令和元年(第19回)海上技術安全研究所講演会

実船船尾流場の直接推定 - 実船計測とシミュレーションの融合 -

- 1. i-Shipping
- 2. 実船船尾流場の計算/計測の必要性
- 3. 計測と計算の融合
- 4. 実船船尾流場等の計測
- 5. 実船スケールCFD計算
- 6. まとめ・今後の展望

1. i-Shipping

■国土交通省 海事局 海事生産性革命:i-Shipping

海事産業の既存リソース innovation 日本の成長 Japan を最大限に活用 Information i-Shipping • Ioint 相乗効果 •loT ••• 「Jo文字の J-Curveように伸びる 新市場獲得 で海事産業 の魅力・競 争力向上 ◆ 海洋開発分野で用いられる船舶等の設 船舶の開発・建造から運航に至るすべての 計、建造から操業に至るまで、幅広い分 フェーズにICTを取り入れ、造船・海運の競 野で我が国海事産業の技術力向上等を 争力向上を図る 図る

国立研究開発法人 海上·港湾·航空技術研究所 海上技術安全研究所

大坪(2019); 海事レポート(2019)

1. i-Shipping

「船舶の高度性能評価システムの構築」:2016年度~2019年度

■ i-Shipping(design)事業の1つとして実施。 ■ 両技術の融合を通じ、開発・設計の重要な要素となる実船CFD計算技術を 開発、検証。

■CFD (Colorful Computational Fluid Dynamics):数値流体力学
 →国内の船舶分野では、1980年代から研究開始
 →船体・推進器等の詳細な流場シミュレーション
 →計算機の発達と共に、適用範囲・計算規模が拡大

■模型スケールCFDから実船スケールCFDへ

→計算セル数の増加

模型スケール計算:約200~300万セルで十分

実船スケール計算:約1,000万セル以上は必要(対象・目的による)

■ 一昔前のスパコン相当の計算機が、通常業務に使えるように。
 Case by Caseではあるが…
 →模型スケール計算が、従来に比べ短時間で可能。
 →実船スケール計算も、現実的な時間で実施可能。

■ 実船スケールCFD計算の大きなメリット →流場・省エネ付加物等への尺度影響に直接アプローチ出来ること!

- 推進性能の向上には、船尾がkey!
 →船尾流場の変化は、馬力への影響大
 →推進器・省エネ付加物の殆どは、
 船尾に装備。
- ■実船スケールCFDの積極的な活用で…
 →設計・性能評価法の深化

MPAT

- 1) <u>https://www.nakashima.co.jp/product/cfrp.html</u>
- 2) https://www.monohakobi.com/ja/expertise/energy_efficient_ship/energy_saving_devices/
- 3) https://www.jmuc.co.jp/rd/development/hydrodynamics/energy-saving/
- →従来の模型ベース設計ではなく、実船ベース設計criteriaの創出 →i-Shipping(design)における、強力なデジタルツールへ。

実船スケールCFDの計算技術開発が必要
 実船スケールCFD計算結果を検証するための実船計測データが必要

■ 国際的な動向例 2005年 EU Project EFFORT:実船4隻(LDV) 2014年 KonKav I/II:実船2隻(PIV)

日本における先行計測例
 1992年 初代青雲丸(LDV等)
 2017年 多層型対水流速計

MPAT

3. 計測と計算の融合 ■今回の事例では…

事前CFD計算により、計測 領域、計測位置候補を選定 -6 -4 y(m) portholes

MPAT

事前計算結果を踏まえ、 機器の設置、計測

実船計測結果を元に、 実船CFD<mark>計算手法を改良</mark>

実船省エネ付加物周りの

PIV流場計測と計算の

融合は、世界初!!

4. 実船船尾流場等の計測

■計測対象船 →63,000DWT外航バルクキャリア(2018年就航)

Kleinwachter et al. (2014)

Porthole 1

Vessel's Hull

Observation Setup - HS-Camera

Porthole 2

Measurement

Volume

Θ=0°: r/R =

Illumination Setup -

Pulsed Laser

Liquid

prism

m

1 - Acrylic pane

2 - Flexible bellow

Porthole 3

3

PIV-Measurement

Sector

Θ=90°:

11

Stroboscopic

Illumination

1 m

Scale 1:40

L_{pp}/B	6.048
B/d	2.406
D_p/L_{pp}	0.0323

■実船船尾流場 →KED Photonics GmbHとの協業

→粒子画像計測法

MPAT

<u>4. 実船船尾流場等の計測</u> ■実船計測海域および計測状態

Hiroi et al. (2019)

運航状態: 設計船速より若干減速運航 載荷状態: 満載(計測時のトリム状態も記録。) 海象:平穏 船体運動:殆ど無視出来る程度。

4. 実船船尾流場等の計測 ■実船水中騒音・キャビテーションパターン計測結果例 (Hiroi et al. 2019)

14

<u>5. 実船スケールCFD計算</u>

NMRI CFD

MPAT

→船舶設計・性能評価に関する多様なCFD解析が可能 →格子生成から後処理まで一貫したシステム →外部にも提供

<u>5. 実船スケールCFD計算</u>

■実船スケール計算結果:船尾流場

MPAT

船体表面粗度の考慮が重要!

