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Abstract. We discuss the application of stochastic optimization algorithms to a number
of fluid mechanics problems. The optimization strategies use as a starting point classical
evolutionary algorithms and are being extended to address issues of efficient parallelization,
strategy parameter adaptation, robustness to noise, multiple objective optimization, and
the use of empirical models. The applications range from burner design for gas turbines,
cylinder drag minimization, aerodynamic profile design, to micromixer and aircraft trailing
vortex destruction.
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1 INTRODUCTION

Fluid mechanics problems associated with the optimization of systems as diverse as
turbomachinery components and micromixers pose different challenges to the optimiza-
tion engineer, but often involve noisy processes, with gradient information that is expen-
sive (like in DNS simulations) or impossible (in several experimental setups) to obtain.
Stochastic optimization techniques can circyumvent some of these difficulties making them
interesting candidates for the optimization of fluid mechanics problems in computational
and experimental setups.

Among stochastic search methods, evolutionary algorithms have become more and
more popular in recent years, mainly because of their ease in implementation and their
advantages compared with traditional algorithms especially when dealing with nondif-
ferentiable, discontinuous, multimodal and/or noisy optimization functions. As most
engineering optimization problems deal with such kinds of functions, it is obvious that
evolutionary algorithms are an interesting alternative to classical methods.

Our stochastic optimization framework includes

• the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [19, 31, 20],

• Evolutionary Algorithms using adaptation techniques that employ Self-Organizing
Maps [23, 6, 7, 8],

• Evolutionary Multi-Objective optimization algorithms with adaptation and noise-
tolerance [5],

• Clustering Genetic Algorithms for finding correlations in a set of solutions [27], and

• Response Surface Methods including Gaussian processes for interpolation of solu-
tions [1, 16, 24, 41].

We exemplify applications of these algorithms to fluid mechanics problems in the fol-
lowing order: We start with the experimental optimization of a burner in combustion
processes in Section 2. Bluff body flow and particularly the minimization of cylinder drag
is the topic of Section 3. In Section 4, we describe how aerodynamic profiles can be de-
signed using novel stochastic optimization concepts. The optimization of micromixers is
shown in Section 5 and aircraft trailing vortex destruction in Section 6. Our observations
are concluded in in Section 7.

2 MULTI-OBJECTIVE OPTIMIZATION IN COMBUSTION PROCESSES

The optimization of the combustion process of a stationary gas turbine is a chal-
lenging real-world application with conflicting objectives. New governmental laws on
emission taxes and global agreements on emission reduction such as the Kyoto resolution
on greenhouse-gases (1997, 2001) demand expensive, highly thermodynamically efficient
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power plants with low emissions. On the other hand, the liberalization of the electric
power market puts pressure on overall production costs. In recent years, the use of gas
turbines among new power plants has significantly increased due to a number of appealing
properties: Using natural gas instead of coal or oil leads to a cleaner combustion, while
moderate installation and operating costs and a high thermodynamically efficiency reduce
overall energy production costs. Moreover, using the exhaust heat for a steam turbine in
a combined cycle is one way to increase power output and efficiency of the plant.

A central component in the design of a gas turbine is the design of the burners in
the combustion chamber. The burners mix air and fuel and combust them continuously.
This is different to Diesel engines, which combust in a cyclic manner. The design of a
burner addresses two main objectives: First, the burner should mix air and fuel uniformly
for low emissions, since the presence of areas of rich combustion results in increased
NOx emissions and a non-homogeneous temperature distribution may damage the turbine
blades. Second, the burner should produce a stable combustion flame, avoiding undesired
pulsations. Pulsations are due to thermo acoustic waves, which occur in particular for
lean combustion when operating under part load condition. They reduce the lifetime of
the turbine by fatigue and by destroying the film cooling along the blades surface. These
two objectives are conflicting, thus motivating the requirement for a variety of designs
as manifested on a Pareto front. The lack of viable analytical models and the limited
information about the underlying physical processes involved makes combustion processes
a suitable candidate for the optimization using stochastic optimization techniques [13].

Our contribution has been the application of multi-objective evolutionary optimization
to a realistic industrial set-up [5]. Experimental setups present a number of challenges to
any optimization technique including: availability only of pointwise information, experi-
mental noise in the objective function, uncontrolled changing of environmental conditions
and measurement failure. Based upen the SPEA [44], our evolutionary algorithm incor-
porates a number of new concepts, as dictated by the experiments, such as domination
dependent lifetime, re-evaluation of solutions, and modifications in the update of the
archive population.

