At-Sea Experiment of a Floating Offshore Structure
Dynamic Response and Fatigue Analysis
of an Offshore Structure in Waves

by
Kiyokazu YAGO*, Yutaka OHKAWA*
and Masakatsu SAIITO**

Abstract

Recently some concepts of very large floating structures have been proposed for one of applications such as floating airports and floating cities. Most of such large structures are supported by a large number of columns piercing the free surface. Therefore the fatigue analysis and the hydrodynamic interaction between multiple columns are important considerations for this kind of structures in waves.

At-sea experiment using prototype model named "POSEIDON" had been carried out for inspections of various elemental technologies concerning the construction of such very large structures from 1986 to 1990 at the coast of the Japan Sea. The POSEIDON is a semisubmersible offshore structure with 12 legs that was built as a part model of a huge structure. In this experiment, strains induced by waves have been measured at 12 points of main structural members which are related to the fatigue strength while there have been various another measuring items.

This paper describes the effects of the hydrodynamic interaction between multiple legs on structural responses in waves and that of some factors on the estimation of the fatigue life of the structural members.

Hydrodynamic forces acting on the structure have been estimated by the three dimensional source distribution method taking the interactions into account. Further the results of hydrodynamic calculations were applied to the structural analysis. Structural response functions were solved in the frequency domain by F.E.M.

The effect of the hydrodynamic interaction against structural responses was confirmed by comparison of predicted results with experimental data. Both the spectral method and the discrete method were used in order to analyze the fatigue life of structural members. Particularly, the wave directional function was taken into account in the spectral method.

From the results of studies described above, we may conclude that the hydrodynamic interaction and wave spectrum shapes dependent on frequency and directional functions respectively influence considerably on the prediction of the fatigue life.

目 次

1. はじめに
2. 実験構造物の概要
 2.1 実験構造物の構造
 2.2 主要部材の歪計測
3. 波浪周波数応答曲線の推定
 3.1 波浪外力の推定
 3.1.1 浮体間の相互干渉を考慮した外力の計算
 3.1.2 水槽試験による検証
3.2 水槽試験による検証
3.3 推定結果
 3.3.1 計算法
 3.3.2 水槽試験による検証
 3.3.3 実海域実験データによる検証
 (1) 応答スペクトルによる比較
 (2) 高周波度領域における応答
3.4 疲労強度解析
 3.4.1 疲労強度設計法の概要
 (1) 頻度分布法
 (2) スペクトル法
4.2 設計時における疲労強度解析
4.2.1 設計波浪
4.2.2 検討部位と疲労設計線図
4.2.3 構造応答の計算
4.2.4 疲労強度の推定
4.3 実測データから推定した疲労強度
4.3.1 定時計測データと連続データの比較
4.3.2 設計値と実測値の比較
4.4 線形理論による疲労強度の検討
4.4.1 スペクトル解析による推定
4.4.2 応力レベルの頻度分布
4.4.3 応力の繰り返し数
4.4.4 流体力学的相互干渉の効果
4.4.5 波スペクトル解析と疲労被害
4.4.6 波浪の方向分散性の影響
5. おわりに

1. はじめに

波浪外力により浮遊式海洋構造物に生ずる応力の評価は構造設計上極めて重要な要素の1つである。

POSEIDONの設計においては、耐力および疲労強度の評価が行われた。特に、この種の海洋構造物は細長
部材で構成される多くの接合点を有する事から、疲労強度について十分な検討をする事が重要である。
今回の実海域実験では4年間の実験期間を通じ、ほぼ連続して主要部材の応力を計測する事が出来た。本論文では、
実測されたデータの解析に基づく疲労強度と設計時に予測された強度を比べ、設計手法の評価を行う。
また、線形重ね合わせに基づく線形応答理論を用いて短期海象中での応答を推定し、流体力の相互干渉効果、波浪の方向
分散性、波スペクトルの形状、波向の出現確率などの要因を疲労被害の推定にどのように関与し得るか検討する。

2. 実験構造物の概要
2.1 実験構造物の構造

海洋空間の有効利用を目指し、将来建造されるであろう浮体式海洋構造物は、長さ数十mにおよぶ長大なもの
である。実験構造物POSEIDON（以下P号と略称）は、こうした長大構造物の一部を切り出した部分構造物とい
う位置付けで建造された半浮式式海洋構造物である。スクエールは、想定される部分構造物の1／3である。実
験構造物例はFig.2.1に示すように、等間隔に配置された
12本のフーチング型浮体が上部構造を支える形式
を有している。Table2.1.に実験構造物の主要目を示す。
この中で、1/40Modelとあるのは、後述する水槽試験用縮
尺模型の主要目である。基部構造は支持浮体の損傷など、
万一の事故に際しても十分な浮力を確保できるように周
囲をボックスガードで囲み、その内側に支持浮体を受け持つI
型ガーダを配置する構造になっている（Fig.2.2参照）。

また、係留力を受け持つ隅部の支持浮体にはプレース
が取り付けられている。

Table2.1 Princpal dimension of POSEIDON.

<table>
<thead>
<tr>
<th>ITEMS</th>
<th>Full Scale</th>
<th>1/40Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length overall</td>
<td>34.0m</td>
<td>85.0 cm</td>
</tr>
<tr>
<td>Breadth overall</td>
<td>24.0m</td>
<td>60.0 cm</td>
</tr>
<tr>
<td>Height of main structure</td>
<td>13.5m</td>
<td>31.5 cm</td>
</tr>
<tr>
<td>Draft</td>
<td>5.5m</td>
<td>13.75 cm</td>
</tr>
<tr>
<td>Distance between columns</td>
<td>10.0m</td>
<td>25.0 cm</td>
</tr>
<tr>
<td>Column diameter (#columns)</td>
<td>2.0m</td>
<td>5.0 cm</td>
</tr>
<tr>
<td>Column height (#columns)</td>
<td>2.5m</td>
<td>6.25 cm</td>
</tr>
<tr>
<td>Column height</td>
<td>8.5m</td>
<td>15.25 cm</td>
</tr>
<tr>
<td>Footing diameter</td>
<td>4.0m</td>
<td>10.0 cm</td>
</tr>
<tr>
<td>Footing height</td>
<td>2.5m</td>
<td>6.25 cm</td>
</tr>
<tr>
<td>Displacement(A)</td>
<td>514.8m³</td>
<td>798.5m³</td>
</tr>
<tr>
<td>Height of C.G(KG)</td>
<td>6.48m</td>
<td>12.45cm</td>
</tr>
<tr>
<td>Height of C.B(KB)</td>
<td>2.01m</td>
<td>5.02cm</td>
</tr>
<tr>
<td>Metacentric height</td>
<td>1.50m</td>
<td>7.75cm</td>
</tr>
<tr>
<td>Transverse (GMI)</td>
<td>5.03m</td>
<td>16.32cm</td>
</tr>
<tr>
<td>Longitudinal (GMI)</td>
<td>5.03m</td>
<td>16.32cm</td>
</tr>
<tr>
<td>Radius of Giration</td>
<td>10.06m</td>
<td>24.18cm</td>
</tr>
<tr>
<td>Tilt (kpy)</td>
<td>13.34m</td>
<td>33.05cm</td>
</tr>
</tbody>
</table>

