PS-24

海洋開発系 *高野 慧、正信 聡太郎、金田 成雄、小野 正夫

1. はじめに

日本の排他的経済水域(沖縄海域や伊豆・小笠原海域)に 知られているが、それらの資源を生産するために解決しなけ ればならない技術的な課題は多い. 海底熱水鉱床の生産にお いては、管内をスラリー状で海上まで移送することが想定さ れており,鉱石の最大粒径は50mm程度¹⁾になることも予想さ れている.著者らは、これまでに定常な流れを対象として、 縮尺 1/8 程度の配管を用いた模型試験をとおして、大粒径粒 吐出時間からスラリー流速と吐出濃度を算出した. 子をスラリー移送した場合の圧力損失を評価するモデルを 構築してきた²⁾.しかしながら,熱水鉱床の生産の際,海上 にある母船が動揺するため, スラリーを移送する揚鉱管も動 揺すると考えられる. そこで, 著者らは鉛直動揺する管内に おけるスラリー移送を対象とした模型試験を実施した.本稿 では試験概要とその結果を報告する.

2. 試験概要

2.1 試験装置

試験装置の概略図を図-1 に示す. 試験装置は配管, スラ リーポンプ、模擬鉱石を投入するためのフィーダ、模擬鉱石 を回収するための分離タンク,配管を鉛直加振するための加 振機,加振による変位を吸収するためのフレキシブルホース で構成されている.なお、本試験装置で用いた配管の縮尺は 振幅が水流量の平均値の 5%, 10%, 15%となることを目標とし 1/8 程度である.

2.2 方法

まず,スラリーポンプを起動して,水単相を移送する.そ の後、水の移送が安定したら、フィーダから模擬鉱石を供給 して、スラリー移送を開始する. 管路内を移送された模擬鉱

石は分離タンクへ吐出され、そこで模擬鉱石のみを回収す る.回収した模擬鉱石はフィーダへ戻す.スラリーが安定し は、海底熱水鉱床などの海洋鉱物資源が賦存していることが たら、一度スラリーを容器で回収し、その際の回収時間を計 測しておく.次に加振機を起動し,配管を動揺させる.スラ リー流が安定したら、再びスラリーを容器で回収する. その 際,先程と同様に回収時間を計測しておく.配管加振時の吐 出量の計測では,計測時間の目標を加振周期の整数倍とし た. それぞれにおいて計測された水重量及び模擬鉱石重量と

> 配管には圧力損失計測区間(長さ:2.84m,内径D:26.0mm の透明塩ビ管)があり、当該区間で差圧計を用いて差圧を計 測した.また管路内に電磁流量計を,分離タンクに水温計を 設置し、それぞれ水流速及び水温を計測した.

2.3 試験条件

本試験では模擬鉱石として,海底熱水鉱床の実鉱石と密度 が近いと考えられるアルミナボール(密度3,690kg/m³)と, 移送する物体の比重の影響を評価するために、ガラスビーズ (密度 2,553kg/m³)の合計2種類を用いた.これらの2種類 の模擬鉱石の粒径は4mmであった.

加振周期は母船の動揺を考慮して, 1.26, 1.90, 2.85, 3.48, 5.06sec の 5 種類とした.加振振幅については、水流量の片 た調整を行った.

また,結果として,スラリー流速は 1.6~3.6m/s,吐出濃 度は3.6~10%であった.

3. 試験結果

3.1 固液二相流の定常成分

圧力勾配 Im の測定値を定常流における推定式から求まる 圧力勾配と比較する.

Imの推定式について以下に示す.まず,鉛直管における Im は流体単相による圧力勾配 Iw と固体粒子による付加的な圧 力勾配 Isの和によって表される.ここで、Iwはダルシー・ワ イスバッハの式で求め、管摩擦係数にはブラジウスの式を用 いた

Is についてであるが、鉛直管においては、固体粒子による 付加的な圧力損失のうち、固体粒子と管壁との摩擦及び衝突 による損失と固体粒子同士の衝突による損失は無視しても 実用上では問題ないと言われており³⁾,その場合, Is は以下 の式で表される.

$$I_{s} = C_{s} \left[\left(\rho_{s} - \rho_{w} \right) / \rho_{w} \right] \tag{1}$$

ここで、Csは管内濃度、psは鉱石密度、pwは水密度である. Imの推定値と計測値を比較した結果を図-2に示す.図-2 中の点線は、±10%を表す.当該グラフには、静止した配管 で計測した結果と動揺管における結果の両方を示してある. 計算結果と試験結果が概ね一致しており、本試験の範囲で は、鉛直動揺が圧力損失の定常成分へ及ぼす影響は非常に小 さかったと考えられる.

