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Numerical simulations of turbulent microbubble flows in a channel are carried out in order to make clear

the drag reduction mechanism. The Reynolds number effect is examined by paying attention to the

local flow modulation. Initially, the relation between the friction coefficient and the energy dissipation

is theoretically derived. Based on the theory, the effect of the local velocity gradient around bubbles is

investigated in the force coupling simulation. In order to treat the boundary condition rigorously, not

only the force monopole but also the force dipole which is related to the shear are taken into account.

Transient microbubble simulations are performed at the friction Reynolds number Reτ of 150. Similarly

to the results reported by Xu et al.(2002), the drag reduction occurs when neglecting the force dipole

term. On the other hand, when considering the force dipole term, the skin friction increases due to the

increase of the energy dissipation near the bubbles. The direct numerical simulation with rigid bubbles

is also performed at the same Reynolds number and the skin friction increases for the same reason. The

front-tracking simulations with deformable bubbles are also carried out. The skin friction increases at the

lower Reynolds number of Reτ = 180, while it decreases at the higher Reynolds number of Reτ ∼ 1× 103

which is same magnitude as that in typical experiments. The physical mechanism to reduce the energy

dissipation is discussed.

1 Introduction

About 80% of the total propulsion resistance of a ship like a tanker is due to the skin friction with the
surrounding water. It will be a great contribution to the environment by reducing the frictional drag. Among
the several devices proposed for reducing the skin friction, the microbubble injection method is considered
the most suitable for ships because of the high efficiency and no environmental contamination.

Over the last three decades, a lot of experiments have been performed on the microbubble drag reduction.
McCormick and Bhattachryya (1973) found that the skin friction on the submerged body is reduced by
injecting the microbubbles produced by the electrolysis. Madavan et al. (1984) reported the efficiency of
the microbubble drag reduction reaches as much as 80%. Although the mechanism of the microbubble drag
reduction is important, it has not been fully understood yet because the microbubbles obstruct detailed
measurements. Using the numerical simulations of the microbubble flow has been expected to give basic
advantage of investigating the drag reduction. However, it is not easy to reproduce the drag reduction by
numerical simulations. Until 2002, no one had succeeded to simulate the microbubble drag reduction. We
have simulated the microbubble flow by the Direct Numerical Simulation (DNS) since 2000 when the research
project of “Smart Control of Turbulence” started (see Kawamura and Kodama, 2001 & 2002; Sugiyama et
al., 2002). We employed the Front-Tracking (F-T) formulation generalized by Unverdi and Tryggvason (1992)
in order to resolve not only the turbulence vortices but also the local flow in the vicinity of the bubble
surface. So far, the fully developed situation has been assumed and the friction Reynolds Reτ has been set to
O(102), which is one or two orders of the magnitude smaller compared with typical experiments. The results
unsuccessfully showed that the skin friction increased with increasing void fraction. Recently, Xu et al. (2002)
made the first success to simulate the microbubble drag reduction by the Force Coupling Method (FCM). In
their simulation, bubbles are initially concentrated near the wall and the drag reduction transiently occurs
when the bubbles disperse by turbulence. We also investigated the transient effects of the bubble concentration
on the skin friction in the Eulerian-Lagrangian (E-L) method (see Sugiyama et al.,2003; Kodama et al.,2003).
We analyzed the profile of the momentum balance and concluded that the spatial development of the bubble
concentration, which generates wall-normal velocity, might be important for the drag reduction. Elghobashi
and Ferrante (2003) simulated the spatially-developing turbulent boundary layer. They also employed the
E-L method and discussed the physical mechanisms of the drag reduction under different orientations of the
gravitational acceleration.

In the present study, the objective is numerically to make clear the drag reduction mechanism by inves-
tigating the local interaction between liquid and gas phases. Although the local flow modulation around the
bubbles has been enabled to be captured due to the advances in numerical and experimental techniques, it



has not been clear what variable should be payed attention to yet. In the present study, the dissipation theory
(Batchelor,1967; Levich, 1949) is extended to the microbubble channel flow in order to see the the local flow
modulation affecting the skin friction. Then, the effects of the Reynolds number and the treatment of the local
boundary condition are examined based on the dissipation theory. Similarly to the computation reported by
Xu et al.(2002), The transient microbubble flows are simulated. Three types of the simulation methods are
employed: (1) the FCM with rigid bubbles, (2) the DNS method with rigid bubbles and (3) the F-T method
with deformable bubbles. Especially, the Reynolds number in the F-T simulation is set to Reτ ∼ 1000, which
is comparable to that of the experiment by Moriguchi and Kato (2002).

