円管内気泡流の乱流構造変化

(高時間分解能時系列 PIV による乱流微細構造の抽出)

The Turbulent Modification of Bubbly Pipe Flow

(Extraction of microscopic turbulent structure by time-series high time resolution PIV)

湊大樹(慶大院) 佐藤洋平(慶大理工) 菱田公一(慶大理工)

1. 緒論

現在,気泡流微細構造の解明により,より効率的な船舶抵抗 低減システムの構築が期待されている.

本研究では、円管内気泡流の乱流構造変化について、高速 度カメラで周囲流体・気泡を時系列で同時測定し、気泡による 乱流構造変化を詳細に抽出した.

2. 計測方法

1Fig.1 に計測システム概略図を示す.気泡周囲流動場の流速 計測には蛍光粒子をトレーサとした PIV を用い、気泡形状の認 識には LED 群を光源とした形状投影法(IST)を用いた.高速度カ メラと高強度レーザを適用し、Flame Rate 500 (2ms)で時系列に 測定した.

3. 実験方法

3.1 実験装置 実験流路は全長 2000mm で直径 44mm の鉛直 円管であり,作動流体である脱気水は流路内を上昇流として循 環する.気相には空気を用いた.テストセクションは流路入口 から 1500mm 上方に位置しており,円管の中心を原点とし,流 れ方向上向きを z 軸,半径方向を r 軸とした.尚,テストセク ションには水とほぼ同じ屈折率を持つ FEP 樹脂を適用し,屈折 の影響を低減している.

3.2 実験条件 Table1 に実験条件を示す.本実験では気泡径 ジの影響を明確にするために界面活性剤として,約 60ppm の 3-pentanolを添加した場合と,添加しない場合について実験を行った.

Table 1. Experimental conditions		
Pipe diameter	2R	44 [mm]
Bulk velocity (single phase)	$V_{\rm s,b}$	196[mm/s]
Pipe Reynolds number	Re_{2R}	9700
Void fraction	α	0.5%

4. 結果及び考察

Fig.2 に平均局所ボイド率<α>を, Fig.3 に液相の流れ方向平 均速度<Uz>及び変動速度 uz ms を, Fig.4 に-<uz ur > で定義される レイノルズ応力分布を示す.気泡が壁面近傍を集中的に上昇す ることで、流れ方向平均流速分布が平坦化されると供に、気泡 により流路全域で乱れが増加している. レイノルズ応力は単相 時よりも著しく減少している.この減少を詳細に調べるため, 瞬時の u₂u_rを Fig.5, Fig.6 に示す. これより, 気泡介在時では 気泡の周囲に正負供に著しい相関が存在していることが確認で きる.この強い相関が平均を取ることで、正負が打ち消しあい レイノルズ応力が顕著に減少すると考えられる. Fig.7 に乱れの 生成項と散逸項を, Fig.8 に瞬時の散逸を示す. 単相時に比べ気 泡介在時では、乱れの生成は著しく抑制されるのに対し、乱れ の散逸は増加する傾向が確認できる. 生成項の減少は平均流速 の平坦化・レイノルズ応力の減少によるものであり、散逸の顕 著な増加は気泡周囲での著しい散逸の影響であると Fig.8 より も推察できる.

5. 今後の予定

周波数解析を行うと供に,フィルタ操作をし,より詳細に気 泡による乱流構造変化を解析する.

Fig.7 Energy Budget