()内の値は実機換算値を示す。

主部材の材料性能をTable2.2に示す。また、使用鋼材
の機械的特性値をTable2.3に示す。

係留は冬期の季節風による風向、波向を考慮し、構造
物の長手方向中心線が西北西を向くよう、波上側4条、
波下側2条の鉄線を配置して強度係留している。Table2.3
は海象の確率的な時にダイバーにより実測された係留線
の初期角度を示している。本論文にて、構造応答計算等に
用いる係留特性はこのデータを基準にしている。
Table 2.2 Structural properties of Elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>Element Shape</th>
<th>Measured Point</th>
<th>Strain Type</th>
<th>Sectional Area A_x (cm2)</th>
<th>Shear Area A_y (cm2)</th>
<th>2nd Moment of Inertia I_z (cm4)</th>
<th>Sectional Modulus S_z (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>t=10mm</td>
<td>1, 2, 4 Bend</td>
<td>625</td>
<td>313</td>
<td>3.09×10^6</td>
<td>30948</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t=10mm</td>
<td>3 Axial</td>
<td>782</td>
<td>391</td>
<td>6.06×10^6</td>
<td>48501</td>
<td></td>
</tr>
<tr>
<td>Brace</td>
<td>t=6.4mm</td>
<td>9, 10 Axial</td>
<td>80</td>
<td>40</td>
<td>1.61×10^6</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td>Box-girder</td>
<td>t=8 mm</td>
<td>7 Bend</td>
<td>700</td>
<td>300</td>
<td>7.85×10^6</td>
<td>62421</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t=6 mm</td>
<td>8 Shear</td>
<td>8</td>
<td>500</td>
<td>5.22×10^6</td>
<td>32747</td>
<td></td>
</tr>
<tr>
<td>I-girder</td>
<td>t=12 mm</td>
<td>6, 12 Bend</td>
<td>6</td>
<td>450</td>
<td>4.19×10^6</td>
<td>24605</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3 Mechanical properties of Materials.

<table>
<thead>
<tr>
<th>規格</th>
<th>級別</th>
<th>化学成分%</th>
<th>降伏点</th>
<th>引張強さ</th>
<th>伸び</th>
<th>適用部位</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C Mn Si P S</td>
<td>kgf/mm²</td>
<td>kgf/mm²</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>NX</td>
<td>軟鋼</td>
<td>≤0.23 ≥2.5 ≤0.35 ≤0.040 ≤0.040</td>
<td>≥24</td>
<td>41~50</td>
<td>≥16</td>
<td>全体</td>
</tr>
<tr>
<td></td>
<td>XD</td>
<td>≤0.21 ≥0.60 ≤0.35 ≤0.040 ≤0.040</td>
<td>≥24</td>
<td>41~50</td>
<td>≥16</td>
<td>カラム接合部</td>
</tr>
<tr>
<td>JIS</td>
<td>炭素鋼管</td>
<td>≤0.30 ≥0.30 0.35~1.00 ≤0.040 ≤0.040</td>
<td>≥25</td>
<td>≥42</td>
<td>≥20</td>
<td>プレース等</td>
</tr>
<tr>
<td>G3440</td>
<td>STXM14A</td>
<td>≤0.30 ≥0.30 1.00 ≤0.040 ≤0.040</td>
<td>≥25</td>
<td>≥42</td>
<td>≥20</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.3 Mooring conditions.

<table>
<thead>
<tr>
<th>Line No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Tension (kN)</td>
<td>2.46</td>
<td>2.72</td>
<td>2.66</td>
<td>2.60</td>
<td>3.68</td>
<td>3.68</td>
</tr>
<tr>
<td>Initial Angle (deg)</td>
<td>15</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Mooring Chain
Type: JIS 5330 (welded stud chain, class3)
Diameter = 50mm (nominal)
Weight = 47.6kg/m (in water)
Length = 253m / 1 line

Fig. 2.2 Structure of POSEIDON and Location of Strain sensors.

2.2 主要部材の歪計測

Fig. 2.2 に主要部材の歪を計測した位置を示す。計測箇所は、各点とも応力集中部から充分な距離をおき、公称応力が計測できる位置を選んでいる。計測に用いる歪計として、密閉型歪計を採用した。実験実験等では一般に、所定の歪ゲージが広く用いられているが、歪ゲージは外観形状の面で長期計測における耐久性に不安があるため使用を避けた。歪計は各計測点毎に2台づつ配置し、それぞれの出力の和または差を計測する事により、方向、曲げ歪、せん断歪のいずれかを選定し計測した。これらの計測点毎の計測モードについてはTable 2.2 に示す。

データ収集は、通常1日4回6時間毎に行う定時計測が主である。1回の計測時間は2048秒、サンプリング周期は0.5秒である。他に台風接近時など荒天時に連続的に行う臨時計測がある。この場合のサンプリング周期は1秒である。臨時計測は定時計測が行えないが、解析時に定時計測に相当する時間部分を抜き出し、定時計測と同様な解析を行っている。

以降示される実海域実験実測データは、主に定時計測により得られたデータを統計解析、スペクトル解析した結果である。

定時計測の問題の1つは推移性である。このため、定時計測から推移的な現象を予測する場合に根拠となるデータを得る必要があり、特定の計測項目を対象にヒストグラムレコーダーにより計測を行った。ヒストグラムレコーダーは、応力などの連続した時系列信号をレインフロー法、振幅法などによりリアルタイムに解析し、解析された応力レベル等の頻度を、累積表記する装置である。計測期間中の応力振幅の頻度分布の累積値が得られる。

3. 波浪周波数応答関数の推定

3.1 流体力の推定

構造応答を推定するためには流体力を精度良く推定する必要がある。P号は多数のフーリエにより支持されている事から、流体力については支持機構間の相互干渉効果を考慮する必要があると考えられる。本章では、相

互干渉の効果を理論計算と水槽模型試験により検証する。

3.1.1 浮休間の相互干渉を考慮した流体力の計算

P号における支持浮体間の流体力学的相互干渉効果を調べるため、12本の支持浮体を含む全体について、線形ポテンシャル理論にもとづく3次元特異点分布法を用い、波強制力および流体力（付加質量、波波減衰力）を計算した。Fig. 3.1に計算時の1本あたりの要素分割を示す。要素数は1本あたり184要素、全体では2208要素である。要素数は、使用した計算機および計算プログラムで計算可能な上限である。要素の大きさは主に波長と関係して計算精度に影響すると考えられ、特に、高い
3.1.2 水槽試験による検証

計算結果を検証するため、当所の海洋構造物試験水槽を用い波強制力試験を実施した。供試模型の縮尺は実機の1/40である。実機の港水部にはブレースがあり、また、フーティングには生物付着があるが、これらは模型では考慮されていない。模型の材質は発泡スチロールで、表面に合成樹脂塗料を多層塗布することにより、発泡スチロール特有の表面粗度を除去している。