2 Effect of energy dissipation on skin friction

According to Einstein’s theory shown by Batchelor (1967), the effective viscosity around a particle or
bubble is given by a volume integral of energy dissipation. The effective viscosity theory was originally based
on the Stokesian dynamics with no inertia. This theory was extended to moderate Reynolds number flows by
Ryskin (1980). The drag force on a rising bubble is also given by the volume integral of the energy dissipation.
This relation has been employed for potential flows (Levich, 1949), boundary layer flows (Moore,1963) and
moderate Reynolds number flows (Ryskin and Leal, 1984). These dissipation theories are useful to see the
effect of the local modulation of the velocity field around bubbles on the effective viscosity or the drag force.
In this section, the dissipation theory is extended to the microbubble flow and the relation between the energy
dissipation and the skin friction is derived.
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Figure 1: Schematic figure of analysis on relation between skin friction and energy dissipation

2.1 Basic equations

The schematic figure of the present analysis is shown in Fig.1. Streamwise, wall-normal, and spanwise
directions are denoted by x, y and z, respectively. The basic equations are formulated based on the three
assumptions: (1) Both gas and liquid are incompressible, (2) x and z directions are periodic and (3) The
driving pressure gradient is constant. The conservation equations of mass and momentum are expressed as,
◦Mass conservation equation:

∇ · u = 0, (1)

◦Momentum conservation equation:

ρ
Du
Dt

= ∇ · T + ρg − σκnδ(φ). (2)

where u is the velocity vector, ρ the density, D/Dt the substantial time derivative, T the stress tensor, g the
gravity vector, σ the surface tension coefficient, κ the curvature on the bubble surface and n the unit normal
vector on bubble surface. The positive direction of n is from bubble inside to its outside. D/Dt and T are
expressed as,

D

Dt
=

∂

∂t
+ (u · ∇), T = −pI + 2µS, (3)

where p is the pressure, I the unit dyadic, µ the viscosity, S the strain rate tensor, δ the Dirac delta function
and φ the length from bubble surface. φ has negative and positive values inside and outside the bubble,
respectively. S is expressed as,

S =
1
2
(∇u + (∇u)T

)
. (4)



p is decomposed into,

p = p̃ −
(
−dP

dx

)
x, (5)

where the the second term in the RHS is related to the driving pressure gradient (−dP/dx), which is spatially
constant. The periodic boundary condition is imposed upon the first term p̃ in the x and z directions.

2.2 Relation between friction coefficient and energy dissipation

Indicator functions IG and IL are introduced. If a point x belongs to liquid phase, IG(x) and IL(x) equal
0 and 1, respectively. Phase weighted averages (〈·〉L and 〈·〉G) are defined as,

〈φ〉L,G =
1

LxLyLz

∫ Lx

0

dx

∫ Ly

0

dy

∫ Lz

0

dz φ(x)IL,G(x). (6)

A friction coefficient Cf , which is a dimensionless variable, is introduced. The dynamic pressure is scaled by
a liquid density ρL and a mean velocity of the mixture fluid (〈u〉L + 〈u〉G). Cf is defined as,

CTop
f + CBot.

f =
τTop
w + τBot.

w
1
2ρL(〈u〉L + 〈u〉G)2

. (7)

Considering the volume integals of ∇· (ex ·T) and ∇· (u ·T) over whole domain, a relation among Cf , energy
dissipation, turbulent kinetic energy, buoyancy and surface energy is given by,

CTop
f + CBot.

f =
4Ly(νL 〈S : S〉L + (µG/ρL) 〈S : S〉G)

(〈u〉G + 〈u〉L)3︸ ︷︷ ︸
Dissipation

+
(ρG/ρL)Ly

(〈u〉G + 〈u〉L)2

[
1

〈u〉G + 〈u〉L
d 〈u · u〉G

dt
− 2

d 〈u〉G
dt

]
︸ ︷︷ ︸

Gas turbulent kinetic energy

+
Ly

(〈u〉G + 〈u〉L)2

[
1

〈u〉G + 〈u〉L
d 〈u · u〉L

dt
− 2

d 〈u〉L
dt

]
︸ ︷︷ ︸

Liquid turbulent kinetic energy

− 2(ρG/ρL)Ly

(〈u〉G + 〈u〉L)2

[ 〈u〉G · g
〈u〉G + 〈u〉L

− αGgx

]
︸ ︷︷ ︸

Gas buoyancy

− 2Ly

(〈u〉G + 〈u〉L)2

[ 〈u〉L · g
〈u〉G + 〈u〉L

− αLgx

]
︸ ︷︷ ︸

Liquid buoyancy

+
2σ

ρLLxLz(〈u〉G + 〈u〉L)3

Nb∑
l

dSBub(l)

dt︸ ︷︷ ︸
Surface energy

,

(8)

where αG, αL, gx and SBub.(l) correspond to volume fractions of gas and liquid phases, a streamwise component
of the gravity and a surface area of the lth bubble, respectively. αG, αL and gx are given by,

αG = 〈1〉G , αL = 〈1〉L , gx = g · ex. (9)

Although Eq.8 is derived for the flow with deformable bubbles, it is also applicable to the flow with rigid
bubbles by dropping the surface energy term. In the statistically steady situation, the second, third and sixth
terms of the RHS are negligible. These terms will temporally decrease if the transient effect, e.g. the large
scale density change due to the bubble dispersion, is important for the drag reduction as obtained by Xu et
al.(2002) and Sugiyama et al.(2003).

