CFRP の音速特性と新超音波探傷技術の研究

勝又 健一*、高井 元弘*、前田 利雄**

Ultrasonic Wave Characterization of CFRP and New Technique for Ultrasonic Testing by

Ken-ichi KATSUMATA, Motohiro TAKAI, Toshio MAEDA

Abstract

Ultrasonic wave propagation velocities in composite materials with laminated layer such as CFRP (Carbon Fiber Reinforced Plastic) are very difficult to be measured because of differences on the velocities between resin portion and fiber one. However, in ultrasonic testing, it is necessary to decide its velocities in all directions for detecting the location of defect. The experiment was carried out using two kinds of specimens, the dice (block) type and the plate type. Both specimens are manufactured from CFRP plate.

In this paper, an approximate equation is proposed for propagation velocity in any direction of CFRP. Velocity in any direction can be calculated from both the velocities of 0 and 90 degree propagation angle which are able to be measured easily. The difference between calculated value and experimental one was within 10%.

Furthermore, a new inspection method is proposed. This method could detect existence of defects by audible sound converted from ultrasonic wave signals. Experimentally, the sound from defects were clearly distinguished from noise or others.
1. はじめに

樹脂をベースとした繊維強化複合材料は、軽量で、繊維配向を選択し組合わせることで応力方向に強い材料を作ることができる。ガラス繊維強化プラスチック（GFRP）は小型船舶をはじめ、各種の分野で多く利用されている。より強い炭素繊維強化プラスチック（CFRP）は比強度が鋼の5～10倍にもなる。CFRPは現在のところは船舶用構造部材としてほとんど使用されていないが、今後、高度に軽量化を要求される高速船等へ適用することが期待される。非破壊検査方法の一つである、超音波による欠陥の検出（超音波法）では、超音波の反射波により欠陥の存在を検知し、材料中を伝搬する速度（音速）によりその位置を特定することができる。CFRPは、その強度と同様に、音響的にも異方性を示す材料である。従って、超音波検査においては、超音波の伝搬方向によって音速が変化するので、得られたエコーだけではその位置を決めることができない。その上、樹脂での減衰や層間からの反射もあるので検査が極めて困難である。

超音波探傷の方法には垂直探傷法と斜角探傷法がある。垂直探傷法は計測が比較的容易であるので、一般的に用いられている。しかし、CFRPのような積層材料では、層からの反射と層間部分からの反射を区別することが容易でなく、得られた波形の相対的な強度以外は難しい。一方、斜角探傷法は計測や数値処理が簡便で、厚さ方向の欠陥の検出等に使われる場合にのみ使用されている。CFRPでは、欠陥が厚さをもって、あるいは厚さの方向に発生する可能性が大きいので斜角探傷を行う必要がある。

音響異方性を有する材料の音速については、TMCP鋼板及びアルミニウム合金板の音速分布を求める近似式が提案されている。で、3方向（0,45及び90度）の音速値を用いている。これらは材料のどの方向でも測定が困難ということはない。繊維強化型のCFRPは波の伝搬が繊維に対して斜め方向（特に45度付近）の信号が極端に弱くなり、測定が困難となる。そのほか、物理常数による数値計算により行うこととなる。
提案*1されてはいるが、この場合には樹脂や繊維の弾性定数など計測が困難な数値が必要である。

本報告では、CFRPの任意方向の音速を、計測が容易な2方向の音速値から計算する近似式を提案した。

この近似式の精度を、水浸法による斜角探傷及び直接探傷法による垂直探傷により検証したが、計算値と測定値には良い一致が見られた。

さらに、超音波探傷機の新形式として、二つ技術を開発した。①S/N比向上による欠陥信号の強調及び、②超音波信号（周波数数MHz帯）を可聴領域の周波数（Hｚ〜1kHz域）の信号に変換して聴覚で調べる方法である。前者の①は得られた信号が欠陥の場合、その欠陥位置からのエコーは探触子走査によって合成して強調するもので、後の信号は同時に打消しあってしまいました。後者の②については信号を直接聴けるような、超音波探傷システムを試作して検討を行った。

2. CFRPの音速測定

2.1 試験片および計測装置

2.1.1 試験片

実験に用いた試験片は炭素繊維とポリカーボネート樹脂により製作したCFRP（単一配向及び0/90度積層構造、繊維の体積含有量（VF）60%、0.3mm/プライト）から採取した平板試験片及びサイロ状試験片の2種類である。試験片の形状をFig.1に示す。