実験計測の概要図をFig.3.2に示す。模型は全体として水平になるよう設置し、波との出会い角は180°（縦波）とした。波強制力の計測は4本の支持浮体上部に小型2分力計（準電気LM-2207）を取り付け、前後力、上下力を計測した。

計算の結果によれば、波強制力係数は比較的高い周波数領域において高い応答を示す傾向にある。よって、実験時の入射波の周波数は、実機相当0.05～0.40Hzの範囲とした。計算では0.7Hz程度の周波数までの計算が可能であるが、実験では水槽の造波能力の限界により0.4Hzまでとした。粘性の影響を少なくするため、波高は低く抑え、実機換算約0.8mと一定とした。

3.1.3 推定結果

Fig.3.3に流体力（付加質量、造波減衰力）の計算結果を示す。支持浮体単独の結果と比較すると、相互干渉効果が現れている事がわかる。減衰力についてはその効果が顕著である。Fig.3.4に波強制力試験と計算結果の比
第3.4例である。実験による力の推定と実験値を基に計算した結果を図示している。実験値と計算値の差異による影響を求めることがあっただけである。

3.2応答関数の推定

3.2.1計算法

第3.4で示した流れ力の推定結果を用い、波浪における構造物内力の波浪断面応答関数を推定する。

推定法として、構造物を3次元骨組構造にモデル化し、マトリックス法を適用する方法が一般的に用いられている13)~12)。本研究でもこの方法を用いる。計算モデルの概要をFig.3.5に示す。節点数は135、要素数は151である。

P号のように波長に比べ短い長さで構成される構造物では、波浪減衰力以外に粘性減衰力の影響が無視できないと考えられる。本計算では粘性減衰力を等価線形化して減衰項に加えている。なお、粘性減衰力は一般に波粒子速度と浮体速度の相対速度の比に比例すると仮定して表わし、厳密には相互干渉による波浪の変形まで考慮しなければならないが、本計算では簡略化して入射波の速度のみを考慮する。粘性減衰係数は前後、左右方向120、上下方向20とした。これによる値を実験値において差異値として考慮し、妥当性を検証したものである。

係留力は変位・張力特性を線形化し、3×3マトリクスの形に変換で加算している。ここでの係留特性は、Table.2に示したデータに基づき、流れ、風の影響の無い平時の状態を考えている。

3.2.2水槽試験による検証
構造応答の計算法の妥当性を検証するため、海洋構造物試験水槽において波浪中構造応答試験を実施した。供試模型は波強制力試験同様1/40縮尺模型を用いた。模型は構造的にFig. 3.5の数値計算モデルに出来るだけ忠実になるように骨組み構造とし、節点に相当する箇所に外力および慣性力が作用する構造にした。ただし、実機にはある、プレース、計測室は取付けていない。Fig. 3.6に模型支持浮体部の概念図を示す。模型の主要部材は、剛性が概ね（模型のEI）＝（実機のEI）/（縮尺⁴）
となるよう選定した。模型の主要目を実機に換算して、実機と共にTable 2.1に示す。完成した模型の重心は実機に基づく位置を示している。また、保留ラインには市販の装飾チェーンを用いたため、単位重量が実機相当のラインより約10%重いものとなっている。故は部材表面に通常の圧力ゲージを貼り計測した。圧力はFig. 3.7に示す箇所において、カラム曲げ値4点（A〜D）、Iガーダ曲げ値4点（a〜d）を計測した。

波浪中構造応答試験時の入射波の出力角は180°、波高は実機相当0.8mと一定とした。また、水深は実機相当41.8mである。

Fig. 3.8に実験結果と計算結果の比較例を示す。計算には相互干渉を含む流体力を用いた。結果は実機相当の歪に換算して表している。保留点を持つフーリング（C点）で若干の相違が見られるものの、全体的に両者は良い一致を示しており、計算法の妥当性が確認出来たといえる。保留点を持つフーリングの間隔は、主に模型試験における保留ラインの設置精度を低いため、計算で想定した保留特性と実験の保留特性が一致していない事に起因していると考えられる。また、応答としては小さいが、左右共にあるのはC、D点のIガーダの結果に若干の相違が見られる。これは、構造物の重量分布および保留ライン形状が対象でない事が原因である。計算でも実際に合わせて、これらの非対称性を考慮している。実験の周波数は限られた範囲であるが、計算結果と実験結果を比較すれば、応答関数の推定において、支持浮体系の流体力相互干渉効果を考慮する必要がある事がわかる。

3.2.3 実海域実験データによる検証
実海域実験で得られたデータは、不規則波中の応答であり、データ収録時間から短期海象データと捉える事が出来る。ここでは、線形性を仮定もし、構造応答をどの程度の精度で推定できるか調査するため、周波数応答関数について計算値と実測値を比較する。

比較の対象となる実機の応答関数は3.2.1で示した方法により計算した。結果の代表例をFig. 3.9に示す。計算は流体力に相互干渉効果を考慮した場合（同図左）と相互干渉を無視した場合（同図右）の2ケースについて示す。
Fig. 3.8 Comparison of Calculation and Basin test.
（1）応答スペクトルによる比較
線形重ね合わせ理論により、波スペクトル、応答関数から応答スペクトルを推定する事ができる。すなわち、方向波中での応答スペクトルは（1）式のように表す事ができる。

\[G(\omega) = \int_{-\infty}^{\infty} |H(\omega, \chi)|^2 \cdot S_\eta(\omega) \cdot D(\omega, \chi) \cdot d\chi \quad \ldots (1) \]
\[G(\omega) : \text{応答スペクトル} \]
\[H(\omega, \chi) : \text{構造応答関数} \]
\[S_{\eta}(\omega) : \text{波スペクトラル} \]
\[D(\omega, \chi) : \text{方向分布関数} \]
\[\omega : \text{円周波数} \quad \chi : \text{波との出会い角} \]

\[G_{1}(\omega)=\sum_{i=1}^{n} H(\omega, \chi_i)\Delta S_{\eta 1}(\omega)D_{1}(\omega, \chi_i) \Delta \chi \]
\[G_{2}(\omega)=\sum_{i=1}^{n} H(\omega, \chi_i)\Delta S_{\eta 2}(\omega)D_{2}(\omega, \chi_i) \Delta \chi \]

\[G_{n}(\omega)=\sum_{i=1}^{n} H(\omega, \chi_i)\Delta S_{\eta n}(\omega)D_{n}(\omega, \chi_i) \Delta \chi \]