In case of the bubbly flow, the contribution of the gas phase in the dissipation term is negligible and the
volume integral of S : S is taken only over the liquid phase. If the velocity distribution does not change by
introducing the bubbles, the dissipation term becomes smaller due to the decrease of the liquid volume. In the
laminar flow based on the Einstein’s theory, however, the magnitude of the strain rate usually becomes larger
near the bubble surface and the skin friction increases. Similarly to the dissipation theory for the effective
viscosity (Batchelor, 1967) and the drag force (Levich,1949), Eq. 8 is independent of the pressure. Thus,
Eq.8 is considered useful not only for the numerical simulation but also for the experiment when analyzing
the local flow modulation on the skin friction. It is because we can avoid measuring the multi-dimensional
distribution of the pressure field which is much more difficult to capture than that of the velocity field.

3 Force coupling simulation

Xu et al.(2002) employed the Force Coupling Method (FCM) when they numerically obtained the
microbubble drag reduction. They assume the bubble is spherical and rigid. In the FCM, the no-slip boundary



condition is not locally satisfied. Instead of the local satisfaction of the boundary condition, the body force
from the bubble to the liquid is introduced based on the Stokesian dynamics. The body force is given by the
volume integral of the stress field and able to be decomposed into several modes, e.g. a force monopole, a force
dipole and so on. The schematic figure to explain the force monopole and the force dipole is shown in Fig.2.
The force monopole is related to the translational motion of the bubble and equivalent to the reaction force
against the drag force on the bubble. Xu et al.(2002) considered the force monopole in their simulation. The
force dipole is related to the velocity gradient around the bubble. According to the Einstein’s theory shown
by Batchelor (1967), the force dipole contributes to the increase of the skin friction due to the increase of the
energy dissipation. Although the method to include the force dipole in the FC computation was generalized
by Lomholt et al.(2002), Xu et al.(2002) neglected it.

As described in §2, the skin friction can be expressed by the energy dissipation. Based on the Einstein’s
theory, the force dipole is considered important for the modulation of the energy dissipation due to the
presence of the bubbles. In this section, the effect of the energy dissipation on the skin friction is discussed
by performing the FC simulation of the microbubble flow. The present simulation condition is similar to that
reported by Xu et al.(2002) who succeeded in the drag reduction computation. In the present simulation, not
only the force monopole but also the force dipole are considered.

Uniform flow mode Uniform shear mode

⇒Drag force on bubble
⇒Effective viscosity

(Energy dissipation)

(Force monopole) (Force dipole)

Figure 2: Schematic figure of force monopole and force dipole

3.1 Simulation method

We assume the bubble is spherical and rigid. The basic equations are almost same as those shown by
Maxey and Patel(2001). Governing equations for the bubble motion are based on those given by Lomholt et
al.(2002) and Xu et al.(2002). Governing equations for the liquid consist of the mass conservation equation
given by Eq.1 and the momentum one expressed as,

ρL
Du
Dt

= −∇p + µL∇2u + Fp, (10)

where Fp represents the body force due to the bubble motion. Considering the force monopole and the force
dipole, Fp is expressed as,

Fpi =
Nb∑
l=1

(
F

(l)
i ∆(x − Y(l), σm)︸ ︷︷ ︸
Force monopole

+ F
(l)
ij

∂

∂xj
∆(x − Y(l), σd)︸ ︷︷ ︸

Force dipole

)
, (11)

where Y(l) is the centroid position of the lth bubble. ∆ is the Gaussian function and σm and σd are envelope
scales for the force monopole and the force dipole, respectively, as shown by Lomholt et al.(2002). In the
present study, the calculation method for F

(l)
i is based on that shown by Xu et al.(2002) and that for the

antisymmetric part of F
(l)
ij is based on that shown by Lomholt et al.(2002).

The symmetric part of F
(l)
ij is expressed by the averaged strain rate around the bubble. It is related to the

Einstein’s effective viscosity. Based on the steady creeping flow, the symmetric part of F
(l)
ij is approximated

by the surface integral in the following way,

1
2

(
F

(l)
ij + F

(l)
ji

)
=

5µLa(l)

3

∮
|x−Y(l)|=a

d2x Sij . (12)

We checked the Couette flow with a spherical particle by use of Eq.12 and confirmed that the relation between
the skin friction and the particle volume fraction showed good agreement with the Einstein’s theory.



