PS-2 外航ばら積み船における実船流場計測及び

水中騒音、船尾変動圧力計測

流体設計系 * 拾井 隆道、Winden Bjorn 、藤沢 純一 J-DeEP 技術研究組合(研究当時海上技術安全研究所) 上入佐 光

1. 緒言

近年計算機の性能向上により、実船レイノルズ数の CFD 計 算が可能となってきた。一方 CFD の精度は、模型レイノルズ 数においては模型試験結果との比較により確認されている が、実船レイノルズ数においては比較対象となる実船流場デ ータの不足により十分に確認されていない。また、船舶から の温室効果ガスの削減の義務化により、多くの船舶が推進効 率を向上させるための省エネデバイスを船尾のプロペラま わりに装着している。省エネデバイスは尺度影響を大きく受 ける船尾伴流中で作動しているため、この性能向上のために は、実船スケールにおける省エネデバイスまわりの流場の把 握が不可欠である。

また 2014 年に IMO において「商船からの水中騒音低減の ためのガイドライン(非強制ガイドライン)」¹⁾が承認される など、水中騒音規制導入に向けた機運が国際的に高まってい る。日本としては、定量的かつ科学的なデータを取得し、議 論に参加していく必要がある。

これらの背景から、本研究では実運航中の外航ばら積み船 において、プロペラ前方の船尾ダクトまわりの流場を世界で 初めて計測した。またプロペラから発生する水中騒音、変動 圧力計測も同時に実施した。

2. 計測手法

計測対象船は全長 199.98m、船幅 32.24m、最大喫水 13.4m の6万3千トン積みのばら積み船である。プロペラ直径は 6.3mで、回転方向は船尾から見て時計回りである。プロペラ 前方にはダクト型の省エネデバイスが設置されている。また 本船は流場計測等のため船尾左舷側に観測窓等が設けてあ り、積載状態で観測窓が水面下に没水した時、船内から流場 計測、水中騒音及び船尾変動圧力が計測可能となっている。 表-1に観測窓等の配置を、図-1にその写真を示す。

計測は本船の実運航中に実施した(図―2)。ブラジルから アメリカにかけて水中騒音計測を実施し、アメリカからドイ ツにかけて流場計測、水中騒音及び変動圧力計測を実施し た。

Name	-%Dp Foreward from G.L.	-%Dp Portside from C.L.	Description
PH1	35.8	46.0	Porthole for PIV Camera
PH2	35.8	80.2	Porthole for PIV Laser
PH3	20.6	46.0	Porthole for PIV Camera
PH4	20.6	80.2	Porthole for PIV Laser
PH5	9.3	19.0	Porthole for cavitation observation
PH6	9.3	46.0	Porthole for cavitation observation
HP0	22.7	14.3	Hydrophone 0
HP1	22.7	22.2	Hydrophone 1
PS	22.7	30.2	Pressure sensor

図-1 観測窓等配置

図-2 航路

2.1 PIV による船尾伴流計測

船尾伴流計測はドイツのロストック大学と共同で、ロスト ック大学が開発した PIV (Particle Image Velocimetry) を ベースとした計測手法²により実施した。一般的に実船伴流 の PIV 計測では、次のような課題がある。

- 流場への影響を避けるために、計測機器を船内に配置する必要がある。
- 計測範囲が広いため、通常レーザの出力ではレーザシー
 トを形成することが困難
- キャリブレーションボードの設置が困難

本研究では、これらの課題を解決する OD2C (0 次元 2 成分) の PIV 計測手法を適用した。この手法では、計測領域の流速 を点計測で計測していく。計測点 (Measurement Volume、MV) に向けて主流方向に対して平行なレーザシートを形成し、カ メラでそのレーザシートの中の計測点付近の画像(F.O.V.) を取得する。レーザ及びカメラは直線及び回転ステージに固 定されており、計測領域の任意の位置にレーザを照射しカメ ラでの撮影することが可能となっている。画像中には、海洋 中に存在する微粒子等がトレーサとなって撮影される。この パターンから流速を計測する。キャリブレーションに関して は、レーザビームを平行移動させ、その画像を取得すること により船内から実施した。また船尾ダクト上にキャリブレー ションマークを設置し、これを用いてレーザ及びカメラの直 線及び回転ステージの値と計測位置のキャリブレーション を行った。計測断面は G.L. から 36.2% Dp 前方の計測面 (Fr9) と 20.3%Dp 前方の計測面 (Fr7) である。

