スリットストリーミング実験とMiuraの二重円環空筒屈曲ダクトストリーミング実験を計算対象にした。

中性子スリットストリーミング実験の計算モデルはFig.23のようなものである。JRR - 4の炉心の中心から黒鉛ブロック中のスリットの入口までの距離は104.3cmである。その内訳は、炉心の部分が20cm、反射体の厚さが25cm、アルミ板の厚さが1.5cm、水層が26cm、そして鋼板の厚さが32cmになっている。スリットの大きさは80×80cmで、幅がWcmである。実験はWの幅が2通りについて実施されているが、Wが1cmについてのみ解析した。この理由は、モンテカルロ分割結合計算法の有効性は、スリットのより細い方を解析することによりはっきりすると考えられたからである。スリット中の5箇所にカドミウムカバーをした金箔とカバーのない金箔の放射化学検出器、マグネシウム、インジウム、それに硫黄の放射化学検出器が使用された。

もう1つの、二脚の二重円環空筒ダクト中性子ストリーミング実験の計算モデルはFig.24のようなものである。炉心の中心からダクトの入口までの距離は69cmである。その内訳は、炉心が20cm、反射体の厚さが25cm、アルミ板の厚さが1.5cm、それに水遮蔽体の厚さが22.5cmである。ダクトはJRR - 4の水ブール中に設置された。ダクトの外径は20cmで、内径は10cmである。二重円環空筒ダクトの中心部は実験ケースIは空気であり、実験ケースIIでは水であった。本研究のモンテカルロ計算は全て実験ケースIIの形状である。計算で求めた反応率はカドミウムカバーをした金箔の放射化学検出器、それにインジウム、ニッケルおよびアルミニウムの各放射化学検出器についてである。

5.2.2 仮想検出器における中性子

フルーエンス計算

モンテカルロ分割結合計算の1段目の計算で、Fig.23およびFig.24に示す仮想検出器（全く同一のもの）における角度、エネルギーおよびフルーエンス分布を求めた。仮想検出器の半径は50cmであるが、これに

Fig. 23 Calculational model for the JRR-4 slit-streaming experiment. Detector locations shown by solid circles. Dimensions are in centimetres.
さらに5個の等間隔の円環に分割し、各円環ごとに中性子フルーエンスを計算している。各円環当りの半径方向の全フルーエンス分布（ここでは各円環における全フルーエンスに円環の面積を乗じた値）をFig.25に示す。Fig.25から分かるように、全フルーエンスの最大値は半径20〜30cmの第3円環上に表れており、その後半径が大きくならにしたがって減少している。したがって、分割結合法の2段目の線源条件を与える結合面としては、半径50cmの円板仮想検出器で十分である。

1段目のモンテカルロ評価法は角度フルーエンスが計算できるNESX3E(次期面交差法)を採用した。そして、10,000シミュレーションの中性子を追跡し、次のような仮想検出器に対する平均の中性子フルーエンスを得た。

全フルーエンス = 5.592×10^{-4} (FSD: 0.108)

(n cm^{-2} source neutron^{-1})

仮想検出器の位置は炉心から54cmの位置で水屋の中にあり、Fig.23ではスリットの入口から40.5cm、Fig.24ではダクトの入口から5cmそれぞれ炉心寄りである。したがって、仮想検出器における中性子束分布は検出器後方の形状にほとんど影響されないと考えられるので、この検出器を実験体験に対する共通の境界線源条件として、2段目の計算に採用することができるのである。

本研究に用いた群定数はENDF B - IVを基本ライブラリーにして作成した100群のデータを1次元ANDSコードを組み入れたRADHEAT - V 3コードシステムを使って15群に縮小したものである。したがって、本計算で用いた放射化箔検出器の反応断面積も15群になっている。本計算はこのうち14群までであり最後の1群目（熱中性子に対するエネルギー群）はエネルギーカットオフである。

5.2.3 スリットストリーミング実験の解釈

中性子スリットストリーミング問題の反応率の計算と測定値との対応をTable 6に示す。スリットの幅は全ての計算で1cmである。しかし、スリットの入口に最も近いカドミウムバーの金箔検出器はスリットの幅が
ゼロの状態であった。スリットストリーミング計算では前述したように直接1回のMORSE計算も実施され、Table 6 に分割結合計算結果と対比して表示である。直接1回の計算は5,000スリットリ中の中子を追跡している。

ここで述べるモンテカルロ分割結合計算結果のFSDは2段目の計算によるFSDの値であり、誤差の伝播は考慮されていない。

まず、Table 6の金箔検出器反応率について述べる。カドミカバーをした金箔検出器は熱中性子に対して大きい反応断面積を持っているが、高速中性子に対しては実質的にゼロである。MORSE-to-MORSE 分割結合計算結果は従来の単独のMORSE計算と比較し、はるかに測定値との一致が良くなっている。従来の計算では全ての検出器位置で測定値のおよそ1/1000になっている。一方、分割結合計算結果は実験値に対しファクター2以内で一致し、非常に良く対照していることが分かる。また、FSDについても分割計算をすることによって従来の計算よりも十分改善されている。従来の計算ではカドミカバー金箔検出器の全ての位置でFSD>0.6であったが、カップリング計算ではFSDが0.32~0.65になった。しかし、この金箔検出器反応率のFSDは、Table 4を参照すれば分かるように、まだ十分小さい値ではない。この理由は、カドミカバー金箔検出器に大きなレスポンスを有する熱中性子は、仮想検出器を線源にしても、Fig.23の黒線中で多重散乱を経験する。その結果、小数回散乱の高速中性子よりも統計的にみればつまりが大きくなると考えられる。