平板試験片の寸法は、大きさが200×300mm、厚さが20mmである。単一配向及び0/90度積層構造の2種類の試験片を製作し、超音波信号を斜め入射する斜角探傷法により実験した。

サイロ状試験片と呼ばれる試験片は、単一配向のCFRPから、断面の法線方向が繊維方向に対して角度を変えるように仕上げた。その断面の角度は0, 7, 20, 31, 40, 45, 62, 66, 75, 81及び90度である。この試験片では垂直入射による実験を行なった。2.1.2計測装置

実験に用いた超音波探傷計測システムをFig.2に示す。装置の主要な仕様は以下のとおりである。

高出力パルサー	375V, 2.8kW/13kW	矩形パルス型
広帯域レシーパー	100kHz〜50MHz×2	
A/D変換器	5 ns, 16 Kword×2	
波形処理装置	平均化、時間差測定、FFT等	
水浸走査装置	5軸制御×2 ch、自動設定型	一边200mm空間内送入、反射方向任意設定
探触子（水浸用）	焦点型B-2C15L-F50×2、曲率半径40mm	最小単位X,Y,Z0.1mm、水平及び垂直度：0.1度

（直接接触用）：B-2C15N×2

2.2 実験方法

超音波の入射は、サイロ状試験片ではすべて表面に対して垂直入射であり、平板試験片では表面に対して基本的に斜め入射である。音速の測定は最初に到達
する先頭波及び、次に受信される第2波について求めた。先頭波と呼ぶのは、時間領域で最初に受信される波であり、先頭波の後で、波が分離したと思われた信号を第2波とした。ただし、多重波形が現れる場合はこれらは第2波とはならない。

水中で探傷する場合を水浸法と言うが、ここでは試験材を全波で行う。水浸法を適用した。水浸法はサイコロ状及び平板試験片について実験した。

水浸法に対して、より一般的な探傷は直接接触法である。探触子と試験材の間に液体を介して密着して探傷するもので、実験ではサイコロ状の試験片について適用した。

水浸法では送信探触子からの超音波は水を通じて材料をとおって後再び水中に進み、受信探触子に到達する。超音波の伝播時間は水中の伝播時間と材料の伝播時間の和である。従って、水中での伝播時間は求めると必要がある。超音波の水中伝播距離（水中の音速距離、以下水距離と呼ぶ）は以下の方法で求める。(1) 二個の探触子の音速を合わせて向い合わせる。(2) 距離を変化させて超音波を受信して振幅を測定する。(3) 水距離と振幅の関係で最大振幅の水距離を算出する。計算によくても確認する。

実験に使用した探触子は焦点型探触子である。この探触子は曲面振動子型のものでなく、音響レンズ（曲率半径は40mm）を円形振動子前面に張付けるタイプのものである。焦点付近では超音波のビーム径が最も細く、エネルギーが最大となる。この最大となる距離を水距離とした。

Fig.3に水距離と受信波高さとの関係を示す。ピーク値は105mmであるので、ピーク値から求めた水距離は105mm/2（＝52.5mm）となる。一方、用いた探触子の音場について数値計算した。その結果、音響での音圧の最大は、Fig.4に示すように (a) 連続波及び (b) パルスによって計算した結果、両者とも50mm弱となってい
2.2.1 サイクロ状試験片の垂直入射

サイクロ状試験片の垂直入射の場合は探触子の配置をFig.5に示す。(a)が水深法、(b)は直接接続法である。両接触子の軸を合わせて、伝搬時間を測定する。図中の伝搬角（サイクロ状の試験片を作成するときの側切角と等しい）は音速と繊維面との角度である。

水深法の場合のCFRP試験片を通過する伝搬時間の測定は、受信探触子で受信した波形の立ち上がり時間が水中を伝搬する時間が引いて求めた。

直接接続法では水深法のように水深による変容時間のないため、受信波形の立ち上がり時間が伝搬時間となる。音速は各試験片の伝搬距離（送信・受信間長さ）と伝搬時間から求めた。

