

MARITIME FORECAST TO 2050

Energy transition outlook 2018

"Energy Transition Outlook" and "Maritime Forecast to 2050"

- DNV GL has issued the *Energy Transition Outlook* forecasting the world's energy future through to 2050
- Shipping is a vital part of the world's transport system, and the energy future holds significant impact for the future of shipping
- This latest publication provides an independent forecast of the maritime energy future and examines how the energy transition will affect the industry
- This year focus is the challenge of decarbonization and financial implications facing the maritime industry

ENERGY DEMAND PEAKING IN 2035

Units: **EJ/yr**

AN EQUAL SPLIT BY 2050

Units: EJ/ Yr

PRIMARY ENERGY PEAKING IN 2032

Units: **EJ/yr**

EMISSIONS TO 2050 OVERSHOOT CARBON BUDGET

Maritime Forecast to 2050

- Mapping fleet performance in 2017 by Operating mode
- World fleet projection towards 2050
- Development in the fleet fuel mix and CO₂ emissions

Mapping fleet performance in 2017 by operating mode indicates an potential for the existing fleet to improve their effectiveness

- The AIS-based analyses indicates a large potential for the existing fleet to improve their effectiveness
- Digitalization will be a key enabler for exploiting this potential through measures such as:
 - Improved coordination and synchronization between ship and port
 - Better aligning size, operations and functionality of ships and with land-based infrastructure
 - More automated and effective cargo handling operations
 - Phasing in of unmanned and remotely-controlled ships of the future
 - More efficient and automated docking of ships

Share of time per operation mode in 2017 by cargo vessel segment

Share of fuel used in each operation mode in 2017 by cargo vessel segment

8

DNV GL © 2018

World fleet projection towards 2050

Transport demand in 2050:

- 76 000 billion tonne-miles
- Up 38% from 2016

Fleet supply in 2050:

- 2.6 billion dwt
- Up 35% from 2016

Segment specific changes:

- Crude oil: -30% (peaking around 20% greater than today in 2030)
- Product tanker: -8%
- LNG tankers: 190%
- Bulkers: 44%
- Container: 88%
- Other cargo and non-cargo: 55%

Trade projections shows increases in tonne-mileage over the forecast period for all trade segments, except crude oil and oil products

Fleet development by segment

Units: Billion dwt

Shipping has experienced a surge in environmental regulations over the past decade, which is expected to continue

- Safety regulations expected to improve incrementally, with focus on:
 - New environmental technologies and fuels
 - Digitalization including autonomy, control systems, and cyber risk
- Other stakeholders' expectations:
 - Consumer preferences and pressure from investors, non-governmental organizations, politicians, and the general public
 - Climate-risk assessment and disclosure
 - Significance of **sustainability challenges** will increase over the next decades
 - Shipping companies have an opportunity to respond strategically to these signals and create business benefit and value

Global warming (Greenhouse gases) - a global challenge April 2018: IMO GHG Strategy with targets and policy measures

Possible measures

Short term (-2023)

- Review and strengthen EEDI, including new phases
- Develop operational indicators
- Speed reduction/optimization
- National Action Plans
- Lifecycle GHG/carbon intensity guidelines for fuels

Medium term (2023-2030)

- New reduction mechanism, possibly including operational indicators
- Market-based measures
- Implementation program for low-carbon fuels

Long term (2030-)

- Development and provision of zero-carbon fuels
- Other innovative reduction mechanisms

Carbon intensity is measured as CO₂ emission per tonne-mile, while Total is the absolute GHG emission from international shipping.

Decarbonization

Sourcing, processing and converting energy is key to sustainable and decarbonized shipping

Key aspects

Primary energy sources:

Renewables, nuclear?

Processing:

 Captured carbon to produce electro-fuels?

Which energy carriers:

Liquid, gas, hydrocarbons?

Which energy converter:

Internal combustion, fuel cells, electric motors?