3.2 Simulation condition

The effect of non-uniform distribution of the initial bubble position on the skin friction is investigated
under a similar condition to the computation of the periodic flow with no buoyancy reported by Xu et al.
(2002). The effect of the local velocity gradient around bubbles on the skin friction is discussed.

Before introducing the bubbles, a fully developed single-phase turbulent channel flow at the friction
Reynolds number Reτ of 150 is computed. The size of the simulation domain is set to Lx × Ly × Lz =
2πh×2h×πh divided by Nx ×Ny ×Nz = 64×64×64 grid points, in the streamwise (x), wall-normal (y) and
spanwise (z) directions, respectively. The periodic boundary condition is imposed in x and z directions. The
fourth-order finite difference method is employed to solve the partial differential equations. The discretization
of variables is taken on the staggered grid. The time integral of the flow is evaluated in the second-order
Adams-Bashforth method. The interpolation from the liquid phase to the particle surface is approximated
in the third-order Lagrangian method. In the single phase simulation, the profiles of the mean velocity and
the turbulent intensities obtained by the present program code showed good agreement with the DNS result
obtained by Kasagi et al. (1992) (see Sugiyama et al., 2002). The bubble radius a and the bubble number Nb

are set to 0.25h and 30, respectively. The mean void fraction α0 corresponds to 5%. The density ratio is set
to ρG/ρL = 0.25 by considering the numerical stability of the simulation in §4. The initial bubble location is
the layer near the top wall. The length between the centroid of the initial bubble position and the top wall
is set to 0.28. The x and z position of the initial bubble location is randomly placed. Simulation conditions
are listed in Table 1. The simulation method in case 1 is same as that performed by Xu et al.(2002). In case
2, not only the force monopole but also the force dipole (Eq.11) are introduced. The boundary condition on
the bubble surface in case 2 is considered more rigorously treated than that in case 1.

Table 1: Conditions of the channel with rigid bubbles

Case α0(%) Simulation method
0 0 -
1 5 FCM without force dipole (Eq.11, §3)
2 5 FCM with force dipole (Eq.11, §3)
3 5 DNS (§4)

3.3 Results and discussion

The mean void fraction profile is shown in Fig.3 for different times. In both cases 1 and 2, the void
fraction peak decreases and the profile becomes uniform as the bubbles disperse. As reported by Xu et
al.(2002), the drag reduction transiently occurred when the bubbles dispersed due to the turbulence in the
FC simulation. Authors also recognized the transient drag reduction due to the larger scale density change
in the E-L simulation (see Sugiyama et al.,2003 and Kodama et al.,2003).

The temporal evolution of the relative friction coefficient Cf/Cf0 on the top wall is shown in Fig.4. Cf0 is
Cf with no bubble (case 0). As shown in Fig.4, Cf for case 1, corresponding to the result neglecting the force
dipole, decreases in time. This result is consistent with that reported by Xu et al.(2002) who also neglected
the force dipole. On the other hand, Cf for case 2 increases in time. Such a drag increase results from
introducing the force dipole.

The typical instantaneous distribution of the skin friction and the bubbles is shown in Fig.5. The red
color corresponds to the high skin friction. Initially, the bubbles move along the flow and the skin friction
distribution is not affected by the force dipole. As the flow evolves, the difference of the skin friction appears.
As shown in Fig.5, the local increase of the skin friction near the bubble is recognized in case 2.

Taking into account the energy dissipation, the balance of the skin friction is discussed. Based on Eqs.1
and 10, the dissipation theory shown in §2 is applied to the FCM. The total friction coefficient CTop

f + CBot
f

is expressed as,

CTop
f + CBot

f =
8νLh〈S : S〉

〈u〉3︸ ︷︷ ︸
Dissipation

+
2h

〈u〉3
[
d〈u · u〉

dt
− d〈u〉 · 〈u〉

dt

]
︸ ︷︷ ︸

Fluid motion

− 4h

ρL〈u〉3 [〈u ·Fp〉 − 〈u〉 · 〈Fp〉]︸ ︷︷ ︸
Bubble force

.
(13)