We consider the optimization of a single burner in an atmospheric test-rig. Preheated
air enters the test-rig from the plenum chamber and is mixed with fuel in the low-emission
burner by swirl. The burner stabilizes the combustion flame in a predefined combustion
area by a controlled vortex breakdown. The fuel is natural gas or oil and is injected
through injection holes, which are uniformly distributed along the burner. A detailed
description is given by Jansohn et al. [21]. Various investigations aimed to reduce pulsa-
tions and emissions of the burner by active and passive control mechanisms. We consider
a passive control mechanism, choosing the fuel flow rates through the injection holes of
the burner as design variables of the setup, due to the low modification cost for the gas
turbine compared to an active control system. Eight continuous valves are used to control
the fuel rates. Each valve controls the mass flow through a set of adjacent injection holes
along the burner axis.
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Figure 1: Effect of 2D control on drag coefficient of 3D flow (snapshots of vorticity of controlled flow on
the right) :

——— : 2D without control, – – – : 3D without control,
- - - - - : 2D with control, ......... : 3D with control.

The Pareto front is constructed for the objectives of minimization of NOx emissions
and reduction of the pressure fluctuations of the flame, yielding reduced emissions and
pulsation of the burner [5]. The results from this work have led to three patents for new
burner designs [13, 14].

3 CYLINDER DRAG MINIMIZATION

A real coded genetic algorithm was implemented for the optimization of actuator pa-
rameters for cylinder drag minimization. We consider the two-dimensional and incom-
pressible flow at Re = 500 past a circular cylinder, in combination with two types of
idealized actuators that are allowed either to move steadily and tangentially to the cylin-
der surface (”belts”), or to steadily blow/suck with a zero net mass constraint. The genetic
algorithm that we implemented has the property of identifying minima basins, rather than
single optimum points. The knowledge of the shape of the minimum basin enables further
insights in the system properties and provides a sensitivity analysis in a fully automated
way. The drag minimization problem is formulated as an optimal regulation problem.

By means of the clustering property of the present genetic algorithm, a set of solutions
producing drag reduction of up to 50% is identified. A thorough cluster analysis [27]
revealed that the important parameters for the flow control are only the ones correspond-
ing to actuators containing the separation point in the uncontrolled flow. At the same
time all the other actuators could be sliding/blowing/sucking with random velocities or
remain fixed. To verify this hypothesis another validation run was performed, this time
maintaining active only the relevant actuators.

A comparison between the two types of actuators, based on the clustering property
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of the algorithm indicates that blowing/suction actuation parameters are associated with
larger tolerances when compared to optimal parameters for the belt actuators. The pos-
sibility to use few strategically placed actuators in order to obtain a significant drag
reduction was explored using the clustering diagnostics of this method. The optimal
belt-actuator parameters obtained by optimizing the two-dimensional case have been em-
ployed in three dimensional simulations, by extending the actuators across the span of the
cylinder surface. The three dimensional controlled flow exhibits a strong two-dimensional
character near the cylinder surface (Figure 1), resulting in significant drag reduction [27].

The results obtained using two dimensional simulations are shown to be useful for three
dimensions when the actuators are suitably extended on the third dimension of the flow
[27]. This suggests that optimization in two dimensions followed by a validation of the
results in three dimensions is a viable approach to the rapid design of realistic control
devices.

4 AERODYNAMIC PROFILE DESIGN

We consider the automated profile design for compressor blades of stationary gas tur-
bines. The design is restricted to blades with subsonic flow. An optimization loop is
implemented comprising an optimization algorithm, a profile generation tool and a com-
putational fluid dynamics (CFD) analysis tool. The profile generator describes the profile
by a set of Bezier splines whose control points are encoded into engineering design parame-
ter like the profile length, the nose and trailing edge radius, and the curvature distribution
[22, 42]. The flow analysis is performed with MISES [15], a quasi 3D computational fluid
dynamics solver, which solves the Euler equation with an integral, viscous boundary layer
formulation. It takes into account the change in the streamline thickness along the pro-
file (quasi 3D). Our approach is to calculate various incidences in order to approximate
the loss polar of the profile as given in Figure 3. The loss polar specifies the behavior
of the profile over the complete operating range. A disadvantage is the large number of
flow calculations, which are needed to specify the polar as in the optimization of [22].
Furthermore, there is the problem of how many incidences should be computed and for
which values.

