令和2年(第20回)海上技術安全研究所研究発表会

海事関連技術のデジタル変革に向けて

デジタルトランスフォーメーションPT メンバー

構造安全評価系 岡 正義* 産業システム系 平方 勝,谷口 智之 構造安全評価系 松井 貞興 流体性能評価系 北川 泰士 環境・動力系 ボンダレンコ オレクシー 流体設計系 黒田麻利子,枌原 直人 流体設計系 一ノ瀬康雄,藤沢 純一 知識・データジスカ系 佐藤 圭二,和中真之介

はじめに

- * 海技研では、2020年3月に4つのプロジェクトチーム(PT)が設置された。そのうちの一つがデジタルトランスフォーメーションPTである。
- * このPTの任務は、 「海事関連技術のデジタル変革すなわちデジタルトランスフォーメーションを実現する上での キーテクノロジーとなるデジタルツイン技術・デジタル情報基盤技術を開発し社会実装に繋げる こと」 にある。
- * 本日の発表会においても、デジタル化技術にまつわる講演が複数予定されており1)~6), 期待の高さが表れている。
- *本講演では、個別の技術開発要素として、「船体」、「舶用主機」、「運航」、「船型設計」、 「船舶建造」に係わるデジタルツイン・デジタル基盤技術に関する取り組みを紹介する。 また、「統合型デジタルツイン」開発を見据えた研究戦略及びビジネスモデルの検討事例を紹介 する。

デジタルツインについて

デジタルツインとは,

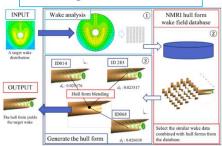
「実空間上にある機器や設備を,センサ計測や数値シミュレーションを用いてサイバー空間上にリアルタイムで再現する技術」

この技術を活用して、アセットとしての付加価値を高め、データ活用による高度な設計を実現する.

船舶の分野では、機関の故障予知や燃費の評価、安全運航支援への活用が、 特に造船分野では、短期間での設計・生産システムへの活用が期待されている。

デジタルトランスフォーメーションPTの体制

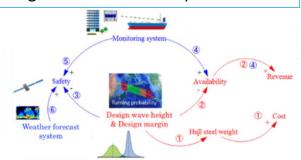
船体建造デジタル基盤 Construction



ファシリティ

船体建造Cyber/Physicalモデル

船型設計デジタル基盤 Design of hull form



伴流設計システム

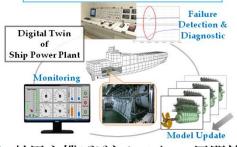
PTを構成する個別要素技術 及び統合化システム

連携•情報共有 **Cooperation & Information Sharing**

統合化•社会実装 Integration & societal implementation

デジタルツイン導入の効果の因果関係

運航デジタルツイン Operation



実運航性能シミュレータ

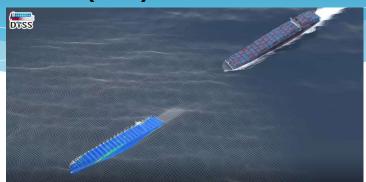
船体デジタルツイン **Hull Structure**

舶用主機デジタルツイン **Ship Power Plant**

舶用主機デジタルツインの展開例

個別のデジタルツイン技術

- ◆船体
- ◆主機
- ◆運航
- ◆船型設計
- ◆船舶建造

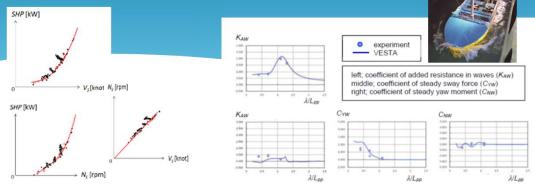

船体デジタルツイン

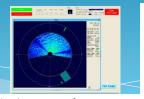
Digital Twin for Ship Structures(DTSS)

船体DTの機能要件

- 1. 荒天操船支援
- 2. 安全航路支援
- 3. 経年状態監視
- 4. 設計改善

出典: 日本船舶技術研究協会 「超高精度船体構造デジタルツインの研究開発」プロモーション動画



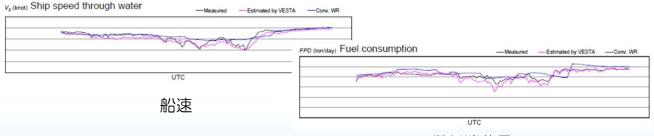


主機デジタルツイン

運航デジタルツイン

60 0 0 0 120 150 160 210 240 270 300 330 360 Longitude (eg.)