The bubble force term in Eq.13 does not appear in Eq.8 which is derived for the real flow. This terms comes
from the treatment of the bubble boundary. In the FCM, the gas and liquid phases are not distinguished



when the flow field is solved based on Eq.10. The bubble force term in Eq.13 accounts for the bubble and
liquid interaction. Therefore, the dissipation term in Eq.13 is not completely equivalent to the dissipation
term in Eq.8 for the real flow. We check the numerical residual error of Eq.13 and confirm it is small enough.
The temporal evolution of the total friction coefficient CTop

f + CBot
f and the dissipation term in Eq.13 are

shown in Fig.6. As shown in Fig.6, CTop
f + CBot

f is strongly dependent on the dissipation term. Namely,
CTop

f + CBot
f is mostly affected by the total energy dissipation in the flow. When neglecting the force dipole

in the FC simulation (case 1), the fluid motion term in Eq.13 initially decreases due to the transient density
change caused by the bubble dispersion. The decrease of the fluid motion term transfers to the decrease of
the dissipation term as the flow evolves. On the other hand, when considering the force dipole (case 2), the
dissipation around the bubble becomes large due to the shear flow modulation. Initially, the bubble force
term in Eq.13 increases due to the force dipole. The increase of the bubble force term causes the increase of
the dissipation term.

4 Direct Numerical Simulation with rigid bubbles

As described in §3, the skin friction increases due to the force dipole. In the force coupling simulation,
however, the local no-slip boundary condition is not fully satisfied on the bubble surface even if the force
dipole is introduced. Moreover, the expression of the force dipole given by Eq.12 is based on the “steady”
solution for the creeping flow. In the unsteady flow such as the turbulent flow, Eq.12 might not be appropriate
approximation for the expression of the force dipole. In order to treat the boundary condition more rigorously
than the FC simulation, the DNS with rigid bubbles is performed under the same condition as shown in §3.

4.1 Simulation method

We assume the bubble is spherical and rigid, similarly to the analysis in §3. The present simulation method
is based on that explained by Sugiyama et al.(2001). Empirical equations for the bubble motion, such as
the drag force, the added inertia and so on, are not used. The bubble and liquid flows are solved on the
rectangular grid. Governing equations for the liquid consist of the mass conservation equation given by Eq.1
and the momentum one expressed as,

ρL
DuL

Dt
= −∇p + µL∇2uL. (14)

The bubble motion is based on the Newton’s law and tracked in the Lagrangian way. The integral of the
liquid stress is directly taken over the bubble surface. The translational and rotational motions of the lth
bubble are expressed as,

4
3
πa(l)3ρG

d2Y(l)

dt2
=
∮
|Y(l)−x|=a(l)

d2x (−pI + 2µLSL) · n +
4
3
πa(l)3(ρG − ρL)g, (15)

8
15

πa(l)5ρG
dΩ(l)

G

dt
=
∮
|Y(l)−x|=a(l)

d2x (Y(l) − x) × {(−pI + 2µLSL) · n} , (16)

where ΩG is the angular velocity of the lth bubble. The bubble velocity is imposed on the grid point belonging
to the bubble inside.

4.2 Simulation condition

The accuracy of the spatiotemporal discretization is same as that described in §3.2 The integral of the
stress in Eqs.15 and 16 is sampled by 2048(=32(θ)×64(φ)) points. The liquid stress on the bubble surface is
interpolated by the third-order Lagrangian method. The conditions of the grid and the flow properties are
same as those shown in §3.3. The present simulation condition corresponds to case 3 in Table 1.

4.3 Results and discussion

The mean void fraction profile is shown in Fig.7 for different times. Similarly to Fig.3 for the FC simulation,
the bubbles disperse due to the turbulence. The short time behavior of the bubble dispersion on the skin
friction is discussed.



The temporal evolution of the relative friction coefficient Cf/Cf0 on the top wall is shown in Fig.8. As
shown in in Fig.8, Cf for the present DNS (case 3) increases in time. Such a drag increase is caused by
the increase of the effective viscosity. The skin friction suddenly changes at the time zero when the bubbles
are introduced as compared with the result of the FCM shown in Fig.4. It is considered because the no-
slip boundary condition is suddenly satisfied in the present DNS, while the boundary condition is gradually
satisfied in the FCM as the flow evolves.

The instantaneous distribution of the skin friction and the bubbles is shown in Fig.9 for cases 1 and 3. As
shown in Fig.9, the local increase of the skin friction near the bubble is recognized in case 3, corresponding
to the present DNS. This tendency is same as that in case 2, corresponding to the FC result with the force
dipole (see Fig.5).

The dissipation theory shown in §2 is applied to the present DNS. Considering Eq.14 and the present
simulation condition, Eq.8 is simplified as,

CTop
f + CBot.

f =
8hνL 〈S : S〉L
(〈u〉G + 〈u〉L)3︸ ︷︷ ︸

Dissipation

+
2h(ρG/ρL)

(〈u〉G + 〈u〉L)2

[
1

〈u〉G + 〈u〉L
d 〈u · u〉G

dt
− 2

d 〈u〉G
dt

]
︸ ︷︷ ︸

Bubble motion

+
2h

(〈u〉G + 〈u〉L)2

[
1

〈u〉G + 〈u〉L
d 〈u · u〉L

dt
− 2

d 〈u〉L
dt

]
︸ ︷︷ ︸

Liquid motion

.

