PS-7 全球の波と風のデータベース「GLOBUS cloud」の開発と

船舶の運航への利用

流体設計系 *金子 杏実, 辻本 勝, 松沢 孝俊

1. はじめに

海洋構造物の設計荷重推定,洋上風力発電等による自然エ ネルギー利用,船舶からの温室効果ガスの削減,海難事故の 低減等のためには,対象海域の気象海象の環境条件を把握す る必要がある.このため,全球の波と風データベース (GLOBUS)を開発し,平成31年3月に公開した.

海域データだけではなく船舶の針路を考慮して波向,風向 を相対変換したい,多海域解析を行いたいというユーザーニ ーズを反映し,令和5年2月に GLOBUS V2版を公開した.

一方,気象海象データベースをネットワーク経由での一層 の活用を可能とするため、V2版をベースに当所の海技研クラ ウド上で動作する GLOBUS cloud を開発し,令和5年3月に公 開した.

本稿では GLOBUS cloud の概要と,それを利用し船舶の運航 を想定した解析例を紹介する.

2. GLOBUS cloud の概要

2.1 概要

GLOBUS cloud とは,緯度経度2.5度の海域区分(10,368海域) で作成した波と風の発現頻度表のデータベース(GLOBUS) を web 上で利用できるようにしたものである.データベース 上の推算データは気象庁の2006 年~2016 年における全球波 浪推算値を基に,海上技術安全研究所において統計解析を行ったものである.

発現頻度表はデータ種別,季節または月,海域を選択して 表示する.データ種別は有義波高,卓越波周期,卓越波向,平 均風速,平均風向から2つを組合せた10種の発現頻度表と, 有義波高ー卓越波周期ー卓越波向と有義波高-平均風速-卓越波周期の2種の3相関発現頻度表の計12種類である.海 域は緯度・経度2.5度格子,季節は通年,四季及び各月から選 択し,船舶の往路・復路で評価できるよう2通りの角度変換 が可能である.また,海域・季節区分・角度データはCSV形式 でファイル保存・読み込みが可能である.

2. 2 操作方法

操作画面を図-1 に示す.標準的な操作手順は,(1)解析条件 に従いDATA TYPE (データ種別),SEASON (季節または月),D1, D2 (変換する角度) を設定,(2)Sea Area (海域) を選 択,(3)Display ボタンを押し発現頻度表の表示となる.

<角度変換>風向及び波向を対船首に角度変換する場合 は D1, D2 より行うことができる.船首方位は北向きを 0deg. とし,正の向きを時計回りで定義する.これにより往路・復路 での航路に沿った発現頻度表を表示することができる.

図-1 操作画面

図-2 出力画面

<Sea Areaの指定>プルダウンリスト,地図画像から選択, 入力ファイル (CSV 形式) の読み込みの3通りから可能である.選択された Sea Area は ADD LIST に追加される.LIST には 座標の他に SEASON, D1, D2 の設定が記される.右隣の DELETE LIST は ADD LIST の中から特定の季節を除外したいときに使 用する.該当の SEASON と海域を選択し, Delete ボタンを押す ことで, DELETE LIST に追加される.

両LIST を消去したいときは Remove selected data ボタン を押すと一括で削除される.LIST の一部を削除する場合は, 該当 Sea Area を先に選択してからボタンを押す.

<Sea Area の入出力>Save Area を押すと,現在の ADD LIST 及び DELETE LIST を CSV 形式で保存することができる.Sea Area の読み込みは Load Area から行う.

<発現頻度表の作成>Display ボタンを押し発現頻度表を 表示する.図-2 に作成例を示す.作成結果は Download ボタン より CSV 形式で取得することができる.なお,発現頻度表は件 数表示で出力される.

2.3 従来版との違い

従来の GLOBUS は Microsoft 社 Excel 上での動作だった が、GLOBUS cloud は WEB ブラウザ上で動作する.PC へのイン ストール作業等は不要で、ネットワーク環境があればスマー トフォン等で、どこからでも利用できることが特徴である. また、表示地図上での Sea Area 選択では表示の拡大縮小、矩 形選択にも対応し、操作性を向上させている.

図-4 卓越波周期別の平均値(上:有義波高,下:平均風速)

3. 解析例

GLOBUS cloud を用いて東京一ブリスベン間航路(図-3)での海象解析を行った例を紹介する.解析航路の有義波高-平均風速-卓越波周期の3相関発現頻度表を作成し解析した.

まず,卓越波周期別に作成される相関表から有義波高と平 均風速の平均値を見ると,図-4 に示す通り共に7s,15s にピ ークがあることがわかる.次に,有義波高と平均風速の相関 表から卓越波周期の等値線図(図-5)を作成した.これらの 図から平均値がピークとなった7s,15s の等値線図を個別に 見ると,平均風速-有義波高の頻度分布が異なり,15s ではよ り大きな波高,風速まで広く分布していることがわかる.こ のように GLOBUS cloud を用いることで多角的な解析が可能 となる.

図-5 卓越波周期の頻度分布(上:7s,下:15s)

4. まとめ

本稿では GLOBUS cloud の概要と操作方法を紹介し, 船舶の 運航を想定した解析例を示した.3 相関発現頻度を利用でき る全球の気象海象データベースは GLOBUS cloud の他になく, 多角的な解析が可能であることを示した.

参考文献

 辻本 勝,松沢 孝俊:全球の気象海象統計データベースの開発,日本船舶海洋工学会講演会論文集,第24号(2017), pp. 267-270.

2) Masaru Tsujimoto, Takatoshi Matsuzawa and Kenichi Kume: Statistical Characteristics of Global Winds and Waves, Proceedings of the 28th International Ocean and Polar Engineering Conference (ISOPE) (2018), pp. 379-386.