機構解析を用いた新形式浮体式洋上風力発電の **PS-15**

波浪中応答及び局所荷重評価に関する研究

海洋先端技術系 *羽田 絢、中條 俊樹

1. はじめに

導入量の拡大を目的として浮体式の洋上風力発電施設

の傾向は初期コスト削減の観点からも有効であるといわれ ている.風車大型化の流れに伴い,浮体構造も大型化が進む 中,風車浮体の一括設計が行われる事例も見うけられる.風 車浮体の一括設計とは, 浮体の特性に合わせて風車を専用に 設計する思想であるが,同時にコスト低減のために従来の浮 体形式にない構造や風車機構を取り入れているため, 既存の 連成解析ソフトウェアでは浮体運動や構造強度を評価が困 難になる可能性がある.本研究では1点係留などの特性を有 する FOWT を対象として水槽試験と数値解析を実施した.

2. 新型式 FOWT の構成

本研究で対象とする新型式 FOWT (以下,本 FOWT) は,浮 体構造の合理化のために2つの大きな特徴を有している.

1つ目は、構造全体の剛性を確保するためにワイヤを使用 している点である. ワイヤをタワートップと3箇所のコラム 下端部を繋ぐように2本ずつ設置し、初期張力をかけること でロワハルが片持ち梁構造となることを防ぎ、ロワハル部に 作用する荷重の低減を図っている.また、ロワハル部は、製 造性の向上や材料費の削減のためにコンクリートの採用を 想定している.

2つ目は, FOWT 全体で風向追従機構を実現している点であ る.これによってナセルヨー制御機構を外すことが可能とな り,風車部の軽量化が可能となっている.これは、タレット を用いた1点係留の採用と、ダウンウィンド形式風車の採用, そしてタレットから風車ロータまでの距離を取るように設 計された斜めタワーの採用等によって実現している.

3. 水槽試験

本 FOWT の規則波浪中動特性の取得を目的として、水槽試 験を2017年10月に海上技術安全研究所の実海域再現水槽に て実施した.本水槽試験では、実機の 1/15 スケールという 大型模型を使用した.この模型は製法を実機と同一にするこ とを主眼においており、浮体ロワハル部へのコンクリート素 材の採用や、タワートップとコラム下端部間を接続するワイ

ヤの設置、タレットの設置等、主要な構造を再現している. 世界的に再生可能エネルギーへの期待が高まる中,風力発 ただし,ワイヤについて,想定実機では1か所につき2本ず 電はその主軸を担う発電システムとみなされており、現在は つ配置するものを、1 本ずつの配置とした.本模型は、完全 な剛体模型ではない上に,いわゆるバックボーン模型のよう (Floating Offshore Wind Turbines: FOWT) に高い注目が に弾性相似の再現を目的とした模型ともなっていない点に 集まっている. FOWT に採用する風車は、より高い風速を用い は注意が必要である.風車部は、ロータの代わりに風荷重を て発電量を向上させるために大型化が進んでいる.また、こ 模擬するためのダクテッドファンをタワートップに配置し た、ダクテッドファンの反力による風荷重模擬であるため、 荷重は常に模型固定座標に対して一定の方向に作用し、浮体 の動揺に伴う風車空力荷重連成は発生しない. 試験の様子を 図-1に、模型の主要目を表-1に示す.

図-1 水槽試験の様子

表─1 模型主要目	
Item	Value
Scale	1/15
Rotor Modeling	Ducted fan (w/o blade)
Height [m]	7.942
Draft [m]	1.070
Length [m]	5.710
Width [m]	5.669
KG [m]	0.852
Displacement [t]	1.6

4. 数值解析

本 FOWT は、前述の通りワイヤを用いて全体の剛性を確保 する、特殊な構造をしている.このような浮体構造に対して、 安全性を評価するために, MSC Software 社の機構解析ソフト ウェア Adams¹⁾を使用して数値解析を実施した.機構解析と は,系を複数の弾性体や剛体で定義し,各部材間に拘束条件 を設定することで全体の運動方程式を定義する手法である.

先に示した 1/15 模型を対象として,数値解析モデルを作成した.FOWT モデルは合計 15 の部材による構成とし,3本のロワハルを,模型と同じ弾性部材とした.係留索は1本の係留索を120個の円筒部材で再現した.

作用外力は風荷重と流体力の2種類である.風荷重は模型 固定座標に作用する一方向荷重として設定した.流体力は付 加質量力,造波減衰力,粘性減衰力,復原力,波浪強制力を 定義し,図-2に示す作用点に与えた.また,粘性減衰力は部 材運動速度の2乗に比例する抗力として定義し,その他の荷 重は汎用の流体解析ソフトウェアである WAMIT から導出した 係数で定義した.

図-2 数値解析モデルへの流体力作用点

5. 水槽試験と数値解析の比較

浮体ピッチ動揺の応答を図-3 に示す. 波浪中の定常応答か ら,波周期成分のフーリエ係数を抽出した. 横軸の波周期は 実機換算値,縦軸は無次元化値で示す. ζは波振幅, k は波 数である.

ピッチの水槽試験結果は、風荷重の有無によらず、極大値 が周期 18~19s に見られ、振幅もほぼ同等である.他方で、 周期 14~17s の間で風荷重が有る条件の方が大きい振幅を示 すことが確認された.数値解析では、風荷重の有無によらず 周期 19s で極大値をとっており、振幅も同等となっている. 極大値をとる周期は水槽試験と概ね一致したが、振幅は過小 評価となった.周期 14~16s で風荷重有りの条件の方が無し の条件よりも高い振幅を示す傾向も再現できた. 本解析手法は、浮体部の内力評価が可能な点が特徴である. その例として、系を全て剛体で構成した場合と弾性体を 含む場合での、タワー基部の荷重の比較を図-4 に示す. なお、 同項目は水槽試験で直接計測ができていない項目である. 無 次元化に使用した ρ は真水の密度, A は水線面積, g は重力 加速度, L は浮体長さである.

剛体の風荷重無し条件から確認すると,解析した範囲内で 極大値が3回確認される応答であることがわかった.同じく 剛体で風有りの条件では,周期16sの極大値が風無しよりも 大きく増加している.一方,弾性体を組み込んだ解析結果で は,極大値の数やその周期,風の有無による定性的な応答の 傾向に変化は見られないが,極値が全体的に低減する様子が 確認できる.剛体のみで構成した解析モデルの場合,慣性力 が全てタワー基部に作用するのに対して,弾性体を含めた場 合はワイヤ張力も作用するため,タワー基部への負担が小さ くなることが確認され,本 FOWT コンセプトの有用性が示さ れた.

6. まとめ

大型風車の搭載を目的とした新型式の FOWT の安全性評価 を目的とした水槽試験と,複雑な構成の浮体内力の評価が可 能な数値解析を実施した.数値解析の結果,運動については 概ね妥当な結果が得られたとともに,内力の評価が可能であ ることを確認した.また,本コンセプトの採用によって内力 の低減が行われることを実際に確認できた.

謝辞

この成果は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託業務(JPNP14022)の結果得られたものです.

参考文献

1) MSC Adams HP:

https://www.mscsoftware.com/product/adams .