インジウム検出器反応率について調べる。In (n, n)'が反応のしきいエネルギーは1.4MeVであり、他のニッケルおよびマグネシウム検出器よりもずっと低い。分割結合計算結果はスリットの入口から最も離れた80cmの位置を除いて、ファクター3以内で測定値とは一致する。検出器が80cmの位置ではファクター5だけ測定値を過大評価した。一方、従来の1回計算では、スリットの入口でファクター8だけ測定値を過少評価しているが、入口から80cmの位置では逆に20倍も過大評価になっている。FSDについては、分割結合計算では0.19~0.44であり、特に最初の2箇所の検出器位置で0.2ではかなり良い値になった。しかし、従来の計算ではFSDが0.60~0.84であり、統計的にはもはや信頼性のない結果に終わっている。

次に硫黄検出器反応率について調べる。S (n, p) P 反応のしきいエネルギーは2.7MeVである。硫黄検出器反応率については分割結合計算結果も従来の1回計算も実験と比較し、全ての検出器位置でのファクター2以内で良好に一致している。FSDについては、分割結合計算では0.32~0.36で一応評価できるが、従来の計算は0.56~0.76であり、統計的には信頼性のない結果になっている。

最後に、しきいエネルギーが7MeVのマグネシウム検出器反応率について調べる。ウラン-235の核分裂で7MeV以上のエネルギーを持った中性子の発生確率は非常に少ない。したがって、線源エネルギーバイアスを施しても、マグネシウム検出器反応率に対するFSDはあまり改善されていない。測定した反応率と比較し、従来の計算結果は最大で1/1000、最小でも1/2の過少評価になっている。しかし、分割結合計算では測定値に対し全ての検出器位置でのファクター2以内で一致しており、十分満足すべき値が得られた。一方、FSDは分割結合計算法の採用によって低減したものの、まだ全ての計算結果がFSD>0.5であり、統計的には不十分である。

以上述べてきたことから次のように考察できる。

(1) モンテカルロ分割結合計算法の適用で得られた反応率と測定値との対比は、金検出器の反応率についてスリット全体を通じて妥当なものである。

(2) 分割結合計算によってFSDも明らかに改善される。
Table 6 Comparison of reaction rates between measured, single MORSE, and MORSE-to-MORSE coupling calculations in the slit problem.

(Rates are expressed in reaction/W.s. Slit width is 1 cm except as noted.)

<table>
<thead>
<tr>
<th>Distance from the Slit Entrance (cm)</th>
<th>Measured</th>
<th>Single MORSE (5000 Histories)</th>
<th>MORSE-to-MORSE Coupling (8000 Histories)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium-Covered Gold Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.25<sup>a</sup>-20<sup>b</sup></td>
<td>1.444-22 0.653<sup>c</sup></td>
<td>2.354-20 0.551<sup>c</sup></td>
</tr>
<tr>
<td>20</td>
<td>8.50<sup>a</sup>-21</td>
<td>3.565-22 0.820</td>
<td>2.491-20 0.658</td>
</tr>
<tr>
<td>40</td>
<td>1.55-21</td>
<td>1.143-23 0.646</td>
<td>2.002-21 0.467</td>
</tr>
<tr>
<td>60</td>
<td>1.80-22</td>
<td>1.853-24 0.663</td>
<td>1.540-22 0.333</td>
</tr>
<tr>
<td>80</td>
<td>1.60-23</td>
<td>6.204-25 0.790</td>
<td>3.154-23 0.322</td>
</tr>
<tr>
<td>Sulfur Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5.30-25</td>
<td>4.061-25 0.707</td>
<td>1.027-24 0.333</td>
</tr>
<tr>
<td>20</td>
<td>1.15-25</td>
<td>1.427-25 0.679</td>
<td>1.797-25 0.355</td>
</tr>
<tr>
<td>40</td>
<td>2.60-26</td>
<td>1.588-26 0.560</td>
<td>1.874-26 0.350</td>
</tr>
<tr>
<td>60</td>
<td>7.20-27</td>
<td>2.905-27 0.651</td>
<td>4.570-27 0.331</td>
</tr>
<tr>
<td>80</td>
<td>2.70-27</td>
<td>2.147-27 0.758</td>
<td>1.830-27 0.322</td>
</tr>
<tr>
<td>Indium Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.15-24</td>
<td>1.501-23 0.811</td>
<td>3.793-24 0.189</td>
</tr>
<tr>
<td>20</td>
<td>3.05-25</td>
<td>4.569-24 0.583</td>
<td>4.851-25 0.227</td>
</tr>
<tr>
<td>40</td>
<td>5.40-26</td>
<td>2.754-25 0.634</td>
<td>7.254-26 0.334</td>
</tr>
<tr>
<td>60</td>
<td>1.10-26</td>
<td>6.210-26 0.597</td>
<td>2.910-26 0.417</td>
</tr>
<tr>
<td>80</td>
<td>3.20-27</td>
<td>6.333-26 0.941</td>
<td>1.623-26 0.444</td>
</tr>
<tr>
<td>Magnesium Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.35-26</td>
<td>1.459-28 0.229</td>
<td>1.372-26 0.579</td>
</tr>
<tr>
<td>20</td>
<td>4.00-27</td>
<td>2.264-27 0.984</td>
<td>1.087-26 0.567</td>
</tr>
<tr>
<td>40</td>
<td>8.50-28</td>
<td>3.664-28 0.972</td>
<td>2.104-27 0.623</td>
</tr>
<tr>
<td>60</td>
<td>2.50-28</td>
<td>4.452-29 0.953</td>
<td>4.781-28 0.634</td>
</tr>
<tr>
<td>80</td>
<td>1.30-28</td>
<td>6.988-30 0.900</td>
<td>1.475-28 0.600</td>
</tr>
</tbody>
</table>

^aSlit with zero.
^bRead as 1.25 x 10^-20.
^cFractional standard deviation.