(17)

The first term is related to the statistically steady fluid motion. On the other hand, the second and third
terms is related to the statistically unsteady one because of containing the time derivative. The total friction
coefficient balance expressed by Eq.17 is investigated. The temporal evolution of the dissipation, the bubble
and liquid motions terms is shown in Fig.10. Figure 10 (a) and (b) correspond to the steady term and the
unsteady terms, respectively. The alternative long and short dash line corresponds to the result of the single
phase flow. As shown in Eq.17, the negative change accounts for the contribution to the drag reduction. As
shown in Fig.10(a), the dissipation term shows positive change and contributes to the drag increase under the
present condition. The drag increase shown in Fig.9 mainly caused by the increase of the dissipation term.
On the other hand, as shown in Fig.10(b), the liquid motion terms contributes to the drag reduction. The
negative change of the liquid motion term is considered to result from the transient density change due to the
bubble dispersion. When the bubbles moves toward the higher flow region, the liquid loses its speed. The
bubble dispersion effect to reduce the skin friction might be observed in the simulations performed by Xu et
al.(2002) in the FCM and Sugiyama et al.(2003) in the E-L method. Considering the numerical scheme on
the local velocity modulation around bubbles, however, the energy dissipation is considered underestimated
in the both simulations. It is because Xu et al.(2002) neglected the force dipole term which should contribute
to the augmentation of the strain rate near the bubble surface. Moreover, in the E-L simulation, the energy
dissipation near the bubble surface is not resolved since the grid size is much larger than the bubble diameter.

In order to see the local modulation of the energy dissipation around the bubble, (S : S)∗, corresponding
to the deviation of S : S, is introduced.

(S : S)∗(x, y, z) = (S : S)(x, y, z) − 1
LxLz

∫ Lx

0

dx′
∫ Lz

0

dz′ (S : S)(x′, y, z′). (18)

The typical instantaneous distribution of (S : S)∗ and the bubbles is shown in Fig.11. The red color corre-
sponds to (S : S)∗ ≥ 1 × 103 and the blue one to (S : S)∗ ≤ −1 × 103. Figure 11(a) and (b) correspond to
the top view at y/h = 1.69 on the xz-plane and the side view at z/h = 1.45 on the xy-plane. As shown in
Fig.11, (S : S)∗ is high around the bubbles. The local increase of the energy dissipation around the bubble
causes the drag increase.

The local change of the (S : S)∗ is conditionally sampled with respect to the nearest length from the bubble
centroid λ. The conditionally averaged (S : S)∗ is denoted by ̂(S : S)∗(λ). The relation between ̂(S : S)∗ and
the nearest bubble position λ is shown in Fig.12. λ is normalized by the bubble radius a. In calculating
̂(S : S)∗, ∆λ is set to 0.1a. The sampling is taken from t+ = 0 to t+ = 150. We confirm the profile in the

region of λ/a < 4 is almost independent of t+ in the sampled period mentioned above. As shown in Fig.12,
̂(S : S)∗ shows negative value in the region of λ/a < 1, corresponding to the bubble inside. It is because the

S is assumed zero inside the bubble due to the rigid bubble and S : S inside the bubble must be smaller than
that around the bubble in the xz-plane. In the region of the bubble outside (λ/a > 1), ̂(S : S)∗ shows the
positive value in the vicinity of the bubble. The effective length indicating the positive ̂(S : S)∗ is about one
bubble radius from the bubble surface. The positive change of ̂(S : S)∗ contributes to the increase of the skin



friction as expected by Eq.17. From Fig.12, the increase of the skin friction shown in Fig.8 is considered to
result from the local increase of the energy dissipation near the bubbles.

The drag increase result is obtained by the FC simutation in §3.3 and the DNS in §4.3. This result is
reasonable in view of the dissipation theory derived in §2. The present simulation condition is limited so
that we are not sure whether the skin friction will reduce or not under the different condition. However, we
can conclude that we must choose the simulation method that fully resolves the energy dissipation near the
bubble surface when investing the skin friction change.

5 Large Eddy Simulation with deforming bubbles

We have performed the Front-Tracking (F-T) simulation with deformable bubbles. The bubble has the
free slip boundary. As expected from Eq.8, the drag reduction is easier to be obtained in the F-T simulation
than that for the rigid bubbles. It is because that the vorticity generation on the bubble surface, which makes
the increase of the energy dissipation, is considerably smaller with the free slip boundary than that with the
no-slip one. Moreover, according to Frankel and Acrivos (1970), the effective viscosity decreases due to the
bubble deformation. However, we have not obtained the drag reduction in the F-T method yet. Although we
carried out the transient simulation in which the bubbles were initially concentrated near the wall, the skin
friction increased at Reτ = 180. This result is inconsistent with that reported by Xu et al.(2002), while it is
consistent with the simulations for the rigid bubbles at Reτ = 150 described in §3.3 and §4.3, in which the
boundary condition is more rigorously treated. The friction Reynolds numbers Reτ in our previous simulation
have been set to less than 200, which is considerably smaller than that in typical experiments. In this section,
the F-T simulation with deformable bubbles is performed at Reτ = 1100, which is comparable to that in the
experiment performed by Moriguchi and Kato (2002).