Alternative fuel paths

Inspired by Brynolf S. (2014), 'Environmental assessment of present and future marine fuels'

Safety is a primary concern

- Cost associated with machinery, expected fuel prices, and availability of fuel itself and bunkering infrastructure, will be key barriers
- Storage of certain alternative fuels will require more space on board compared with traditional fuels
- All environmental aspects must be considered: GHG, NOx, SOx, PM, noise
- Distinguish between short-sea and deep-sea shipping regarding barriers and applicability of various fuels

Evaluation of fuel paths – globally today

Environment: air emissions, bunker spill. **Economy:** ship, infrastructure. **Scalability:** technical, applicability, availability

Biofuels: fuels based on carbon from biomass that would otherwise have been in circulation through natural cycles **Electro-fuels**: carbon-based fuels such as diesel, methane, and methanol, produced from CO2 and water using electricity as the source of energy

By 2050, 39% of shipping energy will be supplied by carbon-neutral fuels, surpassing liquid fossil fuels

- Total energy use in international shipping will be 11 EJ/270 Mtoe in 2050:
 - 33 % (90 Mtoe) HFO/MGO
 - 23 % (60 Mtoe) by LNG
 - 39 % (100 Mtoe) carbonneutral fuels
 - 5 % (160 TWh) of electricity
- 11 % of energy in short sea and non-cargo supplied by electricity

Decarbonization requires combination of energy-efficiency, logistics and speed and carbon-neutral fuels

- Fuel consumption per tonne-mile will decline 30% on average due to energy-efficiency measures
- Real-time virtual representations of physical assets (Digital twin), combined with sensor data are emerging, providing safe and energy-effective operations for ships
- Impact of logistical measures, incl. lower speed, can be achieved to full effect early in the period up to 2035
- Beyond 2035, we will see the full impact of gradually improving the energy efficiency of new ships, and of the shift to alternative fuels
- **Carbon-neutral fuels** are needed to reach the ambitions in the IMO GHG Strategy

International shipping: emissions pathway 2015-2050

The carbon-robust ship concept : Case study - Handy Max bulk carrier

- The carbon-robust model is used to evaluate fuel and technology options by comparing the break-even costs of a design versus competing fleet
- It is a scenario-based model, aiming to support maritime stakeholders in evaluating the short and long-term competitiveness
- Our case study indicates the robust choice with regard to cost competitiveness

OUTLINE OF THE CARBON ROBUST MODEL

Carbon Robust Model

Competitiveness is evaluated by:

1. Break-even cost

- Investment cost (CAPEX)
- Voyage cost (fuel)
- Operational cost

2. CO₂ emission

Design A: The standard ship

- Running on MGO/LSHFO
- Standard newbuild energy-efficiency levels; no additional investment

Design B: The LNG-powered ship

- Running on LNG with investment in engine, fuel tanks, and systems
- Standard newbuild energy-efficiency levels; no additional investment

Design C: The fuel-efficient ship

- Running on MGO/LSHFO
- Enhanced levels of energy efficiency, with additional investment

18 DNV GL © 2018

Case Study: 55K dwt Handy Max Bulk Carrier

Today		Scenario/Storyline	Resulting flee	et in 2040			
Approx 500 Handy Max bulk	 Shi the The Onl carl 	Dull blue scenario pping will not reduce GHG emissions to meet set IMO targets for 2050 EEDI is slightly strengthened y a few policy measures for developing bon-neutral fuels are initiated	Fuel and energy efficiency in 2040MGO/LSHFO75%HFO + scrubber17%LNG8%				
carriers		Bright green scenario	Fuel and energy effi	ciency in 2040			
	 Shi the stress Trac LNC In 2 med 	pping will reduce GHG emissions to meet IMO targets for 2050, followed up by engthening the EEDI ditional oil-based fuels are replaced, first by G and then by carbon-neutral alternatives 2030, IMO introduces a market-based asure, a fuel levy of USD 50 per tonne of CO2	MGO/LSHFO HFO + scrubber Battery hybridization LNG Biofuels Note: Some 20% of ships have energy-	55% 3% 4% 18% 19%			

The results; How does our designs perform against the competition?

Fleet brake-even rate distribution and break-even daily rate for the three reference vessels, 2020 - both scenarios

Units: Number of vessels

2030 – Dull Blue Scenario

Units: Number of vessels

Relative performance; the percentage of the fleet that performs better than our designs

		BREA	K-EVEN	DAILY R	ATE	CO ₂ EMISSIONS							
	Scenario: Dull Blue			Scenario: Bright Green			Scena	ario: Dull	Blue	Scenario: Bright Green			
	2020	2030	2040	2020	2030	2040	2020	2030	2040	2020	2030	2040	
The Standard ship	60%	16%	3%	60%	16%	3%	5%	7%	10%	5%	28%	51%	
The LNG ship	100%	80%	21%	100%	54%	16%	1%	1%	1%	1%	10%	24%	
The Energy Effieient ship	52%	8%	3%	52%	7%	3%	1%	4%	9%	1%	19%	38%	

Using the model to explore options, asking `what if?' questions

What if fuel prices increase?

