PS-2 水槽床状態の違いが浅水域船舶操縦性評価に与える影響の解明

流体性能評価系 *坂本 信晶、 大橋 訓英、小林 寛、 大森 拓也、 鈴木 良介

1. はじめに

船舶が浅水域を航行する状態には,港湾内操船,運河等の制 限水路通航などがある.そのような場面における海上輸送の 安全を確保するためは,浅水域における船舶の操縦性能を,水 槽試験・計算の両面から精度良く推定することが,非常に重要 となる.船舶試験水槽において,水槽水位を調整せずに浅水状 態を再現する際,水槽内へ仮床(false bottom と呼称)を設置する 方法がある.しかし,国際試験水槽委員会操縦性能部会におい て,仮床状態が真床状態(水槽水位を調整し,浅水状態を再現す る方法,true bottom と呼称)に比べ船体に大きな流力的影響を 与えることが指摘されており,そのメカニズムの解明が求め られている.本研究では,粘性 CFD(Computational Fluid Dynamics)計算により,仮床上における船舶の操縦運動を再現 し,仮床が船体に与える影響を流体力・流場の観点から明らか にした結果を,文献 1)2)から抜粋して紹介する.

2. 粘性 CFD 計算手法の概要

CFD 計算には、海上技術安全研究所(海技研)にて開発してい る重合格子対応船舶用粘性 CFD ソルバー"NAGISA"³⁾を用い た、本稿で紹介する計算は、単相 level-set 法により自由表面を 考慮した状態で実施した.乱流モデルには k-ω モデルベース の EASM (Explicit Algebraic Stress Model)モデルを用いた.推進 器影響を考慮する際は、無限翼数理論に基づく体積力モデル を用いた.運動量方程式の移流項離散化精度は 3 次であり、後 述の無次元時間刻みΔtを用いた非定常計算を行った.

3. 検討ケース

本研究では、図 1 に示すコンテナ船のベンチマーク船 型"KCS"を用いた.KCS 船型には、仮床および真床状態での複 数の操縦性試験結果が存在する⁴⁾.ここでは、表 1 に示す斜航, 直進舵角変更,Pure yaw の各状態における計算結果を紹介す る.表 1 中、βは斜航角、δは舵角、 r'_{max} は無次元最大回頭角速 度、 η_0 は横移動方向の振幅、 ψ_0 は回頭角の振幅、ωは回頭運動 の角速度である.

計算に用いたフルード数(Fn)およびレイノルズ数(Rn)は,全 てのケースについて水槽試験と同一である(Fn,Rn)=(0.095, 5.55E+06)とした.斜航および直進舵角変更計算では,船体の sinkage・trim をフリーとし,Pure yaw 計算では,sinkage・trim を 固定する代わりに,各時刻での船体 midship 位置および方位角 を陽に与えた.浅水状態は全てのケースにおいて,水深-喫水比 $H/T \ge 1.2 \ge$ した.計算に用いた Δt は,斜航および直進舵角変更 計算では 0.005,Pure yaw 計算では,0.01176 とした.後者の Δt は,1yaw 運動周期を 360 分割して設定した.

B	x - F

図-1 計算対象船型(KCS コンテナ船, ビルジキールなし)

表-1	計算条件
衣−1	訂昇宋件

#	状態	設定パラメター	
1	斜航	$\beta = -4^o \sim 15^o$	
2	直進舵角変更	$\delta = -20^o \sim 20^o$	
3	Pure yaw	$r'_{max} = 0.3, \eta_o(mm) = 1048,^*$ $\psi_0(deg) = 11.77$ $\omega(rad/s) = 0.1633$	

*: 模型船サイズは垂線間長 Lpp=7.2786(m)

図 2 に,計算に用いた計算格子の概要を示す.計算格子は,主 船体・船尾管・舵・外部の合計 4 ブロックの構造格子であり, 格子が重合している部分の補間情報は海技研にて開発して いる"UP_GRID"5にて計算した.生成した計算格子の総セル数 は,約 600 万セルである.図 3 に,false bottom および true bottom を再現するための外側格子を示す.図 3 中"bottom boundary"と 示した面には,x 方向の流速成分のみが非ゼロとなる流入境界 条件を与えることで,床影響を近似した.外側格子の横方向サ イズ,および false bottom 面の横方向サイズは,水槽試験実施機 関²と同一とした.