波浪レーダーによる遭遇波浪情報の取得


気象海象予測

実船モニタリングデータ解析

波浪中抵抗增加評価法

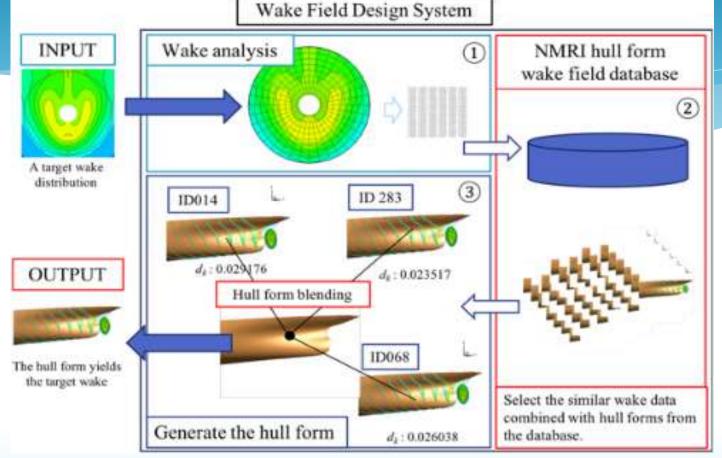
波浪中性能を加味

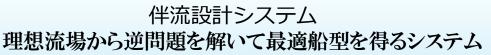
実海域実船性能評価法の開発

ウェザールーティングシステム

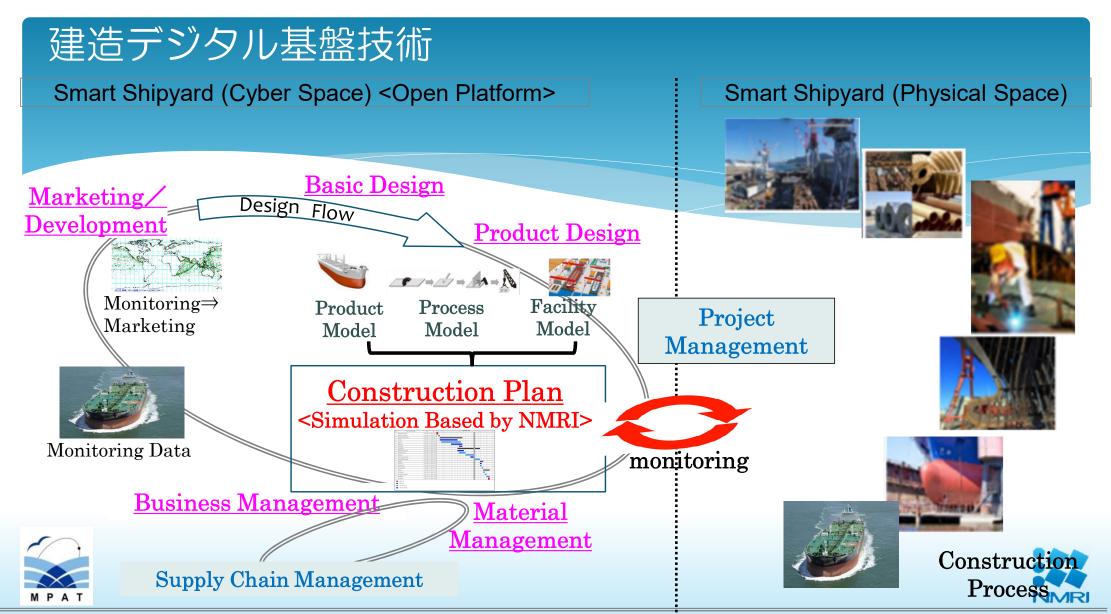
実船データによる検証

M. Tsujimoto, N. Sogihara, K. Hirayama, Y. Sugimoto, K. Hasegawa and K. Yokokawa: Advanced Weather Routing System for Ships in Actual Seas Development and Validation by a Ship, Proc. Of The 16th IAIN World Congress 2018