2.2.2 平板の斜め入射

平板の斜め入射の場合は探触子の配置をFig.6に示す。実験は水浸走査装置を使用して以下の手順で実施した。

(1)所定の水平角R（単一配向の試験片：0度及び90度、0/90積層構造試験片：0(90)度及び45度）と所定の伝搬角になるように試験片の表面の点Pと裏面の点Qを決める。伝搬角は試験片表面とPQとのなす角度でγとする。

(2)P、Q点より、水深距離（50mm）の水中の位置に送信・受信探触子を入射角（α）と受信角（β）とが等しくなるようにセットし、送信・受信探触子を動かして超音波を送信し、得られる波形の振幅が最大となる位置を求める。

(3)波形の立ち上がりまでの時間（伝搬時間）から以下のよう音速を求める。この試験片内の伝搬時間とPQの距離から、伝搬角度（γ）に対する音速が得られる。試験片内の伝搬時間は測定値から水中伝搬時間（67.6μs）を引けば良い。

2.3 実験結果

2.3.1 サイクロ状試験片垂直入射の場合

サイクロ状試験片（水平角0度）では垂直入射した場合、入射角は常に0度である。伝搬角は試験片により異なる。繊維面との角度が0, 90, 45度の試験片での波形例をFig.7.8.9に示す。ピーク周波数の変化を調べるため、得られた波形について周波数解析を行なったが、得られた先頭波のスペクトルとその時間領域も図示に示す。上図が透過波、下図が反射波である。反射波は伝搬損失が大きいため条件によっては反射波形を示さない場合（Fig.9, 45度）がある。従って、音速の測定には透過波を用いた。以下では、透過波に関するのみ説明する。Fig.7.800度（繊維方向伝搬）では、Fig.7.45度に示すように多重波形が現れている。

Fig.8の90度（繊維と直交）の場合、現れた多重波形間の伝搬時間が長くなっている。両伝搬角の波形は明瞭であるが、45度（Fig.9）では多重波形は現れず、波形

Fig.6 Set up of Probes on Plate Specimen

Fig.7 Examples of Waveform at Propagation Angle 0 Deg.
（先頭波）はスペクトルのピーク周波数が低周波側に遷移した。また、先頭波の振幅は小さい。その直後に高振幅の第2波が現われる。

次に、伝播角と音速との関係をFig.10に示す。水浸法及び直接接触法の両方で、同様な結果が得られている。図からは、音速特性に2つの傾向があることが分かる。先頭波は伝播角に対して大きく変化し、第2波ではそれがない。両者の速度差は伝播角が小さい程度顕著である。同様な先頭波の音速特性について、フィラメントワインディング軸のCFRP材で報告されている。

2.3.2 平板斜め入射の場合

1）単一配向材

水平角が0度（伝搬方向が縦線方向）における平板斜め入射の波形計測例（伝搬角：6、45、81度）をFig.11に示す。図中の各スペクトルから明らかなように、伝搬角が6度及び81度のピーク周波数は1MHz 弱であるが、45度では600kHzと低周波数となった。これはサイコロ状試験片の場合と同じ傾向である。このときの振幅は、先頭波よりも第2波が大きくなった。固体中を進む波には、基本的には縦波と横波があり、その進む速度（音速）には差がある。従って、速い縦波が先に到達し遅れて横波が到達する。異方性を有する材料

Fig.8 Examples of Waveform at Propagation Angle 90 Deg.

Fig.9 Examples of Waveform at Propagation Angle 45 Deg.
Fig. 10 Relation between Propagation Angle and Velocity on Block Specimens

では、純粋な緑波及び横波とは異なる波面が進行方向に垂直ではない」となるが、準緑波は準横波よりも速い。なお、第2波は入射角を変えることで明白に現れる。

水平角0°度における伝播角と音速との関係をFig.12に示す。先頭波及び第2波の音速は、サイコロ状の場合は特性が異なり、先頭波の音速は、サイコロ試験片での先頭波と比べると、伝播角が0°近辺と90°の場合は一致しているものの、その中間の伝播角（約10°から60°の範囲）では遅い。本来は試験片の形状や入射角による音速差はないものと思われる。

イコロ状では音軸線上の測定であるのに対し、平板では斜め入射での測定における最大振幅を測定していることから、異なる計測法の結果で差異が生じたものと考えられる。基準はあくまでもイコロ状であるが、実際の超音波探傷は平板で行われるのので本結果は現実的な測定と見るべきである。

