PS-2 鉛直な固気液三相流の摩擦損失推定手法

海洋開発系 *高野 慧、金田 成雄、小野 正夫 海洋先端技術系 正信 聡太郎

1. はじめに

海洋鉱物資源の揚鉱において、管内に空気やガスを送気し 管内の密度を下げ、外部の海水との密度差を利用して流れを 発生させるガスリフトポンプ方式は有望な手法の1つと考え られている¹⁾.ガスリフトポンプ方式での生産システムの設 計や安全な運用のためには、管内固気液三相流の移送シミュ レーション技術が不可欠である.1次元の数値シミュレーシ ョンにおいて、混合体の質量保存や運動量保存等の支配方程 式を解くための構成方程式として、各相の速度差の推定式 や、管摩擦損失の推定手法等を参考に、鉛直管内固気液三 相流の摩擦損失の推定手法等を参考に、鉛直管内固気液三 相流の摩擦損失の推定手法を提案するとともに、固気液三相 流移送実験を実施し、取得したデータを用いて、推定手法の 検証を行った.なお、本稿では、生産システムにおけるライ ザー管の大部分を占めると考えられる鉛直管に着目して検 討を実施した.

2. 摩擦損失推定手法

2.1 気液二相流

気液二相流の摩擦損失の推定に関する研究は多く,推定手 法は均質流モデル,分離流モデルの2つに大別される.はじ めにこれらモデルについて簡単に紹介する.

均質流モデルは気相と液相が均一に混ざった状態を想定 したものである.均質流モデルにおける摩擦損失は、単相の 場合と同様の形式で簡便な形で表すことができる²⁰.均質流 モデルに関する既往の研究では、二相流の粘性係数やレイノ ルズ数自体の数式が提案されている.

分離流モデルは Lockhart と Martinelli³によって提案さ れた考え方であり,気相と液相が分離して流れている状態が 想定されている. Lockhart と Martinelli は二相摩擦定数を, 彼らの提案するパラメータを用いて整理できることを見出 し,二相摩擦定数とパラメータの関係が線図として示されて いる.彼ら以降の研究では,二相摩擦定数に関する関係式が 数多く提案されている.

2.2 固気液三相流

固気液三相流を対象とした摩擦損失に関する研究は少な いが、気液二相流における分離流モデルを三相流に拡張し、 適用した研究がいくつかある⁴⁾. 拡張された分離流モデルは 液相単相の摩擦損失を、固液スラリー流の摩擦損失で置き換 えたものである. しかしながら、前述のとおり、分離流モデ ルは水平管における層状流のように2つの相が分離した状態 を対象とした考え方であるため、鉛直管への適用は馴染まな いと考えた. 図-1 に示す鉛直管における気液二相流の流動 様式の模式図²⁾を考慮すると、鉛直管では、液相(図中斜線 領域)のみが管壁と接触しており、摩擦損失に対して液相の 流速が支配的であると考えられることと、鉛直固液二相流に おいて、実用流速以上では、粒子同士の衝突や、粒子と管壁 の衝突による損失は無視できることが知られている.これら のことから、鉛直な固気液三相流の摩擦損失(ΔP/ΔL)GLS は液 相流速のみで表される式(2.1)で推定できると考えた.

ここで, *f*は管摩擦係数, *D*は配管内径, *u*は流速, 添字の*G* は気相, *L*は液相, *S*は固相をそれぞれ表す.

3. 固気液三相流移送実験

式(2.1)に示す摩擦損失の推定手法を検証するため、当所 の深海水槽にて固気液三相流移送実験を実施した 6)7). 試験 装置の模式図を図-2 に、実際の実験装置の外観を図-3 に それぞれ示す.本実験装置は、エアリフトポンプ方式の実験 装置であり, 配管, エアコンプレッサ, エアリフトポンプ性 能を保つための水位調整管, 模擬鉱石を供給するフィーダ, 模擬鉱石を分離・回収するための分離タンクで構成される. また、管内流量を計測するための電磁流量計、圧力損失を計 測するための差圧計,差圧計測区間中央で代表する気相のみ かけ流速を得るための圧力計、気相と液相の温度を計測する ための温度計をそれぞれ設置した. 管内に供給される空気の 流量は、マスフローコントローラによって制御した. バルブ 及び三方バルブは締切法によって各相の体積率を計測する ために設置した.また、管内径の影響を調査するため、26mm と 41mm の 2 種類の内径の配管を用い、固相粒子には密度が 2,553kg/m³で,直径が4mmのガラスビーズを用いた.

4. 摩擦損失推定方法の検証

提案した三相流の摩擦損失推定手法の検証のためのデー タを表-1に示す.表中のjはみかけ流速を表す.これらの データはTakanoらが過去に実施した実験⁶⁰⁷から得られたも

図-3 実験装置外観

のである.

提案した手法を用いて計算した摩擦損失の計算結果と計 測結果を比較したものを図-4 に示す. なお, 摩擦損失の計 測結果は, 差圧計で計測した圧力損失から, 締切法で計測し た各相の体積率を用いて算出した静水圧を除いて求めたも のである. 推定精度の検証のため, 既往の研究で提案されて いる手法⁴⁾と本手法で計算した結果と計測結果の相対誤差を 求めた. その結果を表-2 に示す. この結果から本手法の方 が,相対誤差が小さく, 式(2.1)にて鉛直管における固気液三 相流の摩擦損失を推定できることがわかった. さらに既往の 研究で提案されている手法は, 実験定数を含んでいるが, 本 手法は実験定数を含まないことから, 既往の研究で提案され ている手法に比べて, 広範囲のみかけ流速に対して適用可能 である.

表-1 検証のためのデータの範囲

pipe I.D.	<i>j</i> _{<i>G</i>} [m/s]	<i>j</i> _L [m/s]	<i>js</i> [m/s]
26 mm	0.88~9.3	0.29~0.89	0.026~0.11
41 mm	0.79~3.9	0.47~0.76	0.015~0.044

5. まとめ

気液二相流と固気液三相流の摩擦損失推定手法に関する 既往の研究を参考に,鉛直管における固気液三相流の摩擦損 失推定手法を提案した.内径 26,41mmの配管とガラスビーズ を用いて実施した固気液三相流移送実験から得られたデー タを用いて,摩擦損失推定手法を検証した.その結果,既往 の研究で提案されている手法に比べて,本稿で提案した手法 は鉛直な固気液三相流の摩擦損失を高精度で推定できるこ とがわかった.

参考文献

1) Claire Beauchesne et al., State of the Art of 1D Steady State Flow Assurance Models for Deepsea Mining Production System Using Air-Lift Pumping, OTC2015 (2015).

2) 日本機械学会編,気液二相流技術ハンドブック,コロナ 社,(2006)

3) Lockhart, R. W., and Martinelli, R. C., Proposed correlation of data for isothermal two-phase, twocomponent flow in pipes, Chemical Engineering. Progress, Vol. 45, pp. 39-48, (1949).

4) 佐田富道雄ほか, 粗粒子群の垂直管内水力輸送に関する 研究, 混相流, 4巻, 2号, pp. 125-140, (1990).

6) Takano, S. et al., Experimental study on three phase flow in inclined pipe for deep sea mining, Proceedings of the ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2020-18257 (2020).

7) Takano, S. et al., Experimental study on void fractions and pressure drops in three-phase flow for deep sea mining, Proceedings of the ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2021-60472 (2021).