5.2.4 二重円形円筒曲達トストリーミング実験の解析

二重円形円筒曲トストリーミング実験に使用された4種の放射化素検出器に対してモンテカルロ法で計算した反応率と測定値との比較を Table 7, 8, 9 に示す。すでにスリットストリーミング計算で分割結合計算法が分散の低減に有効であることが分っているので、このダクト体系では従来のモンテカルロ計算は実施せず、全て MORSE - to - MORSE コードシステムで計算した。
まず、Table 7のしきいエネルギーが2.8MeVのニッケル検出器反応率について調べる。検出器はFig.24のラインA、即ち水中に置かれている。表中のX, Zは検出器の位置を表わしており、X軸は第1脚中心軸で、Z軸はX軸と直角に交わっている。原点はダクトの線源側入口の中心である。MORSE-to-MORSEコードシステムで得られた反応率は、Table 7から分かるように、全てのニッケル検出器位置で測定値に対し50%以内で一致している。注目すべき結果は、ダクトの入口から最も離れたA-14におけるC/Eと、入口に最も近いA-1のC/Eが関係度で、しかも1に近いことである。両位置間で反応率には5桁程度の減衰がある。

Ni (n, p) Co放射化検出器（反応率のC/E：

A - 1のC/E = 0.79
A - 14のC/E = 1.33

(5.1)

(5.1)式の結果からダクト中およびその周囲で、高速中性子に対し適当な衝突密度が得られたものと考えられる。FSDについては第1脚の線源側入口から60cmまでに置かれた4つの検出器位置に対してはFSD～0.2で良い値であるが、その他の位置では0.3～0.5で、0.64の位置もある。

Table 8はFig.24のラインB上に置かれた、カドミウムカバー金箔検出器、インジウム、ニッケル、アルミニウムのしきい検出器に対する反応率を集約したものである。カドミウムカバー金箔検出器反応率に対して分割結合法計算は、第1脚ではファクター3以内、第2脚でファクター2以内で実験と対応しており、かなり良い一

<table>
<thead>
<tr>
<th>Detector Locationa (cm)</th>
<th>Nickel Detector Reaction Rate (reaction/W.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line A (in water)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>A-1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>140</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
</tr>
<tr>
<td>11</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>---</td>
</tr>
</tbody>
</table>

a All detector locations were in the plane of Fig.2.

b Fractional standard deviation.
Table 8 Comparison of Reaction Rates Between Measured and MORSE-to-MORSE Coupling Calculations in the Two-Legged Cylindrical-Annular-Duct Problem, Line B.

<table>
<thead>
<tr>
<th>Detector Location</th>
<th>Reaction Rate</th>
<th>MORSE-to-MORSE Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm)</td>
<td>(reaction/W.s)</td>
<td>(100000 Histories)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line B (in air)</th>
<th>x</th>
<th>z</th>
<th>Measured</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>1</td>
<td>15</td>
<td>4.05-20</td>
<td>1.382-19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>40</td>
<td>8.07-21</td>
<td>2.333-20</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>80</td>
<td>1.95-21</td>
<td>4.794-21</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>120</td>
<td>6.25-22</td>
<td>1.994-21</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>160</td>
<td>2.55-22</td>
<td>6.163-22</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>165</td>
<td>1.36-22</td>
<td>3.228-22</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>40</td>
<td>2.62-23</td>
<td>4.469-23</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>60</td>
<td>9.50-24</td>
<td>1.786-23</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>80</td>
<td>4.23-24</td>
<td>2.449-24</td>
</tr>
</tbody>
</table>

Cadmium-Covered Gold Detector

| Nickel Detector |
|-----------------|-----------------|-----------------|
| (cm) | Measured | |
| | | |
| B-1 | 1 | 15 |
| | 3 | 40 | 2.75-23 |
| | 5 | 80 | 9.06-24 |
| | 7 | 120 | 4.21-24 |
| | 9 | 160 | 2.03-24 |
| | 10 | 165 | 1.69-24 |
| | 11 | 40 | 1.98-26 |
| | 12 | 60 | 4.17-27 |
| | 13 | 80 | 2.07-27 |

\[^{a}\text{All detector locations were in the plane of Fig.2.} \]
\[^{b}\text{Fractional standard deviation.} \]

数を見ている。FSDも、第1脚で0.25～0.38であり、熱外中性子のFSDとしてはかなり良いが、第2脚になると0.53～0.65になり、良くない。インジウム検出器反応率に対しては全ての検出器位置でファクター2以内で測定値と一致しており、十分満足できる結果が得られた。ダクトの入口と出口のC/Eについては以下のような値が得られた。この間の反応率の減衰は4桁程度である。

\[\text{In} (\text{n, n'}) \text{ In 放射化検出器反応率の C/E:} \]
\[\text{B-1の} \ C/E = 1.01 \]
\[\text{B-12の} \ C/E = 0.62 \] \hspace{1cm} (5.2)

