where  is the rate of air ejection,  is the width of the ejection plate, and U  is the ship 

speed. 

aQ aB ∞

Figure 11(b) shows the reduction of the frictional drag of the part directly downstream of the air 
ejection plate. This plot has been obtained by assuming that the reduction of total drag shown in 

Figure 11(a) was attributed to the reduction of the frictional drag component , the frictional 

drag of the area downstream of the air injection plate. , the value of  in the non-bubble 

condition, was estimated using Schoenherr's formula. It is seen that the reduction at 5m/s reaches 
about 30%. In the same figure, the corresponding data by Watanabe et al. of IHI (1999) using a 
40m-long flat plate ship and a porous plate (PP) for air ejection is plotted.  The reduction in their 
experiment using PP is greater that that of NMRI using AHP. 
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Figure 12 shows the streamwise distribution of the 
local skin friction reduction measured at NMRI and IHI.  
The horizontal axis shows the streamwise distance 
from the air ejection point.  It is seen that the skin 
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 What is the mechanism of frictional resistance 
reduction by microbubbles? 

2. What is the best condition of microbubbles for 
reducing frictional resistance? 

3. How do we realize the best condition of microbubbles? 
 

The first proposed mechanism is the decrease of turbulence intensity in the flow due to the 
increase of effective viscosity caused by microbubbles (Madavan et al. (1985B)). In order for this to 
be true, the size of bubbles should be much smaller than the turbulence scale of the flow. G
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carried out at the NMRI, are very suggestive. According to the PIV as well as PTV measurements, 
robubble

rowe (1988) presented a diagram on the solid-liquid as well as solid-gas two-phase flow. According 
to the diagram, the size of solid particles should be one order smaller than the turbulence scale. In 
the experiments at NMRI and Toyo University, the height of the test section was 10 or 15mm, which 
corresponds to a few thousand wall units. If we assume that the

e-tenth the test section height, the size of microbubbles should be less than 0.1mm, which 
corresponds to 30-60 wall units. But, in reality, the bubble size was much

Kato et al. (1999) suggested a mechanism in which a group of bubbles can be more effective than 
separate single bubbles in reducing turbulence intensity, even if the bubbles are larger than those 
shown by Gore and Crowe. Their suggested mechanism also explains a tendency that a small 
amount of microbubbles sometimes increases frictional resistance. 

Recently Sugiyama et al. (2002) presented another explanation, wh
bubbles near the solid wall realize a quasi-slip flow at the wall surface.  
  Recent measurements of the turbulence characteristics in the channel flow with microbubbles, 

the turbulence intensity, such as u’ and v’, was increased by mic s, whereas the Reynolds 
stress was decreased. This means that the turbulent flow becomes more isotropic with microbubbles. 
This tendency resembles turbulence generation behind solid spheres.  
  Another recent measurement of the turbulence characteristics was performed using LDV in the 
water channel at Toyo University. Figure 13 shows the relation of turbulence intensity and the 

mean void ratio. The ordinate of the figure is T/T0, where T ( uu /2'≡ ) and T0 are turbulence 

intensities with and without microbubbles, respectively. The parameter y is the distance from wall, 
which was estimated from the measured mean velocity profile. The turbulence intensity decreased 
with the mean void ratio in the region very close to the wall (y 0.025mm). In contrast, the 
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5. Concluding Remarks 
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