連立方程式は未知数の数\(n\)だけの実数データがあれば理論的には成り立つが、実際に解を求めるとスペクトルの誤差等により、はらつきを持った結果が得られる。このため出来るだけ多くの実数データを用い、最小自乗法により方程式を解く方法が有効である。ここでは110の実数データを用い\(\chi = 180^\circ, 210^\circ\)の応答関数を求める例をFig.3.10に示す。図中、計算値は相互干渉効果を考慮した結果である。方向分布関数は簡略的に(3)式に示すよう従来の提案式を用いた。

\[D(\chi)=\frac{1}{\pi}e^{-2s^2}I_{1}(s+1)I_{1}(2s+1) (\cos \chi)^{2s} \quad \ldots (3) \]

式中の\(S \)は波エネルギーの方向分布の集中度を表すパラメータであり、\(S \)の値が増加するにつれ、方向分布関数は指向性の強い傾いた形状となる。\(S \)は周波数の関数であり、\(S \)の最大値を\(S_{\text{max}} \)で表す。\(S_{\text{max}} \)により\(S \)を簡便に表すことができる式が、本論文により提案されている(4)式。

ここで、この提案式を用いる事にする。

\[S = \frac{S_{\text{max}}}{1+10\{\log_{10}f_{\text{fp}}\}^2} \quad \ldots (4) \]

\[f : \text{周波数} \quad f_{\text{fp}} : \text{ピーク周波数} \]

\[S_{\text{max}} \text{について} \rightarrow \text{発達した風波では一般に} S_{\text{max}}=10 \text{という値が用いられ、実海域実験の波浪解析結果でも平均的に10をとる事がある} S_{\text{max}}=10 \text{とした。} \]

図からわかるように、実測データから求められた応答関数は計算結果と傾向の一致は見られないが、周波数に対してはばらつきの大きいものとなっている。この原因として、波のスペクトルのパワーと構造の応答スペクトルのパワーで有意な周波数範囲が異なっている事が考えられる。ちなみに動揺の応答関数を同じ手法で求めた場合、比較的精度の高い推定結果が得られている。これは波と動揺では有意なスペクトルの範囲が比較的一致しているためと考えられる。

このように出荷角毎の応答関数を推定する事は精度的に難しい。そこで、別の方法として、応答関数の計算値と実測された方向波スペクトルから、(1)式に従い出荷角に対して積分した形で求めた応答スペクトルと、構造応答の実測値を解析して得た応答スペクトルを比較してみる事にする。

しかし、この方法では波の方向分散性を表現する事は出来ないため、新たに応答関数を(5)式のように表現する事にする。

実測応答関数

\[S = \frac{S_{\text{max}}}{1+10\{\log_{10}(7f_{\text{fp}})^2\}} \quad \ldots (5) \]

Fig.3.11に比較例を示す。比較対象として波力の影響を直接受け易いと考えられるNo.1点（60メートルの高架橋）を選んだ。実測データは波の主方向が\(\chi = 180^\circ\)付近のものの中から有義波周期の異なる2例を選んで
（2）高周波数領域における応答と固有価解析

Fig.3.11.の例でもわかるように構造応答は波スペクトルのパワーが小さい高周波数領域でも比較的大きな値を示す。この事は、線形不变性理論により応答スペクトルを求め、標準偏差を推定する場合などにおいては、応答関数の程度の周波数範囲まで計算しておく必要があるか問題となる。

そこで、アナログデータレコーダー（周波数特性DC～30Hz）で収録した波と構造応答の記録をスペクトル解析し、上記の問題について検討した。

ここで用いるアナログデータは、パーソナルデータレコーダーを組み合わせた計測システムにより収録されたデータである。このシステムは、パーソナルで時刻刻々の海象を解析し、計測期間中における最大有義波高時のアナログデータを自動収録する。通常、1～2週間に一度、データ回収を行うため、この間における最大有義波高時のデータが収集出来る。アナログデータの計測時間は約5時間である。チャンネル数は14で波、風の自然環境データの他、構造関係の計測項目としてカラム曲げ歪（No.1点）のデータが計測されている。

波とカラム曲げ歪のデータを、10Hzの周期でサンプリングしスペクトル解析を行った。解析法にはB.T法を用いた。

1. 解析のデータ数は32768（約55分）、Ln数は2048とした。Fig.3.12に解析結果の代表例を示す。上から波スペクトル、歪の応答スペクトル、（5）式で定義した実測応答関数である。この図から、応答関数について1.9Hz付近と2.8Hz付近に大きいピークが現れていること
がわかる。しかし、波、歪のスペクトルをみると、この付近のパワーは小さく顕著なピークは見られない。そこで、同じ結果をFig. 3.13にlogスケールで表してみる。

こうすると歪の応答スペクトルの1.9Hzと2.8Hz付近にピークが存在する事がわかる。図中の矢印は実機構造物を骨組み構造にモデル化し、固有値解析した結果であり、1.9Hz付近のピークや2～3Hz付近に多くの固有値が存在する傾向を示している。なお、2.5Hzに存在するピークがエイリアシングの影響によるものである。固有値解析には汎用構造解析プログラムSAP4を使用し、構造モデルはFig. 3.5のモデルを若干簡略化していている。以上の結果から応答スペクトルが小さくなる高周波数範囲においても、応答関数は全体的に大きな値を示す事がわかる。この事から、応答スペクトルを積分して標準偏差を求めめる場合、応答スペクトルのパワーがその範囲まで有意な値を持つかを判断して積分範囲を決める必要があるといえる。このため、スペクトルおよび応答関数の特性を把握しておく必要があるが、この問題は4章で検討する事とする。今後の結果から判断すれば0.6Hz付近までの応答関数が推定できていれば実用上は問題ないと考えます。

4. 働労強度解析

これまでに考察してきた波浪中構造応答の推算結果を疲労強度解析に適用する事を考える。

P号の様に細長部材を溶接した構造では波浪による繰り返し外力を受けるため特に接合部の疲労強度についての検討が重要となる。本章では疲労強度解析の概要について述べるとともに、実際にP号の設計においてどのような方法で疲労寿命予測が行われたか紹介する。また、設計の結果と実験結果で計測された応力の頻度分布から予測される疲労寿命について比較し設計時に採用された方法を評価する。さらに、いくつかの外力要因を取上げ、それらが疲労強度にどのように影響するか考察する。

4.1 疲労強度設計法の概要

実際に使われている疲労設計法には種々の方法があるが、一般にはマイナーの仮説に基づいた疲労設計線図（S−N線図）による方法が広く用いられている。ここでは、頻度分布法とスペクトル法をとりあげる。

(1) 頻度分布法

頻度分布法は船舶の疲労強度設計に広く用いられている方法であり、P号の疲労強度設計でもこの手法が採用されている（設計の具体例は4.2まで概説する）。頻度分布法はまず、想定される再現期間の波高、周期等から波高超過出現確率を設定する。次に設定されたそれぞれの波浪に対して部材応力レベル（一般に公称応力の変動振幅）を計算し、変動幅をいくつかのブロックに分割する。各ブロックの応力発生頻度から応力レベル、
繰り返し数を累積してゆき、溶接維手手部の局部変形等解析などから求められる応力集中係数を乘じてヒートスポットの応力レベルを求める。この結果を疲労設計線図に適用し、マイナーの仮説を用い（6）式により累積疲労被害度を求めめる。ここでηは限界被害度で1以下でなければならない。各部材協会では、部材の重要度、スプッシュゾーンなど部材の適用環境などにより区分し、推奨値を提案している。

\[\sum_{i=1}^{N_e} \left(n_i / N_i \right) < \eta \quad \ldots (6) \]

\[n_i : \text{各応力レンジにおける繰り返し数} \]
\[N_i : S/N線図で与えられる繰り返し数 \]
\[N_e : \text{応力レベルのスライス数} \]
\[\eta : \text{限界被害度（< 1）} \]