第1脚中のFSDは0.08～0.15であり信頼性の高い結
果が得られたことを統計的にも裏付けています。しかし、第2脚になると0.6近くになり、信頼性に欠ける結果となっている。FSDが第1脚中では小さいにもかかわらず、第2脚に入ると急に悪くなる原因は次のようなことが挙げられる。ただし、Table 7, 8, 9のFSDは2段目のモンテカルロ計算の値である。

(1) 第1脚中では仮想検出器から発生した線源中性子の非散乱線の寄与が相対的に大きい。
(2) 第1脚中あるいはその近傍に存在する高速中性子は衝突回数が少ない。したがって統計的重みのばらつきも小さい。
(3) 第2脚中に置かれた放射化箔検出器のしきいエネルギーは最小のIn (n, n') In反応でも1.4MeVであり、第1脚と第2脚の繰り手付近の水中で散乱して第2脚に射入した高速中性子のうち、1.4MeV以上の中性子に対してののみ有効である。第2脚中に入射する中性子は繰り手付近の水中で散乱し、比較的大きな散乱角で現出しなければならない。このような中性子は統計的に少ないし、第2脚中に入っても各中性子の重みのばらつきが大きくなる。以上のような諸条件がFSDを悪くする要因になっているものと考えられる。

次にニッケル検出器とアルミニウム検出器の反応率について調べる。Al (n, α) Na反応のしきいエネルギーは7.7MeVと非常に高い。ニッケル検出器に対する結

<table>
<thead>
<tr>
<th>Detector Location (cm)</th>
<th>Reaction Rate (reaction/W.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 8 (in air)</td>
<td>MORSE-to-MORSE Coupling (10000 Histories)</td>
</tr>
<tr>
<td>x</td>
<td>Measured</td>
</tr>
<tr>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In-Dium Detector</th>
<th>B-1</th>
<th>1</th>
<th>15</th>
<th>2.46-22</th>
<th>2.328-22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>40</td>
<td>---</td>
<td>3.54-23</td>
<td>5.153-23</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>80</td>
<td>---</td>
<td>1.10-23</td>
<td>1.566-23</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>120</td>
<td>---</td>
<td>4.49-24</td>
<td>6.805-24</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>160</td>
<td>---</td>
<td>2.24-24</td>
<td>4.233-24</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>165</td>
<td>20</td>
<td>1.93-24</td>
<td>4.451-24</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>---</td>
<td>40</td>
<td>5.46-26</td>
<td>3.269-26</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>---</td>
<td>60</td>
<td>1.92-26</td>
<td>1.183-26</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>---</td>
<td>80</td>
<td>2.050-27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aluminum Detector</th>
<th>B-1</th>
<th>1</th>
<th>15</th>
<th>2.30-24</th>
<th>2.631-24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>40</td>
<td>---</td>
<td>3.72-25</td>
<td>9.416-25</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>80</td>
<td>---</td>
<td>1.31-25</td>
<td>2.859-25</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>120</td>
<td>---</td>
<td>6.77-26</td>
<td>1.189-25</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>160</td>
<td>---</td>
<td>3.52-26</td>
<td>6.020-25</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>165</td>
<td>20</td>
<td>2.81-26</td>
<td>7.790-25</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>---</td>
<td>40</td>
<td>2.03-28</td>
<td>8.314-28</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>---</td>
<td>60</td>
<td>3.61-29</td>
<td>2.061-28</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>---</td>
<td>80</td>
<td>8.30-30</td>
<td>3.158-29</td>
</tr>
</tbody>
</table>

(continued)
Table 9 Comparison of reaction rates between measured and MORSE-to-MORSE coupling calculations in the two-legged cylindrical-annular-duct problem, Line C.

<table>
<thead>
<tr>
<th>Detector Location<sup>a</sup> (cm)</th>
<th>Reaction Rate (reaction/W.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MORSE-to-MORSE Coupling</td>
</tr>
<tr>
<td></td>
<td>(10000 Histories)</td>
</tr>
<tr>
<td>Line C (in air)</td>
<td>x</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>1</td>
<td>-15</td>
<td>6.83-20</td>
<td>4.246-19</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td></td>
<td>1.02-20</td>
<td>1.755-20</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td></td>
<td>2.26-21</td>
<td>1.245-20</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td></td>
<td>7.35-22</td>
<td>3.463-21</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td></td>
<td>3.09-22</td>
<td>1.241-21</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td></td>
<td>2.40-22</td>
<td>2.782-22</td>
</tr>
<tr>
<td>11</td>
<td>196</td>
<td></td>
<td>2.30-22</td>
<td>1.810-22</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0</td>
<td>1.09-22</td>
<td>2.144-22</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>20</td>
<td>5.92-23</td>
<td>9.630-23</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>40</td>
<td>2.28-23</td>
<td>2.244-23</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>60</td>
<td>9.12-24</td>
<td>2.076-23</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>80</td>
<td>4.21-24</td>
<td>1.700-23</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>100</td>
<td>2.33-24</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>120</td>
<td>1.38-24</td>
<td>1.547-24</td>
</tr>
</tbody>
</table>

Cadmium-Covered Gold Detector

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>1</td>
<td>-15</td>
<td>3.25-22</td>
<td>2.491-22</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td></td>
<td>5.18-23</td>
<td>5.564-23</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td></td>
<td>1.56-23</td>
<td>1.310-23</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td></td>
<td>6.68-24</td>
<td>5.307-24</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td></td>
<td>3.50-24</td>
<td>3.082-24</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td></td>
<td>2.37-24</td>
<td>2.813-24</td>
</tr>
<tr>
<td>11</td>
<td>195</td>
<td></td>
<td>1.90-24</td>
<td>1.883-24</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0</td>
<td>1.17-25</td>
<td>1.982-25</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>20</td>
<td>1.46-25</td>
<td>5.937-25</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>40</td>
<td>1.84-26</td>
<td>6.212-26</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>60</td>
<td>2.290-27</td>
<td></td>
</tr>
</tbody>
</table>

^aAll detector locations were in the plane of Fig.2.