第2波は先頭波よりも下値する傾向がある。これは、サイコロ状試験片と大きく異なった。第2波の速度は伝播角6°で6700m/sと先頭波の約8割、45°で7割となっている。その低下は63°まで続き、以後は先頭波に接近した。

入射角と送・受信点から得られる両何学的な屈折角との関係をFig.13に示す。先頭波は入射角が大きいかほど屈折角が大になっているが、第2波では、屈折角が90°の場合は最大振幅を示す入射角が14°で、屈折角が大きくなると入射角が減少する傾向にある。

水平角90°（繊維方向に直角）の場合の音速と屈折角との関係をFig.14に示す。図より明らかように、先頭波および第2波の音速は屈折角が無関係にほぼ一定値を示し、先頭波は繊維波で約3000m/s、第2波は横波で約1600m/sである。なお、屈折角90°の音速は、平板試験片では計測が不可能なので、サイコロ試験片による幅方向の音速の実験値を同図に示したが、3000m/sであった。

屈折角と入射角との関係をFig.15に示す。先頭波の

Fig. 11 Examples of Waveform at Horizontal Angle 0 Deg. on CFRP plate Specimen

（131）
データは、屈折則を用いて求めたFig.14の音速と水中音速の関係に対応しているが、第2波にはその傾向が見られない。
2) 0/90度積層材
このCFRPは1プリ(約0.3mm)ずつ繊維方向を直交して交互に積層して作成したもので、繊維方向は平板の長さ方向と幅方向である。0/90度積層材における斜め入射による音速の測定結果を、Fig.16(水平角：0度及び90度)及びFig.17(水平角：45度)に示す。両者とも伝播角が10度近辺と小さい場合、音速は単価配向に比べて2〜3割違い。一方、伝播角が60度以上では音速差はなくなった。
Fig.18は伝播角60度における波形(水平角：0,45,90度)を示したもので、伝播時間は三者とも大差ない。

2.4 考察
2.4.1 サイコロ状試験片垂直入射
サイコロ状試験体の先頭波では伝播角0度(繊維方向Fig.7)付近及び90度(繊維と直交Fig.8)近辺の受信波形は振幅が大きく、波形の立上がりが明確で音速の測定が容易であった。伝播角が45度(Fig.9)近辺の先頭波の波形は振幅は小さく立ち上がりも不明瞭となった。このとき、第2波は振幅が大きくなった。先頭波と第2波の音速を45度の音速の比較では伝播角が小さいほど、その差が大きくなる傾向がある(Fig.10)。このような特性は、一般に薄い板あるいは棒を伝播する波に見られる特性で、速度分散と呼ばれている。今回の実験に用いたCFRPは厚さが20mmであるが、細い繊維の薄い層を重ねた積層材であることから、結果的に伝播角の変化による速度分散が生じたものと考えられる。
異方性材料の音速は垂直入射の場合、フィラメントワインディングによる複合材料でも同様の結果が得られている。また、異方性材料における音速を求める式としては、伝播角0度、45度、90度の測定値による近似式が報告されているが、特に45度の測定は極めて困難である。そこで、測定が容易な0度及び90度の2方向のみの簡易式を以下のように提案する。

![Fig.12](image12.png)
Fig.12 Relations between Propagation Angle and Velocity on Plate Specimen (Horizontal Angle 0 Deg.)

![Fig.13](image13.png)
Fig.13 Relations between Refraction Angle and Incidence Angle (Horizontal Angle 0 Deg.)

![Fig.14](image14.png)
Fig.14 Relation between Propagation Angle and Velocity on Plate Specimen (Horizontal Angle 90 Deg.)

![Fig.15](image15.png)
Fig.15 Relation between Refraction Angle and Incidence Angle (Horizontal Angle 90 Deg.)
ここで、V_nは伝搬角γにおける音速、V_1及びV_2は繊維方向及びその直交方向の音速である。

Fig.10の実験は、先頭波の音速を(1)式により、示したものである。V_1及びV_2は実験値からそれぞれ9000, 3000 m/sである。簡易式と測定値は45度近辺で若干差があるが、他では対応している。