In the following, we do not compute the complete loss polar and show that it is sufficient
to compute 3 different incidences in order to assess a profile. The 3 calculations are
performed for the design condition, i.e. 0◦ incidence and for one positive incidence I1 > 0◦

and one negative incidence I2 < 0◦. The key concept is to define I1 and I2 by a free
multiplier θ as I1 = 1.0 · θ and I2 = −0.8 · θ. This definition takes into account that
the positive incidence I1 is more critical for stall than I2. The incidence multiplier θ
is an additional design variable. The profile losses for the 3 incidences are summed to
the first objective function f1. For small values of θ, the losses are computed at small
incidences. An optimization for small values of θ leads profiles which have minimal losses
in the vicinity of the design condition, while for large values of θ, profiles are optimized
for a large incidence range. Thus, θ is not only used as free design variable, but also
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as second objective function f2. We minimize f1 and maximize f2 where the objective
functions include penalties: f1 =

∑3
i=1 li + p1 + p2 + p3 + p4 and f2 = θ − p1, where li

is the profile loss for the incidence i and p1 to p4 are 4 penalties, which are non-zero,
if the corresponding constraint is violated. The first p1 penalty regards convergence of
the CFD solver. Penalty p2 to p4 address flow separation and mechanical stresses. The
15 free design variables are the parameters from the profile generator and the incidence
multiplier θ. Two optimization runs are performed for a profile design at an inlet Mach
number of 0.67, a desired flow turning of 12◦ and δβ = 0.1◦. In the first optimization, the
two conflicting objectives f1 and and f2 are aggregated and a single objective algorithm
is used. The second optimization run is a Pareto optimization for the two conflicting
objectives. Most optimization algorithm are designed for a single objective function.
Thus, for considering multiple objectives, the objectives have to be aggregated into a single
figure of merit fM , which is then optimized. Here, we restrict ourselves to minimization
of the figure of merit and construct it as fM = f1 − f2.

We compare the convergence properties of the CMA evolution strategy and the opti-
mization algorithm including a Gaussian Process model, respectively. A separete Gaussian
Process is constructed for the loss at each design incidence as well as for each constraint
and the prediction of all models is aggregation in order to approximate the merit func-
tion. First, 100 solutions are computed randomly and then the model is used to search for
promising solutions. The model is always trained with all currently evaluated solutions.
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Figure 2: The merit function versus the number of design evaluations for the CMA (—) and for the
Gaussian process model (−−−).

In Figure 2, the merit function is plotted over the number of design evaluations N .
The CMA-ES converges by constantly decreasing the merit function and fM = −1.6868
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is obtained as best function value after 1000 function evaluations. In the figure, the merit
function for the algorithm using the model decreases by a large value as the model is firstly
used at N = 100 evaluations. The initial 100 random solutions are already sufficient to
approximate the merit function well. After N = 300 evaluations, the best function value
is fM = −1.7892. The plot shows the superior performance of the Gaussian process model
compared with the CMA-ES.

We consider the optimization of the two objectives as a Pareto optimization problem.
The first objective f1 contains the losses, which is to be minimized. The second objective
f2 is the incidence multiplier and is to be maximized. The Pareto front underlines the
conflict in optimizing the two objectives. For small incidence multipliers, the losses are
low, since all 3 incidences are computed almost at the design point. For large incidence
multipliers, the loss increases for two reasons. First, the flow is computed at larger
incidences leading to higher losses and second, the profile losses are higher at the design
condition, since the design has to be more robust for converging at the high incidences.
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Figure 3: Pareto front [left] for the profile optimization, and loss polar [right] for two selected Pareto
solutions.
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Figure 4: Profile shape for the two selected Pareto solutions.

A multi-objective evolutionary algorithm with adaptive recombination and mutation
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operators is used for the Pareto optimization [7]. In total, 10.000 solutions are evaluated.
Among all evaluated solutions, 5.461 solutions do not violate any constraints and generate
a Pareto front of 283 solutions (Figure 3). Two Pareto solutions are marked in the figure
and their loss polar is given in Figure 3. The minimal losses are at about 1.4 %. The
attainable operating range is considered to be bounded by the double of the minimal losses
[22]. Solution A contains the smaller incidence multiplier and the loss polar shows lower
losses close to the design incidence than solution B, but comprises a smaller operating
range. For solutions A and B, the operating range is about 14.4◦ and 15.5◦, respectively.
Both polars are characterized by a smooth and continuous increase of losses over the
absolute incidence. This indicates a soft stall behavior. Figure 4 contains the profile
shape. Solution A shows the smaller nose radius as well as the smaller maximal thickness.

5 MICROMIXER

We studied mixing in a transverse-momentum micromixer for pharmaceutical appli-
cations. The mixer involves the parallel injection of two fluids which in an uncontrolled
configuration do not mix due to the low Reynolds number of the flow. The flow configu-
ration is shown in Figure 5.

three pairs of activelly controlled side channels
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Figure 5: Sketch of the flow configuration.

