PS-23 水中線状構造物の流体力に関する研究

海洋開発系 *石田 圭, 齊藤 昌勝

1. はじめに

海底油ガス田開発に用いられる係留浮体を対象とした動 揺シミュレーションの中で,係留索として使用されるチェー ンやワイヤーなどの水中線状構造物に作用する動的張力が 正確に評価されなければ,浮体の動揺に対する推定結果に誤 差が生じる.要因の一つとして,評価対象となる実機スケー ルの水中線状構造物に作用する流体力を正確に把握できて いないという点が考えられる.本研究では,実機スケールの 水中線状構造物の流体力特性を正確に把握するため,一般的 に水槽試験で使用される模型サイズから実機と同程度のサ イズまでのスケール模型を用いて,流体力特性に対するスケ ール影響を明らかにするための水槽試験を実施した.本稿で は,その方法及び結果について述べる.

2. 試験方法

試験は、当所の所有する海洋構造物試験水槽(44.5×27.1 ×水深 1m)で実施した.対象とした水中線状構造物の要素模型(チェーン型及び円柱型)の写真と要目を図-1及び表-1 に示す.本模型は、セミサブリグでよく用いられる実機線径 84mm¹⁾を想定した縮尺模型である.

本試験は、強制動揺装置に検力計を取り付け、検力面に模型固定治具を接続し、模型長手方向に対して直角方向に水平 規則加振を行った.試験セッティングを図-2 に示す.模型 はワイヤー及びターンバックルを用いて治具に対して水平 に固定した.また水面影響を極力少なくするため、模型中心 を水面から 400mm の位置に配置した.試験条件を表-2 に示 す.加振周期は実海域で発生頻度が高い波周期 5~15sec よ り設定し、加振振幅は試験装置の上限値(180mm)及び振幅影 響を確認するために3種類とした.本来であれば、付加質量 や減衰係数に及ぼす模型端部の影響を把握するために、模型 の長さをパラメータとした感度解析を行うべきだが、今回は 検力計の容量による制限のため、模型長さ一定で実施した.

図-1 要素模型

表一1 模型要目

Type	Chain				Cylinder			
No	1	2	3	4	1	2	3	4
Scale	1/1.39	1/2.63	1/3.36	1/7	1/1.4	1/2.63	1/3.36	1/7
Diameter[mm]	60.5	32	25	12	60	32	25	12
Link width		3.35*d	iameter					
Link length		6*dia	meter		-			
Number of links	4	8	10	21	-			
Length[mm]	1089	1088	1050	1032	1000			
Weight[kg]	8.82	2.61	1.56	0.36	2.83	0.8	0.45	0.11

図-2 試験セッティング

表-2 試験条件

No	1	2	3	4	Amplitude[mm]
Period [sec]	4.24	3.09	2.73	1.89	
	5.09	3.70	3.27	2.27	
	5.94	4.32	3.82	2.65	±180,
	7.64	5.56	4.91	3.40	±120,
	9.34	6.79	6.00	4.16	±60
	11.03	8.02	7.09	4.91	
	12.73	9.26	8.18	5.67	

本試験で計測される検力計の荷重には、治具に作用する流体 力も同時に含まれるため、空状態(模型無し)での荷重を差 し引いて解析を行った.

3. 解析方法及び試験結果

解析方法については、これまでに著者らが用いた手法²⁾を 採用し、(3.1)式より模型両端に作用する単位加振振幅あた りの加振力の振幅 F,模型の付加質量 m_a,減衰係数 N を算出 した.

$$m_a = \frac{F}{\omega^2 \sqrt{\tan^2 \alpha + 1}} - M$$
, $N = \sqrt{\frac{F^2}{\omega^2} - (M + m_a)^2 \omega^2}$ (3.1)

ここで、ωは角周波数、M は模型質量、αは加振力と変位の位相差である.上式より算出した付加質量ma及び減衰係数Nについての一例を図-3から図-6に示す.本稿では、加振振

幅±180mmの場合の付加質量及び減衰係数へのスケール影響 について述べる.各図の縦軸は付加質量及び減衰係数,横軸 は加振周波数を表す.

チェーン型模型の付加質量(図-3)は、加振周波数による 変化は少ないが、スケールが大きくなるに従い、付加質量が 増加する傾向が確認できる.減衰係数(図-4)に関しては、 加振周波数の増加に伴い、ほぼ線形に大きくなっている.こ のことから、減衰係数は速度の二乗に比例する項として扱う ことが可能であると考えられる.付加質量と同様にスケール が大きくなるにつれ、減衰係数も増加する傾向が確認でき る.付加質量及び減衰係数は共に明確な傾向が出ており、計 測データの妥当性が確認できる.

円柱型模型の付加質量(図-5)は、チェーン型と比較する と多少ばらつきはあるものの、加振周波数が高周波になるに 従い、付加質量が減少する傾向が出ている.データの傾向が 乱れている理由としては、チェーン型に比べて円柱型で計測 される荷重自体が小さいということが考えられる.減衰係数

(図-6) に関しては、チェーン型と同様に加振周波数の増加 に伴い、ほぼ線形に大きくなっているため、こちらも速度の 二乗に比例する項として扱うことが可能であると考えられ る. なお、円柱型模型 No.1の低周波数(0.079Hz)の計測デ ータについては、計測誤差により値が乱れている.最後に、 図-7 に最大径の模型に作用する付加質量に対する振幅影響 を比較した結果を示す. KC 数影響を考慮すると、振幅の減少 に応じて、付加質量は小さくなるはずだが、両模型共に若干 大きくなる傾向にある.この結果については、さらなる検討 が必要である.

4. まとめ

本研究では、スケールの異なる水中線状構造物の要素模

型を対象に水中強制加振試験を行い,各模型に作用する流体 力の傾向を比較した.今後の展望としては,本試験の結果に は付加質量及び減衰係数に及ぼす模型端部の影響が含まれ ていると考えられるため,模型の長さをパラメータとした感 度解析を行うなど,スケール影響についてさらなる分析を行 い,水中線状構造物に作用する流体力のデータベース作成に 着手する.

謝辞

本研究は, JSPS 科研費 19K15232 の助成を受けたものです. 関係各位に感謝申し上げます.

参考文献

1) Odflell drilling HP : https://www.odfjelldrilling.com /Business-Areas/Mobile-Offshore-Drilling-Units/Fleetof-semis--drillships/

 2) 石田他:係留ラインに作用する流体力の推定法に関する研究,海上技術安全研究所研究発表会講演集,第18巻(2018), pp. 248-249.

 3) 元良誠三他:船体と海洋構造物の運動学,成山堂書店, (1992).