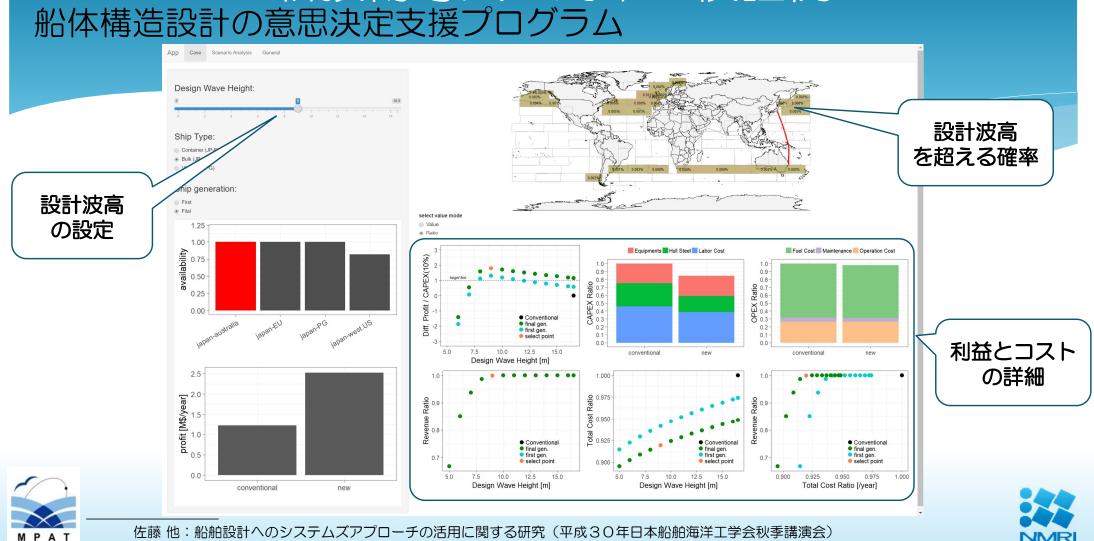

船型設計デジタル基盤技術


水槽試験のロボット化

CFD 解析技術


> 計測データ データベース化

新しい概念の船型設計手法の創出


統合型のデジタルツインの開発に向けて (新技術導入の効果の明確化)

- ●デジタル化技術の社会実装のためには、導入による効果 や価値を定量的に示す事が重要
- ●新しい技術の導入による効果を示す手段として期待される「システムズアプローチ」を活用して、船体構造設計を例に検討した結果を紹介する

新技術導入の効果の検証例

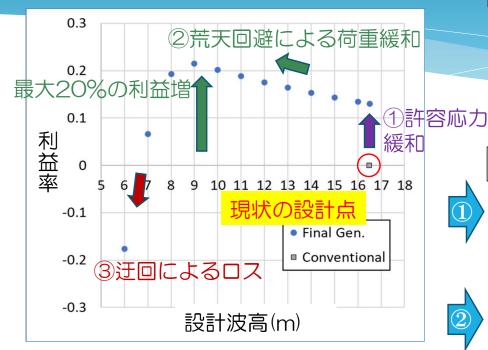
新技術導入の効果の検証例(続き)

目的

船体軽量化に伴う排水 量低減によって生じる 燃料消費量の削減効果 (利益)の定量評価

検討条件

ルート:


日本-オーストラリア

積荷: 鉄鉱石

載貨重量: 200,000 t

運賃: 7 USD/t

燃料費: 350 USD/t

主な仮定

- 設計波高を超える海象は迂回し、 2倍の距離を航行
- 燃料消費量は排水量の2/3乗比

効果

船体DTのデータ活用によって作用応 力推定の確実性が上がり、許容応力の 緩和、軽量化が可能に。

さらに船体+運航DTを利用した荒天 回避を前提として船体軽量化を図るこ とで、最大で20%の利益を得る可能 性がある。

ただし、荒天回避の波高の設定を下げ すぎると迂回によるロスが生じる

INIVIKI

おわりに

- *海事関連技術のデジタル変革のためのキーテクノロジーとなるデジタルツイン技術・デジタル情報基盤技術の開発状況を紹介した。
- *システムズアプローチを利用して新技術導入の効果を示した。
- *個別デジタルツイン技術の確立と社会実装の加速、統合型デジタルツインの開発へ繋げる。

DXに関連する講演,

(海上技術安全研究所報告,第20巻別冊(2020))

- ① 粉原直人,黒田麻利子,櫻田顕子,横田早織,辻本勝:海技研が提供する船舶の 実海域性能に対するソリューション
- ② 黒田麻利子,杉本義彦,枌原直人,佐藤秀彦,久米健一,折原秀夫,辻本勝:OCTARVIA プロジェクトによる実海域実船性能評価と性能向上への寄与
- ③ 岡正義,松井貞興,馬沖,小森山祐輔:船体構造デジタルツインの早期実現に向けた研究開発
- ④ 北川泰士,ボンダレンコオレクシー,福田哲吾,他:舶用主機デジタルツインに関する研究開発と技術的課題
- ⑤ 平方勝,松尾公平,谷口智之,竹澤正仁:次世代造船システムの構想
- ⑥ 佐藤圭二,一ノ瀬康雄,和中真之介:海技研クラウドの紹介と展望