疲労設計線図は部材の接合形式などによりクラス分け

がされ、部材の疲労試験データに基づく線図が各船級協会などから提案されている。

頻度分布法による疲労被害予測手法の流れ図をFig. 4.1に示す。

（2）スペクトル法
スペクトル法は線形重ね合わせ理論に基づき、波浪中の応力変動を確率論的に扱う手法である。

波浪は想定される再現期間中の波浪出現確率を用い、それぞれの波浪条件に対して設置海域等を考慮し、波スペクトルを仮定する。次に、構造応答計算で得られる応力の応答関数と波スペクトルから、線形重ね合わせ理論により3章の（1）式で示したように応力の応答スペクトルを求める。

狭帯域の仮定のもとに、応答スペクトルから応力の標準偏差が（7）式のように求められる。

\[\sigma^2 = \int_0^\infty G(\omega) \cdot d\omega \quad \ldots (7) \]

Fig.4.1 Flow chart of Discrete method.

Fig.4.2 Flow chart of Spectral method.
また、平均繰り返し周波数は（9）式のスペクトルモーメントを用い、（8）式のように与える事が出来る。

\[
T_{01} = 2\pi \left(m_0 / m_1 \right)
\]

\[
T_{02} = 2\pi \sqrt{m_0 / m_2}
\]

\[
T_{04} = 2\pi \sqrt{m_0 / m_4}
\]

…（8）

\[
m_n = \int_0^\infty \omega^n G(\omega) d\omega
\]

…（9）

これらに加え、適当な応力分布が与えられれば、疲労設計線図を適用して累積疲労被害度を求めめる事が出来る。

応力分布としては一般にレーレー分布が用いられ、応力変動振幅の確率密度関数p(x)は標準偏差σを用い（10）式のように与えられる。

\[
p(x) = \frac{1}{\sigma^2} \exp \left(\frac{-x^2}{2\sigma^2}\right)
\]

応力集中係数、限界被害度は頻度分布法の同様に扱う。

スペクトル法による疲労被害予測手順の流れ図をFig. 4.2に示す。

4.2 設計における疲労強度解析

先に述べたようにP号の疲労強度設計には頻度分布法が用いられた。耐用年数は実験期間を考慮し5年が設定された。以下に実際に行われた疲労設計の概要を追って紹介する。

4.2.1 設計波浪

波高分布は気象庁による山形県西田川郡「温海」の沖合い2.1 km（水深45m）における1983年〜1984年の観測値に基づき決定した。「温海」は、気象庁および港湾建設局を含めた波浪観測地点の内、実験海域に最も近い観測地点であり、P号設置地点の南西約5 kmに位置する。

Fig.4.3は観測結果から得られた有義波高の頻度分布である。波高に対する周期は1981年〜1984年の観測結果に基づく有義波高と有義波周期の関係から平均的な値をとって仮定した。結果をFig.4.4に示す。以上の結果から波高、周期および波力の繰り返し数をTable 4.1のように決定した。耐用年数5年間の日数は観測期間2年の値から、単純に2.5倍して用いている。

4.2.2 検討部位と疲労設計線図

疲労強度を検討した部位はFig. 4.5に示すパネル接合部およびプレース接合部である。疲労設計線図はFig.4.4 Comparison of Wave data between Measured period and Used value for Design.
Table 4.1 Appearance days of Waves for 5 years.

<table>
<thead>
<tr>
<th>No.</th>
<th>$H/3$ (m)</th>
<th>H (m)</th>
<th>T (sec)</th>
<th>日数</th>
<th>日数</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>0.1～0.7</td>
<td>0.4</td>
<td>4.0</td>
<td>110+155</td>
<td>662.5</td>
</tr>
<tr>
<td>No. 2</td>
<td>0.7～1.3</td>
<td>1.0</td>
<td>4.8</td>
<td>107+93</td>
<td>500.0</td>
</tr>
<tr>
<td>No. 3</td>
<td>1.3～1.9</td>
<td>1.6</td>
<td>5.5</td>
<td>65+53</td>
<td>295.0</td>
</tr>
<tr>
<td>No. 4</td>
<td>1.9～2.5</td>
<td>2.2</td>
<td>6.3</td>
<td>55+49</td>
<td>260.0</td>
</tr>
<tr>
<td>No. 5</td>
<td>2.5～3.1</td>
<td>2.8</td>
<td>7.0</td>
<td>16+9</td>
<td>62.5</td>
</tr>
<tr>
<td>No. 6</td>
<td>3.1～3.7</td>
<td>3.4</td>
<td>7.7</td>
<td>8+7</td>
<td>37.5</td>
</tr>
<tr>
<td>No. 7</td>
<td>3.7～4.5</td>
<td>4.0</td>
<td>8.3</td>
<td>4+0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Fig. 4.6 S-N curves used for Estimation of Damage.

Fig. 4.7 Response Amplitude Operator used for Design.

設計時の構造応答計算は、あらかじめ動揺応答計算を行い各部材に働く慣性力を求めた後、波力および慣性力を構造モデルに外力として加えて内力の応答を求める2段階法を用いている。波力は単独の支持体ないしはモリソン式によく計算している。外力は波浪分散性による位相のみを考慮され、相互干渉効果などは考慮されていない。抗力係数（C_x）は1.0としている。

構造計算は、波との出会い角$x = 180°, 210°, 240°$について行っている。設計段階では波の方向分布の観測データが得られていないため、強度の検討においては、対象とする部材毎に最も厳しい出会い角の応答を選び用いている。

Fig. 4.7にカラムを対象としたモーメント、プレスを対象とした軸力の計算結果を示す。図中、参考として内力を直に換算した値を破線中に併記する。設計に用いられた応答関数は、3章で求めた応答関数と比較すると若干低い値を示している。
4.2.4 疲労強度の推定

検討部位毎の疲労強度の推定結果の具体例を以下に示す。

①カムスフィッパー（Joint 1 Class D）

<table>
<thead>
<tr>
<th>No.</th>
<th>N (t, cm)</th>
<th>Sa (N/mm²)</th>
<th>n₁</th>
<th>n₁/N₁</th>
<th>N₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1680</td>
<td>8</td>
<td>1.43 × 10⁷</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3500</td>
<td>17</td>
<td>9.00 × 10⁶</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>4400</td>
<td>22</td>
<td>6.63 × 10⁶</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>4380</td>
<td>21</td>
<td>2.97 × 10⁶</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4220</td>
<td>21</td>
<td>7.71 × 10⁵</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3940</td>
<td>19</td>
<td>4.21 × 10⁵</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>3820</td>
<td>19</td>
<td>1.04 × 10⁵</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