^bFractional standard deviation.
<table>
<thead>
<tr>
<th>Detector Location<sup>a</sup> (cm)</th>
<th>Reaction Rate (reaction/W.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line C (in air) x z</td>
<td>MORSE-to-MORSE Coupling (10000 Histories)</td>
</tr>
<tr>
<td></td>
<td>Measured</td>
</tr>
</tbody>
</table>

Indium Detector

<table>
<thead>
<tr>
<th>C- 1</th>
<th>1</th>
<th>-15</th>
<th>4.64-22</th>
<th>3.534-22</th>
<th>0.164<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>40</td>
<td></td>
<td>6.07-23</td>
<td>6.078-23</td>
<td>0.106</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td></td>
<td>1.75-23</td>
<td>1.549-23</td>
<td>0.090</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td></td>
<td>7.08-24</td>
<td>6.035-24</td>
<td>0.070</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td></td>
<td>3.66-24</td>
<td>3.612-24</td>
<td>0.134</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td></td>
<td>2.68-24</td>
<td>3.196-24</td>
<td>0.103</td>
</tr>
<tr>
<td>11</td>
<td>195</td>
<td></td>
<td>2.26-24</td>
<td>2.889-24</td>
<td>0.152</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td></td>
<td>2.19-25</td>
<td>2.906-25</td>
<td>0.391</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td></td>
<td>2.05-25</td>
<td>4.245-25</td>
<td>0.326</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td></td>
<td>3.86-26</td>
<td>9.835-26</td>
<td>0.427</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td></td>
<td>1.48-26</td>
<td>2.323-26</td>
<td>0.401</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
<td></td>
<td>7.63-27</td>
<td>7.016-27</td>
<td>0.444</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
<td></td>
<td>4.42-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>120</td>
<td></td>
<td>2.86-27</td>
<td>3.236-27</td>
<td>0.520</td>
</tr>
</tbody>
</table>