2.2 水中騒音及び船尾変動圧力計測

水中騒音は船体外板にハイドロホンを設置する、いわゆる ニアフィールド状態において計測を行った。ハイドロホンと して、B&K Type8103を用いた。ハイドロホンはリセス型の船 底栓方式で船体に取り付ける。変動圧力計測のための圧力計 (共和電業 PGMC-A-500KP(定格容量 500kPa))もハイドロホ ンと同様に船底栓方式で船体に取り付けて計測を行った。ま

た CCD カメラによるキャビテーションの撮影も実施した。

3. 計測結果

3.1 PIV による船尾伴流計測

表-2に PIV 計測時の条件を示す。図-3に Fr9 の主流速 分布、図-4に Fr7 の主流速分布を示す。流速は、PIV 計測範 囲中で最も外層に近い計測点(一番左舷側の計測点 MV73)の 速度で無次元化している。内側の実線はダクト外径、外側の 実線はプロペラ直径を示す。主流速分布を見ると、外側から センターラインにかけて速度が遅くなる速度勾配が存在し ているのがわかる。これは船体の伴流の一般的な特徴である ため、正しく流速を計測できているものと考えられる。Fr9 と Fr7 を比較すると、左上の領域において Fr7 のほうが流速が 低下している。また Fr7 のダクト上部ではさらに流速が小さ い領域が見られる。Fr9 のダクトの右側で流速が加速してい る領域が見られる。Fr7 でもこの加速領域が見られるが、そ の範囲は減少している。

表-2 PIV 計測条件

Fr	Date	Speed in Water (Log) [knot]	Velocity at MV73 (PIV) [knot]	RPM	M/E Load [%]	Water Temp. [°C]
Fr9	12/5	12.4	9.9	80.9	50	18
Fr7	11/22	13.0	11.3 82.	82.3	50	28
Fr7	11/23	13.2	11.5	82.1	50	28

3.2 水中騒音及び船尾変動圧力計測

表-3 に水中騒音の計測条件を示す。0RPM 時は主機停止、 発電機などの補機は稼働している状態である。図-5 に水中 騒音の 1/3 オクターブ解析結果を示す。回転数の増加に伴い 音圧レベルが増加するのがわかる。図-6 にそれぞれの条件 におけるキャビテーション画像を示す。回転数の増加に伴い キャビテーションの発生範囲が大きくなっているのがわか る。また 82RPM 時の船尾変動圧力の 1 次成分は 0. 10kPa 程度 であった。

表-3 水中騒音計測条件

Case	Speed in Water	RPM	M/E Load	Water Temp.
	[knot]		[%]	[°C]
181031_030	0.3	00.0	0	28
181022_015	8.8	41.0	8	29
181022_011	11.4	65.2	30	29
181018_001	13.4	82.0	50	27
181020 013	15.9	97.5	85	25

図-5 水中騒音 1/3 オクターブバンド解析結果

図-6 キャビテーション画像 (左:65RPM、中央:82RPM、右:98RPM)

4. 結言

本研究では実運航中の外航ばら積み船において、実船伴流 計測、またプロペラから発生する水中騒音、変動圧力計測を 実施した。これにより以下の知見が得られた。

- 大型貨物船の船尾ダクトまわりの実船流場を世界で初 めて計測し、実船におけるダクトまわりの流場構造を明 らかにした。
- 水中騒音と回転数の関係について明らかにした。

謝辞

本研究は、国土交通省からの請負研究「実船の流場計測等 による船舶の高度性能評価システムの構築のための調査研 究業務」により実施しました。本船工事にあたり多大なご協 力を頂いた今治造船様及びあいえす造船様、また関係各位に 深く感謝申し上げます。

参考文献

- International Maritime Organization, "Guidelines for the Reduction of Underwater Noise from Commercial Shipping to Address Adverse Impacts on Marine Life - non mandatory technical advices", MEPC. 1/Circ. 833, 2014.
- Kleinwächter, A., *et al*, "Full-Scale Total Wake Field PIV-Measurements for an Enhanced Cavitation Prediction", Proceedings of 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, pp. 1-15, 2014.