判定 N=10⁸でのSa=33N/mm²であるのでOK

②カムスフィッパー（Joint 2, 3 Class F）

<table>
<thead>
<tr>
<th>No.</th>
<th>N (t, cm)</th>
<th>Sa (N/mm²)</th>
<th>n₁</th>
<th>n₁/N₁</th>
<th>N₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1680</td>
<td>11</td>
<td>1.43 × 10⁷</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3500</td>
<td>22</td>
<td>9.00 × 10⁶</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>4400</td>
<td>28</td>
<td>4.63 × 10⁷</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>4380</td>
<td>28</td>
<td>3.57 × 10⁶</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4220</td>
<td>27</td>
<td>7.71 × 10⁵</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>3940</td>
<td>25</td>
<td>4.21 × 10⁵</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>3820</td>
<td>25</td>
<td>1.04 × 10⁵</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

判定 Σ(n₁/N₁)=0.17<1.0

③プレス接合部（Joint 4 Class E）

疲労被害を予測する際、接合部の応力集中係数を合理的に決定する必要がある。一般的には、接合部を有限要素法などにより詳細解析して、応力集中係数を求める方法がとられるが、ここでは製作誤差を考慮する事により、次のような簡易的な方法で応力集中係数を与えてみる。

この部位はプレス時の製作誤差により有効断面積が6.4mm²から3.4mm²の板厚に相当する分減少量とした仮定している（Fig.4.8）。このときの応力集中係数を1.0とした。

なお、4.2.2で述べたように、使用した疲労設計線図では応力集中の影響が事前に考慮されている。そこで仮定した応力集中係数は、疲労設計線図に含まれる応力集中係数に乗ることで適用した。

4.3 実測データから推定した疲労強度

設計値に対して実際の疲労強度がどうであったかを、実測データをもとに検証する。疲労強度の検証に関して、いくつかの実験方法が考えられる。実験計画の段階においては、意図的に破壊を発生させる部位を選び付けるのが標本選定の方法である。安全重視の立場から実行されなかった。また、実験後の試験データをもとに、疲労強度を計測する方法を考えられる。しかし、疲労設計線図を用いた設計手法には、設計手法の変更が行われており、本実験は、この中の1サンプルにすぎず、充分なサンプル数が得られるとは言い難い。よって、最終的には疲労設計線図を適用する前の段階で、すなわち、
応力の発生頻度の推定精度について検証する事がより重要であるという結論に達した。以下、その主旨に沿って検証した結果について述べる。

4.3.1 定時計測データと連続計測データの比較
検証の前に、計測された定時計測データの信頼度について考察しておく必要がある。定時計測データは1日4回の不連続計測である等から、疲労被害を検討する上で連続計測データとの相関について検証しておく必要がある。Fig. 4.10はヒストグラムレコーダによる連続計測データと定時計測データを比較した図である。横軸に歪レベルを縦軸にレインフロー法による各レベルの累積回数をとり、1.3, 13, 100, 1000, 10000の累積を示している。この程度長い累積値では両者は良い相関を示し、定時計測データを疲労解析に用いて支障無いといえる。

4.3.2 設計値と実測値の比較
設計値と定時計測データから推定された疲労被害を比較する。定時計測データが1日4回の計測であるところから、実測値は1日の計測時間（3分4秒間の）の歪振幅レベルと繰り返し数を6時間あたりの値に換算して用いる。
Fig. 4.11はカーラム・プレスについて、実測値と設計値に基づく累積疲労被害を比較した図である。実測値は1カ月毎の、設計値は1年毎の累積疲労被害を示している。今後の比較では設計値は実測値の約4倍の値を示している。設計値が大きくくなった要因として、①設計に採用した頻度分布法が基本的に長波長波を仮定し、波の方向分散性が考慮されていない事、②波を1方向に仮定し、波向きの変動頻度が考慮されていない事等が考えられる。一方、設計から活用した周波数対応関数が実測値に対し若干過小評価になっている問題は、外力の計算方法が比較的簡略的な手法によっており、波力の相互干渉効果を無視している事などに起因すると考えられる。この事は、累積疲労被害を過小評価する要因となりうる。設計値はこれらの要因が含まれた結果である。
参考としてFig.4.11中をスペクトル法を用いた時の結果を示す。設計時の応力関数推定では相互干渉が無視されている。ここでの応力関数も比較のため設計時との比較に近い推定結果を採用することとし、3年を求める相互干渉を無視した場合のものを用いた。応答スペクトルは、この応力関数と実測された波高、波周期、波向きを考慮し求めてている。この時、スペクトルはN-JONSAP型、方向分布関数はS_{max}^{10}とし（2）、（3）式で与えている。疲労被害は4.1で述べた方法により応答スペクトルから求め、1年毎の累積を示している。スペクトル法による推定結果は、より実測値より推定された結果に近い値を示している事がわかる。

4.4 線形理論による疲労強度の検討
4.4.1 スペクトル法による推定
短期海象における疲労被害は、疲労設計線図と変動応力の標準偏差およびスペクトルモーメントで求められる平均周期から、応力の頻度分布をレーレー分布で近似する
る事により求められる事を示した。一般に、疲労設計線図は（11）式のように与えられる。

\[N = K \cdot S^{-q} \quad \ldots (11) \]

\(N \): 繰り返し数 \(S \): 応力レンジ
\(K, q \): 材料、接合条件等で決まる定数

この時、応力の頻度分布をレーレー分布と仮定すると疲労被害 \(D_{\text{Ray}} \) は（12）式のように表せる。

\[D_{\text{Ray}} = (\nu/(K^*)^2) \cdot \Gamma(1+q/2) \quad \ldots (12) \]

\(\nu \): 変動応力の平均周波数 \(\nu = \frac{1}{T_{02}} \)
\(\sigma \): 標準偏差

Fig. 4.12 avoir定常計測データから求めた6時間あたりの疲労被害と標準偏差の関係を表している。適用した疲労設計線図の定数 \(q \) 4であることから、（11）式に従って横軸を \(\sigma^4 \) で表している。図から疲労被害は標準偏差の3乗に比例している事がわかり、結果は上記の理論を良く裏付けている。

4.4.2 応力レベルの頻度分布

確率線形応答理論により構造応答の短期予測を行う場合、多くは応力の頻度分布形状をレーレー分布と仮定する事を述べた。また、歪の時系列から応力レベルをカウンティングする方法として、振幅法、レインフロー法などが用いられる。レインフロー法は不規則変動する歪波形を応力に換算する際に部材のヒステリシスを考慮する方法で、1次波に周期の長い2次波が重複し、1次波の平均応力が変化するといった場合に有効な方法であるといわれている。ただし、今回の定常計測データ中には際だった波形変化は見られていない。Fig. 4.13 は実測データを振幅法、レインフロー法によりカウンティングした時の頻度分布の例である。横軸は歪レベルを標準偏差で無次元化した値で表している。例では波高の異なる2条件を選んで示しているが、振幅法はほぼレーレー分布で近似出来ることがわかる。一方、レインフロー法の場合、歪レベルの小さい範囲で頻度が高くなる傾向を示す。