5.1 Numerical method

The numerical method used in this study is almost the same as in the previous studies (Kawamura and
Kodama, 2001, 2002; Sugiyama et al., 2003) except that the dynamic Smagorinsky model (Germano et al.,
1991; Lilly, 1992) is introduced. This code adopts the front-tracking approach to deal with deforming bubbles.
The liquid and gas phases are separately solved as incompressible viscous fluids with satisfying the continuity
of velocity and stresses at the interface. The previous report (Kawamura and Kodama, 2002) should be
referred to for more detailed description and validation of the code.

The grid spacing is assumed to be sufficiently small for resolving bubble surfaces. Therefore the difference
between the grid-filtered and the test-filtered velocity fields is related only to the sub-grid scale eddies and
can be modeled by subgrid scale models for single phase turbulent flows.

5.2 Condition of simulation

A fully developed turbulent channel flow containing bubbles is investigated by the present numerical
method. Since we have removed the restriction in the Reynolds number by introducing LES approach, we
can set the same condition as in the experiment. In this study, we set the condition after the experiment by
Moriguchi and Kato (2002) in which the channel height 2h was 10mm. The bulk mean velocity Um was 5
m/s, the mean bubble diameter D is about 1.0 mm, and the mean void fraction α is 1%. The corresponding
non-dimensional parameters are Reτ=1,100, D/h=0.2, the Froude number Fd = Um/

√
gh = 16, and the

Weber number We = ρU2
mD/σ = 340. But since a preliminary simulation indicated that breakup of bubbles

can happen, the Weber number in the LES computation had to be decreased to 34. The breakup of bubbles
was also confirmed by experimental observation using a high speed camera.

Before introducing the bubbles, a fully developed single-phase turbulent channel flow at the Reynolds
number Reτ=1,100 was computed. The size of the computational domain was set to 6.4h, 3.2h and 2h, in
the streamwise, wall-normal and spanwise directions respectively. A periodic boundary condition was used in
the streamwise and spanwise directions. The x−, y− and z− axes are taken in the streamwise, wall-normal
and spanwise directions respectively. The number of the grid points was 256× 128× 128. The computational
domain was decomposed into eight blocks in the streamwise direction, and each block of 32× 128 × 128 grid
points was computed on a node of a parallel computer system. At the non-dimensional time t+ = u2

τ t/ν = 0,
98 bubbles were introduced at positions shown in Fig.13(a) and (c). Initially, the centers of all the bubbles are
located on the plane y = 0.2h. The flow is driven by the mean pressure gradient in the streamwise direction,
which is controlled at each time step to maintain the constant volume flow rate.



5.3 Results and discussion

The results of the computation up to t+ = 480 is presented in this paper. The initially concentrated
bubbles are dispersed by turbulent eddies. The variation of the void fraction profile to t+ = 400 shown in
Fig.14 and an instantaneous bubble distribution t+ = 400 shown in Fig.13(b) and (d) indicate that bubble
distribution is still developing at t+ = 400.

The time histories of the friction coefficient in Fig.15 shows that the friction of the top wall was decreased
by 3% between t+ = 200 and 400. This drag reduction rate is comparable with the measurement by Moriguchi
and Kato (2002). The decrease of the friction on the top wall starts at about t+ = 50, while it is supposed
that turbulence modification effect has not reached the bottom wall at t+ = 400. As indicated in §4, the
change in the drag can be caused by the change in the energy dissipation rate or by the transient terms.
However, it has been confirmed that this drag reduction in the LES is mainly due to the reduction in the
energy dissipation. Fig.16 shows the time histories of the liquid phase energy dissipation rate 〈S : S〉L in the
single phase and multiphase computations. The decrease in the sum of the top wall and bottom wall friction
coefficients is very well correlated to the decrease in the energy dissipation rate.

Figure 17 compares the liquid phase velocity profiles in the single- and multiphase LES and the mean
streamwise velocity of bubble centroids in wall units. The bubble velocity is smaller than the liquid velocity,
and the difference increases as the distance from the initial bubble position increases. Probably the slower
bubble velocity is due to the transient effect. The difference in the mean liquid phase velocity in the single-
and multiphase flows is very small in the near wall region y+ < 100, but the liquid velocity in the multiphase
LES is significantly larger in the region y+ > 200 than in the single phase flow. This fact suggests that
microbubble drag reduction may occur in the outer region. This assumption does not contradict the drag
increase in the prior DNS at low Reynolds numbers.

