HOME | Research | Research Organization

Research Organization

 


Fluids Engineering & Hull Design
 
Fluids Engineering & Hull Design

 
Reducing GHG emission from ships and realizing green innovation, the department is conducting research and development based on ship fluid dynamics. The department is engaging research on evaluation of ship performance in actual seas, fluid control to improve hull form, high efficiency energy saving device and advanced tank testing technology.
 

read moreread more
Fluids Engineering & Ship Performance Evaluation

 

Fluids Engineering & Ship Performance Evaluation
 

 Three groups conduct research aimed at the assessment and improvement of the performance (propulsion, maneuverability, sea keeping, stability, etc.) of vessels at sea, and they contribute to the improvement of shipping safety by providing technical support for investigations to determine the cause of marine accidents and to create international standards. In addition, they are also developing world leading and highly reliable CFD software for ship hydrodynamics, which are released to mainly domestic ship yards.
 

read moreread more
Structural Strength Evaluation

 

Structural Strength Evaluation
 

In order to improve the safety assessment method of hull structure (yielding, buckling, fatigue strength, and ultimate strength as well as collision, vibration, noise, and reliability assessment), we conduct research on estimation of wave loads acting on hulls and simulation of structural response and collapse. Besides, the relevant water tank tests and large-scale structural experiments are carried out to validate and improve the performance of our simulation model. The research of development for hull structure monitoring system is conducted in conjunction with the advanced simulation model.
 

read moreread more
Core Manufacturing Technology
 
Core Manufacturing Technology

 
To contribute to the construction of safe and economical vessels, the establishment of a reasonable structural strength assessment method is required. Therefore, we are studying the corrosion characteristics and fatigue strengths of materials. In addition, the research on manufacturing engineering are conducted in our department for productivity and quality improvement in maritime industries.

 
read moreread more
Marine Environment & Engine System

 

Marine Environment & Engine System
 

This department conducts research into environmental preservation related to ships and marine structures in the following areas: ・Upgrading of simulation technologies that form the basis to realizing a rational environmental regulation system for the oceans and the atmosphere. ・Development and evaluation of various technologies to reduce emissions of CO22, NOxx, SOxx, PM and other pollutants from ships.?
In addition, we will introduce new marine gas engine testing equipment to start leading research on future fuel conversions.

read moreread more
 
 
Knowledge & Data System

 

Knowledge & Data System
 
This department was established in 2017 to pursuit the application of Artificial Intelligence (AI), Internet of Things (IoT), and Augmented Reality (AR) technologies to the maritime industries. In conjunction with the ship maneuvering risk simulator, the DP simulator, the logistics simulator, and so on, this department engages in the activities to realize autonomous ship, safe navigation, and efficient logistics systems. 
read moreread more
Marine Risk Assessment
 
Marine Risk Assessment

 
This department engages in risk assessments of the maritime field, including Formal Safety Assessment (FSA) for establishment of international regulations, risk assessment for newly developed systems and for improvement of marine traffic systems. This department also conducts researches for safe and secured carriage of hazardous cargos, including radioactive materials using advanced techniques such as risk/reliability analysis and hazardous material diffusion simulation.
 

read moreread more
Ocean Engineering

 

Ocean Engineering
 

We are involved with technological development and safety assessment for exploitation and production of offshore natural resources such as oil, gas and minerals. We have advanced model testing technology, numerical simulation technology, and data measurement and analysis technologies for experiments in actual sea.
Based on the above technologies, we are working on research and development to provide the technological solutions for ocean development in the frontier sea such as deep water and ice covered area.
 

read moreread more
 
Offshore Energy & Underwater Technology

 

Offshore Energy & Underwater Technology
 

NMRI is the only national public research institute in the maritime and oceanic fields and has established the following special organizations to achieve its mission of providing advanced technical solutions for various problems presented by society, administrations and industry, based on six core-technologies.
 

read moreread more
marine accident analysis center

 

marine accident analysis center

 
The Marine Accident Analysis Centre contributes to the investigation of the causes of marine accidents by analyzing information in a timely manner in close collaboration with the Japan Transportation Safety Board, the Maritime Bureau and other organizations in the Ministry of Land, Infrastructure, Transport and Tourism. For severe accidents, the center further contributes by drawing up preventive measures by reproducing accident situations using the Bridge Simulator for Navigational Risk Research, Actual Sea Model Basin and structural analysis tools.
 

read moreread more
center for international cooperation

 

center for international cooperation

 
The Center for International Cooperation strives to support the development and revision of international regulations and standards managed by the International Maritime Organization (IMO), the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO) and other international organizations.
 
 

read moreread more
Digital Transformation PT

 

Digital Transformation PT
 

This PT is promoting the development and social implementation of digital twin technology for ship hulls, digital twin technology for marine main engines, digital twin technology for ship operations, digital platform technology for ship design and digital platform technology for ship construction, which will be key technologies in realizing the digital transformation of the maritime industry.

Introduction of the project team


read moreread more
GHG Reduction PT
 
GHG Reduction PT

 
The IMO's GHG reduction target is to improve overall international shipping fuel efficiency by at least 40% by 2030 and By 2050, total GHG emissions must be reduced by at least 50%. The PT will develop GHG reduction technologies from the perspectives of hydrodynamics, alternative fuels and engine efficiency. and developed a tool for estimating total GHG emissions based on demand forecasts for maritime logistics, to develop strategies and By developing business models, we are promoting the social implementation of our results.

Introduction of the project team


read moreread more
Autonomous Ship PT

 

Autonomous Ship PT
 

The Ministry of Land, Infrastructure, Transport and Tourism (MLIT) is aiming for realizing autonomous ships by 2025. In order to contribute to the aim, our PT has been established to ensure a safety evaluation technology for the autonomous ships. We are developing new fast-time-simulation system and new navigation-risk simulator to evaluate safety of the autonomous ships. Developments of an automatic berthing/leaving technology and a machine-vision technology for ships are also our important missions. Our goal is to implement the developed technologies in practice and to realize the autonomous ships by 2025. We think it is important to couple a farsighted strategy with an appropriate business model.

Introduction of the project team


read moreread more
 
Offshore Wind Power PT

 

Offshore Wind Power PT
 

With the enactment of the Renewable Energy and Marine Use Law, the environment for the spread of offshore wind power plants has been prepared. In order to promote the use of offshore wind power, this PT is proposing a concept of floating offshore wind power generation in high wind speed waters. and promote the construction of offshore wind farms by proposing a business model for offshore wind power.

Introduction of the project team


read moreread more