Aluminum Detector

<table>
<thead>
<tr>
<th>C- 1</th>
<th>1</th>
<th>-15</th>
<th>3.74-24</th>
<th>3.672-24</th>
<th>0.259</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>40</td>
<td></td>
<td>7.31-25</td>
<td>1.313-24</td>
<td>0.140</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td></td>
<td>2.46-25</td>
<td>3.206-25</td>
<td>0.226</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td></td>
<td>1.14-25</td>
<td>1.207-25</td>
<td>0.207</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td></td>
<td>6.31-26</td>
<td>6.506-26</td>
<td>0.217</td>
</tr>
<tr>
<td>10</td>
<td>180</td>
<td></td>
<td>4.66-26</td>
<td>6.311-26</td>
<td>0.167</td>
</tr>
<tr>
<td>11</td>
<td>195</td>
<td></td>
<td>3.78-26</td>
<td>2.080-26</td>
<td>0.326</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td></td>
<td>1.01-27</td>
<td>2.286-27</td>
<td>0.653</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td></td>
<td>3.06-27</td>
<td>1.760-27</td>
<td>0.529</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td></td>
<td>3.834-28</td>
<td></td>
<td>0.694</td>
</tr>
</tbody>
</table>
果は非常に良く、全ての検出器位置で測定値と比較し、
ファクター2以内で一致している。ダクトの入口と出口
のC/Eは次のようになっている。両位置間の反応率
450には5桁程度の精度がある。
Ni(n,p)Co放射化検出器反応率のC/E:
B-1のC/E=0.95
B-13のC/E=0.93
(5.3)
FSDも第1脚中では0.09～0.15で十分小さいが、第2
脚になるとインジウム検出器反応率と同じ理由から
0.6程度で、不十分な値になっている。
アルミニウム検出器反応率は第1脚の測定値との対
応はファクター2以内で評価できるが、第2脚になる
とC/Eが1/6になる結果もある。FSDも第1脚では
0.66～0.21におさまっているが、第2脚になると
0.29～0.89になっている。この理由はアルミニウム
検出器のしきいエネルギーが常記のように高く、線源エ
ネルギーバイアスをもってこの検出器に寄与する中性子
が本質的に少ないからである。
Table 9 はFig.24のラインC上に置かれたカドミ
カバー金箔検出、インジウム、ニッケル、アルミニ
ウム検出器の反応率を集約したものである。分割結合
計算結果と測定値との一致の程度やFSDについては
前掲のラインB上の結果と概ね同じである。金箔検出器
反応率では第1脚で最大でファクター6、第2脚では
最大でファクター2だけそれぞれ実験を回っている。
FSDも全体で大きく、0.26～0.78である。インジウム
検出器の反応率は全ての検出器位置でファクター2以
内で一致しており、十分に満足する結果が得られた。
FSDも第1脚中では0.07～0.16におさまっている。し
かし、第2脚になると0.33～0.52になっている。ニッ
ケル検出器反応率に対する計算結果も、第1脚中では
測定値に対し50%以内で一致し、FSDも0.08～0.15で
あり、統計的にも信頼性の十分ある結果になっている。
第2脚に入ると、実験との対応はファクター3である
が、FSDは0.36～0.49でありあまり満足したものでは
ない。アルミニウム検出器反応率については第1脚で
はファクター2以内で測定値に一致しているが、第2脚に入
ると最大でファクター6の差異が生じる。FSDも第1
脚中は0.14～0.33におさまっているが、接合部では0.7
近くまで大きくなっている。
計算時間は、熱中性子を計算に含めていないので、
FACOM M-200で1段目の計算に10,000ヒストリー
で10分、2段目の計算では2,000～10,000ヒストリーで
1検出点当り5～10分であった。
5.2.5 統計誤差伝播の計算例
モンテカルロ分割結合計算結果の1部のFSDに
(4.41)式を適用して統計誤差の伝播を評価した。
Table 10 はTable 8 のアルミニウム検出器反応率
FSDを(4.41)式を用い、誤差伝播を考慮して再評価
する。前述したように、Al(n,a)Na反応のしきい
エネルギーが7.7MeVと高いため、FSDは他の検出器
より大きい。1段目のモンテカルロ計算でも、全フル
ーヌックスのFSDは0.108であったが、アルミニウム検出器
反応率に対しては0.165と大きい値であった。Table 10
から、ダクトの第1脚部では2回目のモンテカルロ計算
だけのFSDが0.16～0.21に対し、誤差の伝播を考慮
すると0.19～0.24、第2脚部では0.71～0.89に対し誤差
伝播を考慮したFSDは0.71～0.89になっている。先
に述べたように、1段目の計算のFSDが0.108で、2
段目の第1脚中のFSDのほど半分くらいの大きさで
あるため、1段目のFSDが誤差伝播にかなり寄与し
ていると考えられる。一方、第2脚になると、2段目
の計算のFSDが1段目のFSDよりもずっと大きい
ので、誤差伝播を考慮しても2段目の計算のFSDと
あまり変わらない。即ち、このような場合はみかけ上
1段目のFSDの誤差はほとんど伝播していないように
見える。
統計誤差伝播の評価式を用いて計算すると、場合に
よってかなり大きな誤差の伝播があることが分かっ
た。モンテカルロ計算が信頼性が高く判断するためには、
誤差の伝播を考慮してもFSD≦0.2に抑えることが必
要である。そのためには、各検出器の反応率に対し、
1段目の計算でFSD≦0.1に抑える、2段目のFSDも0.2
を超えないようにする必要がある。屈曲ダクトの場合、
1脚中に置かれた検出器の反応率に対しては誤差の伝
播を考慮しても比較的容易にFSD≦0.2が達成でき
るが、2脚以後になるとFSD≦0.5も難しくなる。先
に述べたように2脚中においても測定値との比較は十
分良い一致を見ている。しかしモンテカルロ計算の信
頼性は統計誤差の大小によって評価されるので、多段
屈曲ダクト計算については、さらにFSDを低減する
サンプリング法の研究が必要である。
5.3 R-Tokamak の14MeV中性子ストリーミ
ング解析
5.3.1 1R-Tokamak中性子ストリーミングの遮蔽体
本研究で対象としたD-T核融合実験装置（R－Tokamak）の遮蔽体系はFig.26に示すように非常に大型であるばかりでなく、厳密かつ長い円筒ダクトを通じて14MeV中性子ストーリミングが含まれている。

R－Tokamakの遮蔽体系は次のようなものである。
1. D-T反応による14MeV中性子源はトロイダル形状のプラズマ領域である。
2. 中性子強度は1.6×10^18 neutron/shotであり、D-T反応の持続時間は1ショット当たり1秒間を計画している。また線源は14MeV中性子が等方的に放出されるものとした。
3. 検出用のダクトがイグルーの床に設けられた。これはプラズマ計測室に通じていて、プラズマ診断用のダクトである。ここを中性子がストーリミングする。
4. ダクトの形状は半径5cm、長さ250cm、厚さ250cmのコンクリート壁を垂直に貫通している。
5. プラズマ診断室のどこでどれだけの間滞在でき、また診断室中の機材の放射性を推定するためにも、ダクトの中心軸よりであり、水平方向の中性子線量分布およびエネルギースペクトルが重要になる。
6. Fig.26から分かるように、遮蔽体系は周囲を厚いコンクリート壁で囲まれているので室内散乱が無視できない体系である。したがって遮蔽計算には全体を考慮しなければならない。

5.3.2 仮想検出器における中性子フルーランス計算
まず1段目のモンテカルロ計算ではサブルーチーSOURCEを改訂し、トロイダル形状のプラズマ領域から14MeV中性子が発生するようにした。線源中性子は等方分布とした。一般に、プラズマの周辺にはトロイダルコイル等各種の構造物があるが、現在の概念設計の段階であるため、これらの構造物は計算から除外した。一方、イグルーの壁やプラズマ計測室の壁においては全て計算に取り入れた。

1段目の仮想検出器はダクトのプラズマ面に面した入口から10cm上った所に設置した。仮想検出器は半径25cmの円板とし、さらに5cmずつ5個の円環に分割した。

1段目のモンテカルロ計算では円筒ダクトの入口ばかりで、Fig.26のイグルー床面の何箇所かの中性子フルーランス分布を知るために、点検出器評価法を使った。その結果、プラズマ領域が大きな体積線源になっているので、イグルー床面は全体的にスケールはほぼ同じであり、角度分布についてもほとんど違いがな

Table 10 FSDs of the second Monte Carlo and those of statistical error propagation.