2.4.2 平板斜め入射
1）単一配向材

平板試験片に斜め入射して求めた速度（Fig.12）の伝搬角に対する特性とサイクロ試験片での特性（Fig.10）とが異なる結果となった。すなわち、平板では明らかに、伝搬角度の増加に対しての音速低下率がサイクロ状よりも大きくなっている。Fig.12で、先頭波と第2波は同じ傾向の音速と伝搬角度関係を示している。水中部から材料に入射する波は縦波であることから、先頭波は縦波で、第2波は入射時に屈折して

Fig.16 Relation between Propagation Angle and Velocity on 0/90 Cross Plate

Fig.17 Relation between Propagation Angle and Velocity on 0/90 Cross Plate

Fig.18 Examples of Waveform at Propagation Angle 56 Deg. on 0/90 Cross CFRP plate
生ずる横波と思われる。
等方性における任意断面での音速分布は一定である。これは断面においてその分布は円形として表わされる。ある断面で異方性のある場合（垂直方向は等方）には、音速が最も大きい方向と最も小さい方向を取り、両音速を円の長短軸比とすることで、任意方向の音速が得られる近似式を(2)式で提案する。

\[V_1 = V_2 \sqrt{1 - \left(1 - \left(\frac{V_2}{V_1} \right)^2 \right) \cos^2 \gamma} \quad \cdots \quad (2) \]

上式の適用は等方性の場合では屈折角と伝播角は互いに補角の関係にある。音速異方性を示す場合は、屈折角は波面と垂直になるので、伝播方向（最大振幅を示す方向）とは異なっている。

この結果, 送受信点からの角度を見掛け上の屈折角（90°を除く）としている。さらに、繊維と樹脂の間は各層を変化させ、その伝播時間から平均音速および入射角を求めた。繊維と樹脂の一般的な音速から波動と等方性と繊維の継続速度10000m/s, 樹脂の継続速度2730m/s, 各方向の速度が4130m/s の場合の測定結果（図14）を示す。Fig.13の屈折角と波の入射角を示すと、繊維の音速が大きくなると、計測結果が測定値の傾向を示していると言える。

水平面90度で斜め入射のときは、伝播角に関わらず音速はほぼ一定値を示した（Fig.14）。この場合、超音波はどの伝播角においても、繊維に対して垂直に入射することから、マトリックスの中の繊維は垂直に振動し、結晶の結果に速度が変化しなかったものと考えられる。

2. 0/90度横層材

Fig.16, 17において、(2)式による場合と測定値は傾向的に対応した。V1は単一配向の場合よりも遅い。水平面0度のV1の測定値は6100m/s(Fig.16), 水平面45度V1は5700m/s(Fig.17) であり、単一配向材のV1の約2/3になった。低下的原因は、前者では、伝播方向に垂直な繊維による音速との平均化、後者は水平面45度なのでサイクロ状試験片の伝播角45度の音速に近似するともいえる。

3) 各種の試験片における音速のまとめ

Table1は各試験片におけるV1, V2の測定値を示したものである。単一配向材では試験片の形状がサイクロ及び平行、0/90度層材では平行面の計3種類がある。表におけるRは水平面（Fig.6参照）を示す。V1は試験片内部の繊維方向の音速、V2はいずれも直行方向の音速である。

3. S/N 比向上の実験

超音波探傷では探触子を走査しながらエコーを検知して欠陥を検出する。鋼製部をのように減衰の少ない場合では、ある大きさを有する欠陥からのエコーは大きくかつ明確に現れる。溶接形状に起因する異常などのエコーも一定として小さくなく欠陥と区別することが困難である。これらの解決法の一つとして、画像化によって得られた画像を用いた判断が行われており、欠陥の要因には欠陥エコーが他よりも大きいとは限らないからである。ここでは欠陥のない工件を強調することによりその解決法を検討した。

CFRPの斜め入射による場合、垂直探傷と同様に欠陥の要因は弱い。これは繊維と繊維との屈折を繰返しながら超音波が伝播すること及び、各層を通過する際の損失が生じるからである。その結果、得られる波形が微細で鮮明な音波を区別することができる。鮮明な音波を区別するために、得られた信号を処理してS/N比を向上することを試みた。

