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11..  IInnttrroodduuccttiioonn  

In recent years, the prevalence of machine learning 
techniques has spurred interest in the development of 
autonomous ships. Many studies have focused on the 
problem of collision avoidance, path planning, and steering 
control by applying a vast range of neural network 
techniques that can learn from humans’ operation 
experiences – through supervised learning. Moreover, the 
recent progress in machine learning and computing power, 
especially deep learning, has opened the ways to develop 
systems that can learn from machines’ own experiences – 
so-called reinforcement learning (RL). In general, there are 
three key parts constituting the RL algorithm: an 
environment which represents the behaviour of a system 
under consideration; a reward function which is directly 
related to the desired objectives and defines optimal and 
undesirable actions; an autonomous agent, encouraged by 
the reward function, attempts to learn the optimal action 
exploring the space of possible solutions until an 
appropriate policy (discrete set or continuous surface of 
control actions) that achieves the set objectives in the best 
possible way is found. 

This report introduces the preliminary results of research 
and development carried out at the National Maritime 
Research Institute. In this research, the RL approach was 
applied to the control problems of marine engines.  The 
first is the problem of the propulsion engine’s optimal speed 
control considering the encountered sea conditions. The 
second is the problem of a marine gas-fueled engine’s 
control considering a rapid transient response.  

 
22..  OOppttiimmaall  CCoonnttrrooll  ooff  PPrrooppuullssiioonn  EEnnggiinnee 

The speed control of the propulsion engine in the actual 
sea conditions is the key component for the safe and energy-
efficient operation of the ship. In a rough sea, the efforts of 
the control system in stabilising shaft speed by 
continuously adjusting the engine torque, become 
undesirable ample. The primary consequence of such an 

operation is an unfavourable engine's thermal and dynamic 
state, resulting in increased fuel consumption. The remedy 
to such a situation is to reduce the efforts in adjusting the 
engine torque on account of increased engine speed 
fluctuation. Thus the trade-off control of the shaft speed can 
be achieved by readjusting the control system gains as 
shown in [1]. Notably, low gain and high gain are required 
for calm sea and rough sea conditions, correspondingly. In 
that respect, the task of RL is to train the control agent to 
properly select control system gains depending on the sea 
state with the objective of fuel efficiency. The overview of 
mutual relations in the RL framework is outlined in Fig. 1.  

 

Fig.1 Overview of the propulsion system RL framework 

In the RL algorithm, an agent receives information from 
the environment and takes action. Thus, the realistic 
representation of the environment is indispensable, and for 
the purpose of this study, it consists of an engine torque 
generation model by fuel combustion, propeller torque 
model, and hull motion model. All elements are connected 
by the shaft rotation motion equation to form a propulsion 
system. On top of that is the engine speed governor model 
whose parameters are modified by the intended control 
agent. Details of a concrete mathematical model can be 
found in [2].  

After performing the action, the agent receives a reward 
for its action and a new state of the environment. For the 
outlined task, the reward function should correspond to the 
improvement of fuel energy transformation efficiency from 
the combustion in the engine to the cargo transportation by 
a ship, considering also possible ship speed loss, 𝛿𝛿𝑣𝑣𝑠𝑠 . 

119

(189)



 

 

Based on this consideration, the following reward function, 
Rt, is applied as a baseline design:  

The exact form of the constituent components is now 
under active development and thus can not be disclosed.  

There are many frameworks for implementing RL 
algorithms. For the purpose of this study, the Mathworks 
MatLab RL toolbox was used, ensuring that any RL 
algorithms combination can be implemented quickly and 
conveniently in the developed environment. Figure 2 shows 
the example of RL progress. Although for robust learning 
the number of trial steps (episodes) should be of order 106, 
there is a tiny improvement in reward visible after 1000 
trials. 

 
Fig.2 Evolution of reward during the learning progress 

33..  OOppttiimmaall  CCoonnttrrooll  ooff  GGaass--FFuueelleedd  MMaarriinnee  EEnnggiinnee  

Natural gas-fuelled engines are entirely worthy 
successors to diesel engines for maritime marine, especially 
regarding GHG emission reduction. However, the marine 
application implies transient operating modes, which 
require fast response and load fluctuation rejection. In that 
respect, the load acceptance of the gas-fuelled engines is 
subject to a specific limit due to a knock and misfiring 
phenomena. Thus for the efficient and safe operation, it is 
necessary to consider the control problem related to 
transient behaviour and develop countermeasures. In this 
context, the RL algorithm can be beneficial in solving the 
complex task of gas-fuelled engine control.  

The environment consists of the previously developed 
gas-fuelled engine model as in [3], with two control loops: 
the first is controlling the amount of fuel to keep the engine 
speed, ne, constant and the second is controlling the charge 
air pressure to keep the air-to-fuel ratio (AFR) constant. To 
this end, the task of RL is to train an agent which will assist 
the control loops in transient conditions and be rewarded for 
the simultaneous reduction of ne and AFR deviations from 
the reference, denoted with ‘0’ subscript.  Therefore, a 
reward function composed of mean square errors (MSE) is 

applied as a baseline design:  

𝑅𝑅𝑡𝑡 = − [∑ (𝑛𝑛𝑒𝑒0 − 𝑛𝑛𝑒𝑒)
2𝑁𝑁

𝑖𝑖=1
+ (𝐴𝐴𝐴𝐴𝐴𝐴0 − 𝐴𝐴𝐴𝐴𝐴𝐴)2] (2) 

Figure 3 outlines the implemented RL framework for the 
gas-fuelled engine. Figure 4 illustrates the example of RL 
training. As can be seen, the control agent provides 
simultaneous reduction of the reward function components 
below the standard value of MSE. 

 
Fig.3 Overview of the gas-fuelled engine RL framework 

 
Fig.4 Evolution of reward components in the learning 

44..  CCoonncclluussiioonn  

This report is just the beginning of the journey towards 
the application of the RL technique to the control problem 
of marine engines. At this stage, the realistic simulation 
environments for the RL algorithm have been created, based 
on past research activity. At the same time, there is still a 
question on the reward function design that affects the 
efficiency and the results of the RL to a great extent. We 
will continue to carry out basic research and contribute to 
the development of novel control techniques for marine 
engines.  
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𝑅𝑅𝑡𝑡 = ∑ 𝑟𝑟𝑖𝑖
𝑛𝑛

𝑖𝑖=1
; 𝑟𝑟𝑖𝑖 = 𝑓𝑓(… , 𝛿𝛿𝑣𝑣𝑠𝑠) (1) 
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