<table>
<thead>
<tr>
<th>Detector Location</th>
<th>Reaction Rate (reaction/W.s)</th>
</tr>
</thead>
</table>

| Aluminum Detector |
|--------------------|------|-----|-----------------|---------|-----------------|
| 8-1 | 1 | 15 | 2.30-24 | 2.631-24 | 0.292 |
| | 3 | 40 | 3.72-25 | 3.416-25 | 0.160 |
| | 5 | 80 | 1.31-25 | 2.085-25 | 0.293 |
| | 7 | 120 | 6.77-26 | 1.189-25 | 0.159 |
| | 9 | 160 | 3.52-26 | 6.020-26 | 0.162 |
| | 10 | 165 | 2.81-26 | 7.790-26 | 0.294 |
| | 11 | 40 | 2.03-28 | 1.556-28 | 0.701 |
| | 12 | 60 | 3.61-29 | 2.051-28 | 0.794 |
| | 13 | 80 | 8.90-30 | 3.158-29 | 0.719 |

a Read as 2.30×10^-24
b Fractional standard deviation
Fig. 26 Calculational model for the D-T Experimental Device (R-Tokamak). Dimensions are in centimetres.

きるように改訂したが、この内容は先に述べた MORSE-to-MORSE 倍率システムと同じものである。

2 段目の計算はプラズマ計測中で、円錐ダクトの中
心軸上ばかりでなく、中心軸に直交に交わる水平方向
についても計算を実施した。線源粒数は
25,000 〜 50,000 にストリー追跡した。

最終的に求めた量は（4.36）式で求められるが、レ
スポンス関数 R_r は線源率換算係数である。そして、本
研究では全ての結果の FSD を ORION コードで計算
し、統計誤差を考慮した FSD と 2 段目の計算だけの
FSD と比較検討し、誤差の伝播を詳しく評価した。

5.3.3 新しい群数データライブラリーの作成

14MeV 中性子の散乱角は前方に非常に大きいか確率
を持った非等方分布をする。そこで、この非等方分布
を MORSE コードでできるだけ忠実に再現し、シミュ
レートできるように、新しい微視的断面積ライブラリー
NGCP 9 〜 70 を AMPEX コードシステムに用い
て作成した。NGCP9 〜70 は以下のよう工数様である。

1. 基本となる断面積データは ENDF/B-IV で
ある。

2. エネルギー群構造は中性子 50 群、ガンマ線 20 群
であり、中性子とガンマ線の結合群数である。また、
エネルギー関係数は P_0 まで取っているので、端点
については各エネルギーグループに対し 5 方向選定できる。
さらに、14MeV 付近のエネルギーグループはこの付近の
エネルギースペクトルが鮮明に見えるようにかなり細
かに分割した。Table 11 に中性子、Table 12 にガン
マ線のエネルギーグループ構造を示す。

3. 微視的群数データライブラリー NGCP9 〜70 は
MORSE コードばかりでなく、ANISN および DOT
コードで何ら修正することなく利用できる。Table 13
に本研究で使用したコンクリートの原子密度を示すが、
コンクリートの組成が変わったり、他の物質が使用され
ても、NGCP9 〜70 が微視的ライブラリーであるので、
MORSE 倍率等の断面積の読取りと処理に関する
入力データを修正するだけで容易に対応できる。

4. NGCP9 〜70 は中性子とガンマ線の結合群数
になっているので、二次ガンマ線の解析にも何ら修正
なしに利用できる。
Table 11 Energy group structures for neutron of the NGCP9-70