Change impacting our designs, as well as the fleet:

- MGO: + 25%
- HFO: + 40 %
- LNG: no change

		BRE	AK-EVE	N DAIL	Y RATE	CO ₂ EMISSIONS							
	Scer	nario: Du	ll Blue	Scenario: Bright Green			Scen	ario: Dull	Blue	Scenario: Bright Green			
	2020	2030	2040	2020	2030	2040	2020	2030	2040	2020	2030	2040	
The Standard ship	60%	16%	3%	60%	28%	11%	5%	7%	10%	5%	28%	51%	
The LNG ship	53%	10%	3%	53%	14%	3%	1%	1%	1%	1%	10%	24%	
The Energy Effieient ship	29%	7%	3%	29%	6%	1%	1%	4%	9%	1%	19%	38%	

Design A (Standard Ship) & C (Energy Efficient Ship) run on HFO+scrubber

		BREA	K-EVEN	DAILY R	ATE	CO ₂ EMISSIONS							
	Scenario: Dull Blue			Scenario: Bright Green			Scenario: Dull Blue			Scenario: Bright Green			
	2020	2030	2040	2020	2020 2030 2040		2020	2030	2040	2020	2030	2040	
The Standard ship	9%	1%	1%	9%	1%	1%	64%	75%	81%	64%	82%	95%	
The LNG ship	100%	80%	21%	100%	54%	16%	1%	1%	1%	1%	10%	24%	
The Energy Effieient ship	9%	1%	1%	9%	1%	1%	3%	6%	9%	3%	25%	47%	

What if we increase energy efficiency levels?

Design B & C bump up Energy efficiency

		BREA	K-EVEN	DAILY R	ATE	CO ₂ EMISSIONS							
	Sce	nario: Du	ll Blue	Scenario: Bright Green			Scenario: Dull Blue			Scenario: Bright Green			
	2020	2030	2040	2020	2030	2040	2020	2030	2040	2020	2030	2040	
The Standard ship	60%	16%	3%	60%	16%	3%	5%	7%	10%	5%	28%	51%	
The LNG ship	91%	50%	3%	91%	10%	3%	1%	1%	1%	1%	7%	19%	
The Energy Effieient ship	53%	8%	3%	53%	1%	1%	1%	1%	1%	1%	9%	23%	

Findings from the case study- Handy Max bulk

Base case (two scenarios):

- The energy-efficient ship (design C) is the most robust choice in terms of break-even competitiveness, striking a balance between short-term and long-term interests
- In comparison, the standard ship (design A) faces the risk of being outperformed under several likely conditions
- The LNG vessel (design B) struggles with high investment costs, and fuel prices that are advantageous only under certain conditions

«What if»

- Adding exhaust scrubbers make sense, given the HFO/MGO price, but risks creating a ship with relatively low CO₂ performance
- The case study also reveals that vulnerability to CO₂ ranking is potentially high, and could easily expose an owner to significant market and carbon price risk in 2030 and 2040. In this respect, the LNG vessel (design B) is a safer choice

Key take-aways: The carbon-robust ship concept

The study shows significant differences in competitiveness over the life of a vessel, depending on different scenarios

- One striking finding is that investing in energy efficiency and reduced carbon footprint beyond current standards seems to increase competitiveness over the lifetime of the ship
- The study also suggests that owners of high-emitting vessels could be exposed to significant market risks in 2030 and 2040 in scenarios where low-emission vessels attract premium rates or avoid CO₂ taxes or levies
- To 2050, the energy transition and regulatory changes will have a significant impact on the industry. The pace of technological change has increased rapidly, and the impact of each new cycle is harder to assess. We believe the **carbon-robust** approach could be a valuable supplement to stakeholders to stay ahead of industry developments and remain competitive moving forward.

Decarbonization will be one of the megatrends that will shape the maritime industry over the next decades.

Yoshinori Miura

yoshinori.miura@dnvgl.com 078-291-1301

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