5. 実船スケールCFD計算

■実船スケール計算結果:船尾流場

船体表面粗度の考慮が重要!

MPAT

<u>5. 実船スケールCFD計算</u>

■実船スケール計算結果:ダクト前縁への流向角

MPAT

緑:表面粗度なし
 →ダクト断面に対する流れの迎え角大
 →流れの変化大
 青:表面粗度あり
 →ダクト断面に対する流れの迎え角小
 →流れの変化小(実船計測結果に近い)

5. 実船スケールCFD計算 ■ダクト断面と、断面に対する流れの迎え角の関係(イメージ)

ダクト断面に対する流れの迎え角小

Frame 7

Frame 9

MPAT

ダクト断面に対する流れの迎え角大

Frame 9 Frame 7

http://ffden-2.phys.uaf.edu/211.fall2000.web.projects/c.%20Schaefer/aero4.htm

6. まとめ・今後の展望

- 計測技術と計算技術の融合により、実船流場の直接推定が可能に!
 国土交通省海事局、海技研、造船所、船級、大学、オペレーター、 海外機関等の、緊密な連携の元に実現。
- i-Shippingにおけるデジタルツールとして、CFDを積極的に活用
 ■実船CFD解析時には、表面粗度の考慮が重要
- ■他船型を用いた更なる検証を継続中
 - →これまで得ている結果を鑑みると、本計算手法は、太宗船の 実船CFD計算に適用可能と考えられる。

→実船CFD計算ガイドラインの策定へ

■船体・推進器周りの物理現象を、海象を含め実船スケールCFDで再現 ■CFDの適用範囲を、様々な分野に拡大

MPA

プロペラキャビテーション

次世代超高速計算手法

本研究にご協力頂いた、国土交通省海事局様、 造船所様を始めとする関係各位に、 深く御礼申し上げます。

22

- 1. 大坪(2019), "海事産業と生産性革命 (i-Shipping)", 運輸政策研究, Vol. 21, pp. 97-100.
- 2. 国土交通省海事局 (2019), "海事レポート 2019", pp.15-20. (<u>http://www.mlit.go.jp/maritime/maritime_tk1_000083.html</u>)
- 3. (社)日本造船学会(1989), "新しい造船学", 第15回夏季講座テキスト.
- 4. Carrica et al. (2005), "Free surface flows around ships: progress toward simulation of high speed flows and motions", Mecanica Computacional Vol. XXIV.
- 5. The Naval Oceanographic Office Major Shared resource Center, "Navigator", Spring 2005.
- 6. 犬飼(2018), "実船船尾流場計測とその設計への活用〜現状と今後の見通し〜", Monohakobi Techno Forum 2018.
- 7. 谷林(1992), "無振動船プロジェクト-プロペラ起振力推定法改善のための実船伴流、実船プロペラキャビテーションの計測-", 日本造船学会誌, 第758号.
- 8. Hiroi et al. (2019), "Full-scale on-board measurements of wake velocity profiles, underwater noise and propeller induced pressure fluctuations",日本船舶海洋工学会 秋季講演会にて講演予定.
- 9. Sakamoto et al. (2019), "Overset RaNS Computation of Flow around Bulk Carrier with ESD in Full Scale and its Validation",日本船舶海洋工学会 秋季講演会にて講演予定.
- 10. KED Photonics GmbH: <u>https://kedphotonics.de/</u>
- 11. Kleinwachter et al. (2014), "Full-scale total wake field PIV-measurements for an enhanced cavitation prediction", Proc. 17th International Symposium on Applications of Laser techniques to Fluid Mechanics.
- 12. 小林他 (2019), "CFDによる実海域性能評価", 日本船舶海洋工学会誌 KANRIN(咸臨), 第82号, pp. 24-29.
- 13.安川他 (2015), "方形係数シリーズ肥大船の操縦性能推定 (第一報:水槽試験)", 日本船舶海洋工学会論文集, 第21号, pp. 11-22.
- 14. http://ffden-2.phys.uaf.edu/211.fall2000.web.projects/c.%20Schaefer/aero4.htm
- 15. Sakamoto et al. (2019), "Estimation of Flows around a Full Scale Ship by Structured Overset RaNS Code

"NAGISA"", Proc. 11th International Workshop on Ship and Marine Hydrodynamics (IWSH2019)
 Sakamoto and Kamiirisa (2018), "Prediction of near field propeller cavitation noise by viscous CFD with semi-empirical approach and its validation in model and full scale", Ocean Engineering, Vol. 168, pp. 41-59.

■コンテナ船実船伴流計測・計算結果

実船計測結果

CFD, 粗度有

■CFDによる水中騒音推定結果と実船検証(4ケース)

NMR