3.1 方法

反射法においてエコー（反射波）が得られたとき、そのエコーが欠陥からであれば、探触子を走査した場合においてエコーディナミックス（ピークの包絡線）が単峰となる（例えばFig.19）。これは反射源位置が不変であることによる。単峰の特性をもつ反射源では、探触子位置から伝播時間は無限に求めることができるので、エコーが集中する位置に、他の探触子位置からのエコーが合致するように時間調整する。全ての発生するエコーを重ね合わせて得ればエコーは小さいとなる。また、逆に探触子位置を固定して、入射角を変えられたエコーを時間補正により重ねれば、微弱なエコーディナミックスが観察される。
信号波形でも強調され十分大きな信号となる。しかも、この方法では、位置的に合ったエコーのみが強調できる。なお、この方法は空間全域を強調・高分解能化する開口合成法とは原理的に異なる。

具体的には、エコーのピークと判断した反射源位置と超音波の送信点位置及び、くさび（直接接触法において、超音波を斜めに入射させるためのもの：アクリル材使用）と試料の音速が既知であれば基準の伝搬時間が求まる。連続的に移動させる探触子の位置を決めることで、それらの伝搬時間が計算され、予め基準位置との時間差を考慮しておく。得られた信号に対して各時間差を補正して合成すれば、信号を強調することになる。

ここでは信号強調の手段として、くさびと試験体の音速および、探触子（振動子中心）と反射源位置からエコーの伝搬時間を求め、時間差を補正して合成する（遅延信号合成と呼ぶ）。これは試験材の音速、くさびの角度、探触子の振動子の位置、探触子の走査ビッチ及び欠陥と判断したときの探触子と欠陥との位置関係から、これらと対応する条件で予め計算しておく（Fig.20参照）。

3.2 実験及び結果
実験はくさびを用いた二つの接触面にスリットを加工したものです。探傷は水平角が30度となることから、音速はFig.14から伝搬角に関わらず300m/s一定である。予め求めていた、くさびの音速2460m/s、前後方向のビッチごとの探触子位置及びスリット位置とから各々の伝搬時間が求められる。Fig.21は前後走査データ（走査ビッチ0.2mm、サンプリングタイム50ns）21点の中での、最大振幅を示したスリットからのエコーのAC波形と、遅延合成した波形を比較したものである。その結果、S/N比が4 dBから9 dBと改善された。Fig.21において、スリットからのエコーは横軸の1/4辺りに現れており、前の波形はくさびによる遅れ、あるいは波の反射によるものと思われる。スリットからのエコーは遅延時間を補正して合成することによりエコーが強調され、それ以外のエコーは位置的に欠陥とは差があるので遅延時間が異なるために、強調される結果はならない。

4. 超音波探傷の可聴化
超音波探傷は①欠陥の検出、②その位置、③大きさ、④形状（種類）を同定することを最終目標として研究がなされている。しかし、現状の超音波探傷技術では①欠陥の検出、②その位置を同定することは可能ではないが、③大きさ、④形状（種類）については研究に必要な情報が得られる。
Fig. 21 Result of Delay Synthetic Method

Fig. 22 Block Diagram of Audio Processing
Ultrasonic Flaw Detection System
段階であり未確立な分野である。また、最近では得られた波形のデジタル化が進み、画像化など各種の信号処理をして欠陥を評価することが盛んに行なわれている。ただし、画像化によって欠陥の形状などが判断できることはなくて、大きさも全て確実に評価されることは言いたい。

このような外部状況のもと、新たな超音波探傷技術——超音波探傷における採取波形の周波数帯域を可聴域に変換し、聴覚によってその音色の変化から欠陥の存在及びその種類を区別する技術を提案する。

4.1 システム

当システムは、エコーの波形を音として聴き、その音色あるいは音のパターンから欠陥の存在を検出する手法のシステムである。すなわち、音で聴くことができる、超音波探傷で使用されている1〜10MHz帯域の周波数を可聴域の周波数100Hz〜10kHzに変換し、聴覚によって識別する。このように新しいアイデアに基づきシステムを試作した。そのブロックダイアグラムをFig.22に示す。また、本実験では周波数変換はオフラインにより行った。主な仕様は以下の通りである。

A/D 変換: 5ns, 32kword, 2ch
周波数変換: 周波数変換率 X = 100〜10000 9 ステップ

サンプリングタイム可変係数 k = 任意の操作手順を以下に示す。

(1) 超音波を発信し、発生した波形を記録する。
(2) 得られた波形を選択する。
(3) 周波数変換する波形の時間的位相を設定する。
(4) 周波数変換率を決める。
(5) 変換を実行する。
(6) 音を聴く。
(7) 欠陥を判断する。