The control involves the use of side micropistons which should be activated so as to in-
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Figure 6: Flow actuated by the initial frequencies x = (1/2, 1/2, 1/2) (left) and by the optimal frequencies
x = (0.14, 0.32, 0.50) (right)

duce mixing. A straightforward trial and error experimentation with these actuations did
not lead to any significant mixing. Extensive theoretical studies have identified suitable
actuation parameters.

Our approach was to combine evolution strategies as optimization method with the
simulation of the mixing behavior of the two fluids. The flow is modeled by the Navier-
Stokes and convection-diffusion equations discretized using a second order finite volume
technique and solved on a Cartesian grid using a standard computational fluid dynamics
package [40]. The chosen optimization strategy was an evolution strategy with covari-
ance matrix adaptation [17, 18, 19]. Optimization parameters are the frequencies of the
movement of the micropistons and the objective is to increase the mixing of the two fluids
which is estimated from the local variance of the concentration field.

Figure 6 shows two snapshots of the flow in the micromixer at time t = 45 for initial
and optimal frequencies, respectively.

It was shown that the evolution algorithms can identify, in an automated fashion,
effective actuations with mixing results that far exceeded those obtained by theoretical
studies for the same configuration. In addition, we found that optimal frequencies for an
increasing number of transverse channels are superposable despite the nonlinear nature
of the mixing process [29, 30, 32].

6 AIRCRAFT TRAILING VORTEX DESTRUCTION

Trailing vortices are naturally shed by airplanes. They result in a strong down-wash
which extends for several miles behind the plane and poses a hazard to following aircraft,
in particular at take-off and landing. Several previous studies propose to alleviate the
hazard by introducing perturbations to trigger instabilities, and ultimately, break up the
vortices [2, 12].

Recent studies [10, 35] have considered instabilities unique to several pairs of vortices
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which model aircraft wakes in landing configuration [39]. Some of these vortices quickly
merge, but others persist for long times. At a distance of several spans behind a typical
airplane, three persistent vortex pairs can generally be observed, originating at the tips
of the wings, the outboard flaps, and the fuselage, see Figure 7.

Crouch [10] has studied the linear stability of two pairs of co-rotating vortices (tip and
outboard flap). He identified several instability modes depending on the angle, wave-
length, and amplitudes of the perturbations that are imparted to each pair. Although the
points of view adopted in recent studies [10, 11, 35] differ in several respects, in particular
in the way the instability growth is measured, they have in common that they can provide
us with a better understanding of the mechanisms by which the cooperative instabilities
of several pairs can result in enhanced growth rates. Moreover, the configurations stud-
ied in these works are investigated with a view to implementing them in actual wing
designs. One of the findings reported in [10] and [35] is the extreme sensitivity of the
overall dynamics with respect to the initial state of the vortex pairs. In [10], the most ef-
fective transient growth was achieved when the outboard pair was not initially perturbed,
while in [35] early reconnection was obtained for a particular value of the inboard vortices
separation.

This motivates our attempt to perform a more systematic parameter search and identify
the wake system which would produce the largest instability growth. Our goal is to revisit
the above studies using viscous vortex methods and optimization with evolution strategies.
Vortex methods are well adapted to wake simulation as they require the discretization
of only the region of vorticity [9]. Note that the work of [35] is in part based on a
vortex filament method. Using a (1+1)-evolution strategy, we optimize a total of seven
parameters describing the perturbation of two pairs of co-rotating vortices, the tip and
outboard vortices, and the geometry. The objective function to be maximized is the
instability on the tip vortex.

We compare the results from the evolutionary optimization with parameters reported
in [10] as leading to efficient transient growth. Some striking similarities can be noticed
between these two sets of parameters. In particular, the ES has selected perturbations
that are mostly located on the tip vortex, confirming the observation from linear stability
analysis in [10] of efficient transient growth when the outboard flap vortex is unperturbed.
The wavelengths of the perturbations are also close to the ones given in [10]. The case of
four pairs of vortices is also considered and leads to a larger distortion of the tip vortex
[37].

7 Summary and Conclusions

Biologically inspired stochastic search algorithms were applied to a variety of engi-
neering problems ranging from aerodynamics and turbomachinery to microtechnology. In
summary, the results show that these optimization methods are highly suitable for opti-
mization in applications that are characterized by noise, multimodality, and no availability
of gradient information.
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Figure 7: Sketch of vortex system shed by an airplane (Courtesy of Crouch and Spalart [11]). B is a cross
section of A as shown.
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