![Fig.4.12 Relationship between Fatigue damage and Standard deviation.](image1)

![Fig.4.13 Comparison of Distribution between Range counting and Rainflow counting.](image2)
4.4.3 応力の繰り返し数

頻度分布法では応力の繰り返し数が波の一波一波に対する関係を示す。Fig. 4.14は波期における1カ月間の波周期と正の平均値（測定時間/振幅数）によりカウントした繰り返し数の関係を示したものである。波周期と正の平均値、ゼロアップクロス周期、極値間周期を用いている。この関係から正の平均値周期は3.5～6.5秒の範囲に分布している事がわかる。これに対し有義波周期、ゼロアップクロス周期は3～12秒と広い範囲に分布し有義周期よりも良い結果を示している。これらの統計値を繰り返し数として使用するとき、極値間周期は安全側であるが、値も精度の面で補充するものではない。Fig. 4.15は(7)式で示したスペクトルモーメントから求めた周波数T_1, T_2, T_3 が遠い平均値の関係を表している。この関係によればT_0のためT_0を良い相関を示している事がわかる。スペクトル法による疲労設計では一般にT_0が用いられる事が多く、図の結果はこの事に裏付けている。

以上の結果から繰り返し数の推定において、応答スペクトルから求められる周期T_0を用いるのが望ましい。

4.4.4 流体力学的相互干渉の効果

3.2で相互干渉を考慮した時に無い時の応答関数の計算値を比較し、相互干渉効果を無視した計算値を示した。この結果は、相互干渉による周波数の変化は見られないものの、相互干渉を無視した結果と比べ、有義値の効果は大きい変化が無いようにも見えることができる。そこで、相互干渉を考慮した場合の応答関数の計算値を用いて、応答スペクトルを推定して変位の精度目標を求め、両者にどのような違いがあるかを調べることにする。

波スペクトルはJONSWAP型を用い、peak enhancement parameter γ=1、2、3、3 と3通りに変化させた。方向分布関数は(2)、(3)式の先端、泉根等の提案式を用い、S_{max}=10とした。波の主方向は$x=180°$、有義波高と有義波周期に対応する波長の比を1/25とした。

Fig. 4.16に上記の方法で計算した標準偏差を有義波周期に対応する結果を対象にしたときの結果をグラフで示している。Fig. 4.17は相互干渉を考慮した結果で無視した場合と比べて表現されて表現している結果である。これらの国から相互干渉を考慮した場合の方が若干低い傾向を示す事がわかる。この事は、上部構造よりも、グラフ、ブレースで顕著に現れている。

4.4.5 波スペクトルの推定と疲労被害

線形重ね合わせの過程を説明するために、Fig. 4.18は応答関数、波スペクトル、応答スペクトルを順に並べて示す。図から、相互干渉を考慮した結果では、0.25Hz近辺にある応答関数のピークにより応答スペクトルが高いい値をもつ事がわかる。これは有義波周期の短い場合に顕著に現れている。

また、0.1～0.2Hzの範囲での応答スペクトルにも違いが見られる。この範囲では応答関数の変化が全体的に大きく変わる難易が、流体力特性に相互干渉数が現れていたため、応答スペクトルが変化する。

構造応答スペクトルは波スペクトルのピークより高い周波数範囲で大きい値を持ち、バンド幅も波スペクトルに比較して大きくになっている事がわかる。従って、動揺応答を扱う場合とは異なり、波スペクトルの線図に応じる周波数範囲が重要な意味を持ち、peak enhancement parameter γにより、応答スペクトルの推定結果に大きく

\begin{align*}
\text{Fig. 4.14 Comparison of Mean period of Strain and Wave period.}
\end{align*}

\begin{align*}
\text{Fig. 4.15 Comparison of Mean period of Strain and Period obtained from Spectrum of Response.}
\end{align*}
Fig. 4.16 Relationship between Standard deviation and Significant wave height.

Fig. 4.17 Interaction effects between Columns against Standard deviation of Strain response.
(a) Interaction is considered. (Wave: S_{max}=10 χ=180°)

(b) Interaction is not considered. (Wave: S_{max}=10 χ=180°)

Fig.4.18 Example of Spectrum estimations according to linear theory.
4.4.6 波向の方向分散性の影響
実海域における波浪は方向分散性を持つため、一般に各種応答は、方向に関して統計的に扱う必要があり、長波頂波に対する応答は異なる。

標準偏差および疲労被害度について、波の方向分散性の影響による変化の程度を調べるためには、方向分散関数として前に述べてきた光易等の提案式を用い、S_{max}を2～16まで変化させた時の標準偏差を求めた。波の主方向は設計時と同様に、対象物に対する最も過酷となる短波を選んだ。結果をFig. 4.19に示す。横軸はS_{max}、縦軸は長波頂波に対する短波頂波中の標準偏差の比、右縦軸は同じく疲労被害度の比を表す。疲労被害度はFig. 4.15の結果に基づき、標準偏差の3乗に比例すると仮定している。波スペクトルは$\gamma=1, 2, 3$において有義波高を$4\sim16$メートルの範囲で変化させた。この結果から標準偏差は75%\sim95%の範囲で変化し、この時、疲労被害度は40%\sim85%に軽減されることがわかった。γによる変化は小さい。

4.3で示した疲労被害度の設計値と実測値の比較結果には約4倍の相違がみられた。実験海域では平均的に$S_{\text{max}}=10$程度であるが考えがわかった。この時、波の方向分散性の影響は$4\sim70$程度の範囲にある事がFig. 4.19によりわかった。すなわち方向分散性の影響により疲労被害度は約$1/2$になる。設計値が長波頂波を仮定し、波向が短波として推定した結果である事を考慮するならば、残りの約$1/2$は波向および波周期の出現確率などの影響によるものと考える事ができる。よって、方向分散性および波向、波周期の出現確率とも、疲労被害の予測において同等の影響を及ぼし合うと考える事ができる。

5. おわりに
POSEIDON号の実海域実験を通じ、実際に構造物の設計から実測データの収集、解析に至るまで一連の過程を経験する事ができた。本論文では、構造物の波浪応答および疲労寿命の推算法について、設計で用いた手法および近年提案されている別の手法を用い、得られた推定値と実測値を比較し、検討を行った。得られた主な結果をまとめて以下に示す。