図-2 船体近傍計算格子の概要

図-3 外部格子の概要: false bottom(左), true bottom(右)

4. 計算結果および考察

4.1 斜航および直進舵角変更状態

表2に,斜航および直進舵角変更状態における CFD 計算で 求めた主船体微係数および船体舵干渉影響係数の,水槽試験 結果との比較を示す.紙面の都合上,微係数は1次の値のみを 紹介する.斜航状態では,仮床を用いた計算結果は同一床条件 の水槽試験結果によく一致すると共に,真床状態における1 次微係数は仮床に比べ10%以上大きな値となった.直進舵角 変更状態でも,床状態の違いにより船体舵干渉影響係数に 7%~10%の差が生じている.これらの係数は,10%の差であっ ても船体航跡に無視できない差を与える感度を持つことが 指摘されており 0,本計算結果は,床状態の違いが浅水域にお ける船体航跡に差を与える可能性を示している.

表-2 斜航・直進舵角変更状態での微係数・船体舵干渉影響係数

		Exp., FB*	CFD, FB^*	CFD, TB**
	Y_{v}	-1.132	-1.160	-1.335
	N_{v}	-0.385	-0.426	-0.485
	$1 + a_{H}$	1.880	1.338	1.470
x	$'_R + a_H x'_H$	-0.664	-0.586	-0.546

*FB: false bottom, **TB: true bottom

床状態の差が Y_{v} , N_{v} に影響を与える理由を解明するため,図 4に斜航状態($\beta = 10^{\circ}$)での水槽底面上圧力分布を,図5に横力 係数(Y'_{pl})・回頭モーメント係数(N'_{pl})圧力成分の船首尾方向 分布を示す.図4から,仮床は真床に比べ右舷側(波上側)におい て,水槽床面での負圧領域の大きさ及び負圧の値が,小さくな っている.これは,仮床と水槽側壁との隙間から圧力が散逸す ることが原因である.水槽底面の負圧が船体流体力に及ぼす 影響は,図 5 に示すよう特に船体前半部において仮床に比べ 真床の方が大きく, Y_{v} , N_{v} に差を生じる原因となっている.

横力係数(左)および回頭モーメント係数(右)

4.2 Pure yaw 状態

図 6 に,Pure yaw 状態の CFD 計算で求めた 1 次の主船体微 係数 Y_r および N_r を用いて算出した,Yaw 減衰力の着力点 $(N_r/(Y_r - mU), m$ は船体質量,Uは船速)を示す.また,表 2 に示 した微係数を用いて算出した Sway 減衰力の着力点(N_v/Y_v), およびこれらから求まる針路安定性指標 C も同時に示す.浅 水域における KCS 船型の,これらのパラメターに関する水槽 試験結果は存在しないため,過去の文献⁷にある類似船型の試 験結果(水槽試験は真床で実施)を参照値として載せている.今 回の計算で求めた Yaw 減衰力の着力点は,Sway 減衰力の着力 点よりも前方にあり,CFD 計算は浅水域において,C>0 となる 傾向を参照試験結果と比べよく捉えている.また,仮床状態で 求めた微係数は真床状態の値とは異なるが,少なくとも KCS 船型においては,水槽床状態は針路安定性指標の傾向を変化 させる程の影響は持たないことが分かった.

図-6 Yaw, Sway 減衰力の着力点および針路安定性指標

図7に,速度勾配テンソル第2不変量(Q=500)の等値面を用 いて可視化した,船体周りの3次元渦構造の瞬時値を示す.紙 面の都合上詳細は文献2)に譲るが,床状態の違い,つまり水槽 底面上圧力分布の違いがこの渦構造にも影響を与え,結果と して船体表面圧力分布が仮床と真床とで変化し,微係数にも 無視できない影響を与えることが分かった.

図-7 Pure yaw 状態における船体周りの3次元渦構造: 仮床(左)および真床(右)

5. まとめ

本研究では KCS 船型を対象として, 浅水域操縦性試験時の 床状態(仮床 or 真床)が船体に与える流力的影響を, 粘性 CFD シミュレーションを通じて明らかにした.

参考文献

- 1) Sakamoto et al., 2020, Proc. JASNAOE Conf., Vol. 30.
- 2) Sakamoto et al., 2021, Proc. JASNAOE Conf., Vol. 33.
- 3) Ohashi et al., 2019, JMST, Vol. 23, pp. 884-901.
- 4) SIMMAN2019 (http://www.simman2019.kr/)
- 5) Kobayashi and Kodama, 2016, JMSS, Vol. 6, pp. 339-347.
- 6) Sakamoto et al., 2019, Ocean Eng., Vol.188
- 7) 藤野·石黒, 1984, 日本造船学会論文集, 第156号