なお、k は出力周波数を任意の周波数に設定することができる便利な係数で、サンプリングタイムを見かけ上変える。すなわち、サンプリングタイムを k 倍することで、周波数変換率の範囲を大きくする。トータルの周波数変換率は Xk となる。

4.2 実験の特性

超音波の伝搬波形が Fig.23に示す様な場合、サンプリングタイム d(s)でデジタル化した中で、データ数(a ワード)のゲートを設定するとする。この波形の基本波数が (ピーク周波数) f(Hz) のとき、周波数変換率 Xから、周波数は f/X(Hz) となる。従って、ゲート範囲の出力周期は X(5)である。X が1の場合、すなわち元の波形について以下に説明する。ゲート内の信号に対して周波数分析をとると、図のようにスペクトラ
Fig. 25 Demonstration of Synthetic Wave and Spectrum
Fig. 27 Ultrasonic Testing Method for Specimens
(a) CFRP and (b) Standard Block

は波形独自の分布となる。これを繰り返して（2回
以上は同じスペクトルになる。）スペクトルを調べ
ると、Fig. 24に示すように、元の分布に対して、ゲー
ト間隔に応じた周波数成分が重複する。すなわち、可
聴音で聴く場合は波形を繰り返して行なうので、スペ
クトルはゲート間隔の成分が含まれる。すなわち、
変換した波形の1回の出力時間が長い場合、波形によ
る音の変化はパターンとして聴くことが可能となる。
出力時間が短いと、音は繰り返し成分の音色のパター
ンとなる。

4.3 参照波による合成
参照波は、変換する波形に近い周波数の信号を発生
させて、合成さるために用いる。参照波を利用してす
べて、変換した波形に対して種々の人工的な音響信号を
作り、波形の識別情報を増やすことが可能になる。
可聴域に変換されたゲート内の波形は繰り返される
ので、音のパターンあるいはその音色は同じものが繰
返されるだけであるが、何回でも聴くことができる。
いま一つの受信波形（Fig. 25-(a)）に対して、参照波
のような近似した周波を持つ信号を合成すると、スペ
クトルは変化する（Fig. 25-(b),(c),(d)）。参照波の
周期を変えると音色が変化し、異なった超音波の受信
波形の識別がさらに可能になる。

4.4 実験及び結果
4.4.1 人工波形による実験
7波のパルスを有する人工波形とスペクトラムをFig.
26に示す。波形は次のような人工作成波である。
(1) \(\sin \)波：\(\sin(2\pi/t) \cdot \sin(\pi/t/T) \)
(2) \(\sin2\)乗波：\(\sin(2\pi/t) \cdot \sin2(\pi/t/T) \)
(3) ノコギリ波：\(\sin(2\pi/t) \cdot (t/T\cdot T+1) \)

ここで、\(t \)は時間、\(T \)は周期である。三つの波形の周
波数1/Tは1MHz、サンプリングタイム0.125μS、
ゲート内データ数256点である。これらはデータ間隔1
msで周波数変換し、音色を聴いた。
(1)は音叉の音色に近く、それが周波数的に変化する。
(2)は音叉とはかけ離れた音色で、多少金属音的な音が
含まれて(1)とは明白に異なる。(2)は(3)とは確実に区別
できる(1)と似ているが、鋭い音色である。

Fig. 26において、1MHz7波の信号波形 \((f(t))\) のみ

Fig. 26 Comparison of Different Waveform and Spectrum

(139)
の音と、信号波形と同周期の参照波 (r(t)) を合成した場合及び r(t) の周期を T = 1.2T で 0.8T に変えた各々の音は音色が異なることが確認できた。いずれもデータ出力間隔は 1ms で行なった。これらはスペクトラムにおいても異なっている。

4.4.2 試験片による実験

可聴音への変換は、CFRP 試験片及び超音波探傷標準試験片（線穴二つ）の斜角探傷法により実施した。試験片形状を Fig.27 に示す。CFRP 等 FRP は繊維を樹脂で接着し、層状に作成された複合材料である。FRP の超音波検査では、欠陥が存在しない場合でも、層からの反射によるエコーが発生し、欠陥（剥離、繊維破断）と区別することが難しい場合も多い。