①多数の支持体間の流体力学的相互干渉を含む流体力特性について特異点分布法を用いた計算を行い、試験水槽における波浪制御試験の結果と比較した。この結果、0.2Hz以上の周波数で相互干渉効果が顕著になる事がわかった。計算値は実機相当0.04～0.4Hzまでの範囲で実験値と良い一致を示し、計算精度が確認された。
②特異点分布法で計算した流体力、波浪制御を用い、構造物を3次元骨組み構造にモデル化して構造の周波数応答関数を計算した。計算結果に規則波中水槽試験結果と比較し、計算法の妥当性を確認した。
③支持体間の流体力学的相互干渉を考慮した波浪構造応答計算を実施し、応答スペクトルの値で実測データとの比較を行った。その結果、実験構造物の構造応答関数の予測において、相互干渉が無視しえない事わ

Fig.4.19 Relationship between Standard deviation and S_{max}
かった。
④高周波数領域での構造応答特性を調べるため、アナログデータのスペクトル解析を実施した。波スペクトル、応答スペクトルのパワーセ機き高い周波数範囲であっても、応答関数は全体的に高い値を持ち、構造の固有値に相当する周波数では、高いピークを示す事がわたった。
⑤疲労被害に関し、頻度分布法による設計値と応力の実測波形に影響を与える要因を比較し、その結果、実験期間中の飛槽疲労被害において、設計値は実測データから求めた推定値の約4倍の値を示した。また、波浪の観測情報を基にスペクトル法による疲労被害の推定を行った結果は、実測データによる推定値に近い値を示した。
⑥実測データの応力の計測方法は実用レベルであると近似できる事を確認した。応力波形のカウント法について振幅法とブロード法を比較した結果、今回の実験に関しては、疲労被害に換算するとき両者に大きな相違は見られなかった。
⑦応力の値が大きいかで、波浪および周波数スペクトル変動から得られる周波数の相違を比較を行った。
これらの結果、波周期による近似は充分な精度とは言えずスペクトル変動が基にしたT02が最も良い相関を示す事がわかった。
⑧短期波象中の履歴被害は、疲労設計法に沿って、応力の標準偏差と3乗に比例する事が多いデータの解析結果により確認された。
⑨線形重ね合わせを用いて構造応答のスペクトルから標準偏差を求めた時、応答関数に波数的相互干渉効果を考慮した時と無視した時とで相違が見られ、相互干渉を考慮した場合の方が若干高い値を示した。
⑩構造の応答スペクトルの推定値は波スペクトルの提案式により大きさ変化し、応答関数の値の高い、スペクトルのピークより高周波数帯の野面のスペクトル形状に大きく左右される。
⑪波浪の方向分散性の影響により、短期波象中の履歴被害は長波頂波を仮定した時に約40～70％に低減する事がわかった。また、波向、波周期の出現確率を考慮した場合の、疲労被害の予測値が同程度低減される事がわかった。

6. 参考文献
1) 矢内清和、大川秀、斎藤昭、観水政：浮遊式海象構造物の実海域実験（その5）波浪による構造部材の歪について）、日本造船学会論文集、第170号、1991.11。
2) 矢内清和、大川秀、斎藤昭：浮遊式海象構造物の実海域実験（その1）波浪構造応答について）、日本造船学会論文集、第174号、1993.11。
3) 安藤定雄、星野邦弘、山岸直人：浮遊式海洋構造物の実海域実験（その2，実験構造物の日射による温度分布について）、日本造船学会論文集、第167号、1990.6。
4) 吉元雅文、安藤定雄、小林直邦：浮遊式海洋構造物の実海域実験（その3）実験海域の波によりスペクトルについて）、日本造船学会論文集、第168号、1990.12。
5) 運輸省政策局：海洋構造物の適性を示すための技術開発研究特別研究会論文集、1991.11。
6) 船舶技術研究所：浮遊式海洋構造物の実海域実験その1：船体技術研究所報告第13号、1992.1。
7) 河岸正弘、福岡善二：セミサブ型海洋構造物の疲劳解析について、日本造船学会論文集、第152号、1982。
8) 吉田宏一郎、石川直邦、飯田英雄：浮遊式構造物の実海域応答解析、日本造船学会論文集、第138号、1974。
9) 吉田宏一郎、石川直邦：浮遊式構造物の実海域応答解析（総説）、日本造船学会論文集、第138号、1974。
10) 吉田宏一郎、石川直邦：三次元浮遊式構造物の実海域応答に関して、日本造船学会論文集、第143号、1978。
11) 日本造船学会海洋工学研究会構造分科会：半潜式海洋構造物の数学応答解析、第7回海洋工学シンポジウム、日本造船学会、1984。
12) 日本造船学会海洋工学研究会構造分科会：半潜式海洋構造物について、数値実験関数が地殻を示す、第7回海洋工学シンポジウム、日本造船学会、1984。
13) 北村一宏、吉田宏一郎：多数の2次元任意形状物体間の相互干渉牛、日本造船学会論文集、第165号、1989。5。
14) 北村一宏、吉田宏一郎、嶋徳昭：数値の浮体で支持された長大な半潜式構造物の波浪応答解析、日本造船学会論文集、第166号、1989。11。
15) 吉田宏一郎、北村一宏、嶋徳昭、小林直邦、鈴木裕子：数値の浮体からなる構造物に働く波動制御および波浪応答に関する研究、日本造船学会論文集、第172号、1992。11。
16) 吉野宏一郎、鈴木英之、嶋徳昭、飯島一博、志村拓也、有馬俊司：大規模浮体における波動制御の相関干渉効果、日本造船学会論文集、第174号、1993。11。
17) 吉田宏一郎、鈴木英之、嶋徳昭、飯島一博、志村拓也、大規模浮体における波動制御の特性、第12回海洋工学シンポジウム、日本造船学会、1994。1。
18) 大松重雄、安藤定雄、小宮治彦：浮遊式海洋構造物の実海域実験（その4）方向スペクトル波中における動的応答）、日本造船学会論文集、第169号、
1991.6。19）佐渡誠二、小林陽太郎：方向スペクトル波中における海洋構造物の応答－その1線形一次応答－、日本造船学会論文集、第165号、1989.6。
20）佐渡誠二、平山次文、上野誠也、陳剛：浮遊式海洋構造物の方向スペクトル波中実験に基づく方向波波数応答関数推定、日本造船学会論文集、第168号、1990.12。
21）佐渡誠二、平山次文、上野誠也、Akin Tuzcuoglu、根原洋昭：方向スペクトル波中の超大型海洋構造物応答実験、日本造船学会論文集、第172号、1992.11。
30）Department of Energy: "Off-shore installations: Guidance on design and construction 1984"。
31）三井海洋開発：構造物の設計計算書、POSEIDON完成図書、1986。
32）（財）日本海事協会：係留システム設計指針、1983。
33）（財）沿岸開発技術センター：浮体構造物技術マニュアル、1990.7。
34）（財）日本建築センター：海洋建築物安全性評価指針、1990.3。
35）（社）日本土木学会：海洋構造物設計指針。
36）（社）日本建築学会：海洋建築物構造設計指針（浮遊式）・同解説。
37）日本溶接協会：塑性設計資料集（その11）海洋構造物の構造強度研究における最近の進歩、1985。