Figure 18 shows the comparison of the Reynolds shear stress u′v′ for the single- and multiphase with the
measurement by Kitagawa et al.(2004). Since the multiphase flow LES is still in the transient stage, the
liquid phase Reynolds shear stress is influenced by the mean motion of the bubbles going away from the wall.
However, the correlation u′v′ for the bubble centroid velocity is much smaller than that for the liquid phase,
and this qualitatively agrees with the measurement.

The decrease in the correlation u′v′ is probably explained by averaging effect due to the finite bubble
size. Bubbles respond to the force integrated over the surface, and the integration cancels the contribution
of eddies relatively smaller than bubbles. This tendency is also seen in the streamwise component of the
turbulent intensity shown in Fig.19. The intensity u′u′ of bubble centroid is smaller than that of liquid phase,
and the difference increases as the wall is approached or the relative eddy scale to the bubble size is decreased.

The presence of relatively large and dull bubbles limits the freedom of the turbulent motion in the liquid
phase. This effect probably obstructs the development of large scale eddy motion and leads to net decrease in
the turbulent momentum transfer. The experimental evidence that small bubbles are not necessarily effective
(Kawamura et al. 2004) also supports this assumption.

6 Conclusions

Extending the energy dissipation theory to the microbubble channel flow, the relation between the energy
dissipation and the skin friction is derived as Eq.8. In the statistically steady situation, the skin friction is
expressed by the energy dissipation. The transient microbubble flows are numerically simulated in order to
the energy on the skin friction. The low Reynolds number flow (Reτ = 150) with rigid bubbles is simulated in
the Force Coupling (FC) and Direct Numerical Simulation (DNS) methods. The transient bubbles dispersion
is confirmed to contribute to the drag reduction, while the local velocity gradient around the bubble to the
drag increase. Combining these effects, the drag increase result is obtained by the FC simulation in §3.3 and
the DNS in §4.3. The drag increase result is reasonable in view of the present energy dissipation theory.

It has been shown that both the frictional drag and the total energy dissipation decreased in the large
eddy simulation of channel flow with deformable bubbles at Reτ = 1, 100. Although the simulation is still in
a transient stage, the statistics of the turbulent motion of the bubble centroids qualitatively agreed with the
measurement. It has been shown that the turbulent motion of bubbles is smaller than that of the surrounding
liquid, and it is suggested that the restriction of the liquid eddy motion by the presence of ”dull” bubbles
can lead to the decrease in the turbulence production. The fact that the increase in the mean velocity was
observed only in the outer region (y+ > 200) supports the hypothesis that the presence of bubbles increases
the energy dissipation in the near wall region but can decrease in the outer region.
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Figure 3: Profiles of the void fraction profile in y-
direction at Reτ = 150 (t+ = 0, 37.5, 75, 112.5 and
150)
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(a) Top view at t+ = 0

(b) Top view at t+ = 400
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Figure 13: Distribution and deformation of bubbles
in the LES of channel flow with deforming bubbles
(Reτ = 1, 100, α=1.0%) The flow is from left to right.

0

0.5

1

1.5

2
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

y

void fraction

t+=0
t+=100
t+=200
t+=400

Figure 14: Profiles of the void fraction in the LES at
t+ = 0, 100, 200 and 400.

0.0014

0.00145

0.0015

0.00155

0.0016

0.00165

0.0017

0.00175

0.0018

0 200 400 600 800 1000 1200 1400 1600

C
f

t+

multiphase - top wall
multiphase - bottom wall

single phase - top wall
single phase - bottom wall

Figure 15: Time history of the friction coefficient on
the top and bottom walls in the LES of channel flow

0.03

0.035

0.04

0.045

0.05

0 200 400 600 800 1000 1200 1400 1600

D
is

si
pa

tio
n 

ra
te

t+

multiphase
single phase

Figure 16: Time history of the energy dissipation term
of Eq.14 in the LES of channel flow

0

5

10

15

20

25

0.1 1 10 100 1000 10000

U
+

y+

multiphase
single phase

bubble

Figure 17: Mean velocity profiles in the LES of chan-
nel flow

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0
0 0.2 0.4 0.6 0.8 1

R
ey

no
ld

s 
sh

ea
r 

st
re

ss

y

experiment (Ret=2000) - multiphase
experiment (Ret=2000) - single phase

experiment (Ret=2000) - bubble
LES (Ret=1100) - multiphase

LES (Ret=1100) - single phase
LES (Ret=1100) - bubble
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