図-2 圧力勾配の計測結果と計算結果の比較

3.2 水単相流及び固液二相流の変動成分

鉛直動揺中に計測した差圧のデータに対して周波数解析 を行った.その一例として,ガラスビーズを移送した際のデ ータを解析した結果を図-3 に示す.周波数解析の結果,配 管の加振周波数で差圧の振幅も卓越していることがわかっ たので,図-3 には配管の加振周期における差圧の振幅を示 してある.この結果から,周期が短くなるにつれて,振幅が 大きくなることがわかった.

鉛直動揺管内の流れは、ポンプを一定回転で作動させた場 てま 合、配管に対するみかけの流速が鉛直動揺に応じて変化し、 にか 脈動流のようにふるまうと考えられる.そこで、脈動流に関 動想 する評価方法の適用を試みた.近江らは、脈動流の流動形態 いい が $\omega'/\overline{R}e^{3/4}$ によって粘性項と圧力項とがほぼつり合う擬定 慣性 常領域、慣性項と粘性項が圧力項とつり合う中間領域、及び 布し 慣性項と圧力項がほぼつり合う慣性領域の3領域に分けられ ることを報告している⁴⁾.なお、 ω' は無次元角周波数 ($= D^2 \omega/4\nu$)、 \overline{Re} はレイノルズ数の時間平均値をそれぞれ表 z す.ここでは、本試験における圧力項に対する慣性項の比**Φ**t す.

図-3 周期と差圧の振幅の関係(スラリー流速:1.9~2.0m/s:吐出 濃度:4.1~4.8%)

図-4 圧力項と慣性項の比と無次元角周波数及びレイノルズ数の関係

を求めた.その結果を図-4に示す.ただし,慣性項は水に対 するものであり,スラリーに対するものではない.水単相の 場合に比べて,スラリー流の方が,Φtが幅広く分布している. 特にΦtが小さいケースでは,相対的に圧力勾配の振幅が大き いことを意味しており,ポンプの設計や運用時において配管 の鉛直動揺の影響を無視できない可能性があることが示唆 される.

4. まとめ

内径 26mm の透明模型塩ビ配管及び模擬鉱石としてアルミ ナボール及びガラスビーズを用いて、動揺管におけるスラリ ー移送試験を実施し、圧力勾配の定常成分及び差圧の変動成 分について調査した.定常成分については、静止した配管に おける圧力勾配のモデル式の結果と実験結果が概ね一致し ており、鉛直動揺が圧力損失の定常成分へ及ぼす影響は非常 に小さいことがわかった.差圧の変動成分については、鉛直 動揺の周期と同じ周期で差圧振幅の卓越が見られ、周期が短 いほど、振幅が大きくなることがわかった.また、圧力項と 慣性項の比は、水単相に比べスラリー移送時の方が幅広く分 布していることがわかった.

謝辞

本研究は JSPS 科研費 JP18H01648 の助成を受けたもので す.

参考文献

1)経済産業省資源エネルギー庁他:海底熱水鉱床開発計画 第1期最終評価報告書,2013.

2) Masanobu, S., et al. : Study on Hydraulic Transport of Large Solid Particles in Inclined Pipes for Subsea Mining, ASME J. Offshore Mech. Arct. Eng., Vol. 139, No. 5, 051401, 2017.

3)寺田進:固体混合液の管路輸送 -流動理論と抵抗計算法-,理工図書,1973.

4) 近江宗一ほか:円管内脈動流れの流動形態と摩擦損失(第3報,乱流の場合の流動形態の系統的表示),日本機械学会論文集(B編),第46巻,第404号,pp.636-643,1980.