CFRP の場合、模擬欠陥として作成したスリットがあるとエコーが確認できた (Fig.28-a)。スリットがない場合でも音波の形状によるエコーが存在している (Fig.28-b)。これは入射角が大の場合には選別されない。スペクトル上では見分けられないが、この両者の音を聴いた結果、スリットがあるとその音を確実に植え入ることができた。なお、ゲート内の音響出力時間は 4 秒ほどで、パターンから識別できた。

標準試験片の場合は周波数 5MHz の斜角探傷で行なったが、これらの波形を Fig.29 に示す。a) は一つの穴からのエコー、b) は二つ同時にとられた場合である。前者は音のピークが一つ、後者はそれが二つあることが明白であった。

CFRP 及び標準試験片の波形によるゲート内の音響出力時間は 2 秒強であり、音色よりも音のパターン（強弱）からその存在が分かる。いずれも画面上にエコーが表示されるので音を聴かなくても分かるが、可聴の探傷は常時画面を監視しなくても欠陥の存在を知ることができるので有利である。

5. まとめ

5.1 CFRP の音響

CFRP を超音波により検査する際に必要な任意方向の音響伝播速度の近似式を提案した。計算値と実験値の比較を、繊維の積層方向が表面と角度を有するサイクロ状試験片 (20mm) の垂直入射及び表面に平行に積層した平坦試験片 (20mm) の斜め入射により行なった。
(1) CFRP を伝搬する波は 2 つ以上計測され、最初に到達する波と遅れて受信される波はサイクロ状試験片と平坦試験片では音速特性が異なった。
(2) 最初に到達する波は、超音波の伝播方向が繊維方
向となす角度が小さい程音速は速く、その直交方向が最も速くなった。(3) 垂直入射の場合、伝搬角度と速度の関係は水浸法と直接接触法による差は認められなかった。(4) CFRP の任意方向の音速を計測が容易な繊維方向と直交方向の音速から相当の精度で計算できることを示した。計算結果と測定値との誤差は 10%以内と良好な結果を得た。

5.2 信号処理による S/N 比の向上
欠陥からの信号が弱く、得られる波形が微小で雑音との区別がつきかねることも多い。雑音との区別を明確にするため遅延合成による欠陥エコーのみの強調を試みた。その結果、得られた欠陥からの信号を処理して欠陥のみの S/N 比を向上することができた。

5.3 可聴化探傷の提案
新しい試みとして超音波探傷で使用されている周波数数 MHz 帯の受信信号を可聴域の周波数帯に変換し、聴覚で欠陥の検出・波形を判断する方法を提案した。試作した装置は、受信波形を任意の範囲で切り出すものであり、出力波形数は聴覚の全領域をカバーしている。実験による確認により、CFRP に設けたスリットからのエコーとスリット以外のエコーには音響的に明らかに差があった。他に人工波形の波形パターンによる差も顕著であった。

以上のように、可聴化が有効であることが確認できたので、今後はさらに多くの探傷波形と音との関係を求める。このシステムの非破壊検査技術としての実用化を目指す予定である。

6. 参考文献
1．和田健一、後藤英信、高井元弘：複合材料軸の超音波透射探傷、日本複合材料学会研究発表集 (1991). p.11-12
2．髙橋清雄、髙橋、他3名：音響異方性を有する超音波の伝播特性、非破壊検査、第39巻2号 (1990). p.74-79

Fig.29 Echoes from (a) One Drill Hole and (b) Two Drill Holes on Standard Block
付録、撃触子の音場計算

(1) 連続波の場合

伝搬媒体音速:C, 使用周波数:f

使用した撃触子は平面振動子に曲率を有する連延材を設けたもの。
連延材音速:C_t

\[P_x = \int_{0}^{2\pi} \exp(-jkr) \, ds \]

\[ds = 2\pi y dy, \quad k = 2\pi / \lambda, \quad \lambda = C / f \]

\[r = ((x - \delta)^2 + y^2)^{1/2} + \delta C / C_t \]

\[\delta = R - (R^2 - y^2)^{1/2} \]

(2) バルスの場合

\[P_x = \sum_{n=1}^{\infty} 2\pi y_n \, g(t - t_n) / r \]

振動子をy方向にm個に分割

\[g(t) = \sin(2\pi t / T) \, \sin(\pi t / NT) \]

T: 周期, N: 波数
(伝搬パルス)