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7333+7*</td>
<td>1.5683+7</td>
<td>1.6508+7</td>
<td>0.1</td>
<td>26</td>
<td>6.0810+5</td>
<td>4.9787+5</td>
<td>5.5299+5</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>1.5683+7</td>
<td>1.4918+7</td>
<td>1.5301+7</td>
<td>0.05</td>
<td>27</td>
<td>4.9787+5</td>
<td>3.6833+5</td>
<td>4.3335+5</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>1.4918+7</td>
<td>1.4550+7</td>
<td>1.4550+7</td>
<td>0.025</td>
<td>28</td>
<td>3.6833+5</td>
<td>2.9720+5</td>
<td>3.3302+5</td>
<td>0.216</td>
</tr>
<tr>
<td>4</td>
<td>1.4550+7</td>
<td>1.4191+7</td>
<td>1.4371+7</td>
<td>0.025</td>
<td>29</td>
<td>2.9720+5</td>
<td>1.8316+5</td>
<td>2.4018+5</td>
<td>0.484</td>
</tr>
<tr>
<td>5</td>
<td>1.4191+7</td>
<td>1.3840+7</td>
<td>1.4016+7</td>
<td>0.025</td>
<td>30</td>
<td>1.8316+5</td>
<td>1.1109+5</td>
<td>1.4713+5</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>1.3840+7</td>
<td>1.3699+7</td>
<td>1.3970+7</td>
<td>0.023</td>
<td>31</td>
<td>1.1109+5</td>
<td>6.7379+4</td>
<td>8.9233+4</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>1.3699+7</td>
<td>1.2840+7</td>
<td>1.3170+7</td>
<td>0.05</td>
<td>32</td>
<td>6.7379+4</td>
<td>4.0868+4</td>
<td>5.4124+4</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>1.2840+7</td>
<td>1.2214+7</td>
<td>1.2527+7</td>
<td>0.05</td>
<td>33</td>
<td>4.0868+4</td>
<td>2.4788+4</td>
<td>3.2628+4</td>
<td>0.5</td>
</tr>
<tr>
<td>9</td>
<td>1.2214+7</td>
<td>1.1052+7</td>
<td>1.1633+7</td>
<td>0.1</td>
<td>34</td>
<td>2.4788+4</td>
<td>2.3579+4</td>
<td>2.4184+4</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>1.1052+7</td>
<td>1.0000+7</td>
<td>1.0526+7</td>
<td>0.1</td>
<td>35</td>
<td>2.3579+4</td>
<td>1.5034+4</td>
<td>1.9307+4</td>
<td>0.45</td>
</tr>
<tr>
<td>11</td>
<td>1.0000+7</td>
<td>9.0484+6</td>
<td>9.5242+6</td>
<td>0.1</td>
<td>36</td>
<td>1.5034+4</td>
<td>9.1188+3</td>
<td>1.2076+4</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>9.0484+6</td>
<td>8.1873+6</td>
<td>8.6179+6</td>
<td>0.1</td>
<td>37</td>
<td>9.1188+3</td>
<td>5.5308+3</td>
<td>7.3248+3</td>
<td>0.5</td>
</tr>
<tr>
<td>13</td>
<td>8.1873+6</td>
<td>7.4082+6</td>
<td>7.7978+6</td>
<td>0.1</td>
<td>38</td>
<td>5.5308+3</td>
<td>3.3564+3</td>
<td>4.4427+3</td>
<td>0.5</td>
</tr>
<tr>
<td>14</td>
<td>7.4082+6</td>
<td>6.0653+6</td>
<td>6.7368+6</td>
<td>0.2</td>
<td>39</td>
<td>3.3564+3</td>
<td>2.0367+3</td>
<td>2.6947+3</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>6.0653+6</td>
<td>4.9659+6</td>
<td>5.5156+6</td>
<td>0.2</td>
<td>40</td>
<td>2.0367+3</td>
<td>1.2341+3</td>
<td>1.6344+3</td>
<td>0.5</td>
</tr>
<tr>
<td>16</td>
<td>4.9659+6</td>
<td>4.0657+6</td>
<td>4.5158+6</td>
<td>0.2</td>
<td>41</td>
<td>1.2341+3</td>
<td>7.4852+2</td>
<td>9.9131+2</td>
<td>0.5</td>
</tr>
<tr>
<td>17</td>
<td>4.0657+6</td>
<td>3.6788+6</td>
<td>3.8723+6</td>
<td>0.1</td>
<td>42</td>
<td>7.4852+2</td>
<td>4.5400+2</td>
<td>6.0126+2</td>
<td>0.5</td>
</tr>
<tr>
<td>18</td>
<td>3.6788+6</td>
<td>2.7253+6</td>
<td>3.2021+6</td>
<td>0.3</td>
<td>43</td>
<td>4.5400+2</td>
<td>2.7536+2</td>
<td>3.6668+2</td>
<td>0.5</td>
</tr>
<tr>
<td>19</td>
<td>2.7253+6</td>
<td>2.2313+6</td>
<td>2.4783+6</td>
<td>0.2</td>
<td>44</td>
<td>2.7536+2</td>
<td>1.6702+2</td>
<td>2.2119+2</td>
<td>0.5</td>
</tr>
<tr>
<td>20</td>
<td>2.2313+6</td>
<td>1.6530+6</td>
<td>1.9422+6</td>
<td>0.3</td>
<td>45</td>
<td>1.6702+2</td>
<td>1.0130+2</td>
<td>1.3416+2</td>
<td>0.5</td>
</tr>
<tr>
<td>21</td>
<td>1.6530+6</td>
<td>1.3534+6</td>
<td>1.5032+6</td>
<td>0.2</td>
<td>46</td>
<td>1.0130+2</td>
<td>6.1442+1</td>
<td>8.1371+1</td>
<td>0.5</td>
</tr>
<tr>
<td>22</td>
<td>1.3534+6</td>
<td>8.6294+5</td>
<td>1.1102+6</td>
<td>0.45</td>
<td>47</td>
<td>6.1442+1</td>
<td>3.7267+1</td>
<td>4.9355+1</td>
<td>0.5</td>
</tr>
<tr>
<td>23</td>
<td>8.6294+5</td>
<td>8.2085+5</td>
<td>8.4190+5</td>
<td>0.05</td>
<td>48</td>
<td>3.7267+1</td>
<td>1.0677+1</td>
<td>2.3972+1</td>
<td>1.25</td>
</tr>
<tr>
<td>24</td>
<td>8.2085+5</td>
<td>7.4274+5</td>
<td>7.8180+5</td>
<td>0.1</td>
<td>49</td>
<td>1.0677+1</td>
<td>4.1399+1</td>
<td>5.5455+0</td>
<td>3.25</td>
</tr>
<tr>
<td>25</td>
<td>7.4274+5</td>
<td>6.0810+5</td>
<td>6.7542+5</td>
<td>0.2</td>
<td>50</td>
<td>4.1399+1</td>
<td>1.0000+0</td>
<td>2.0750-1</td>
<td>6.026</td>
</tr>
</tbody>
</table>

* Read as 1.7333x10^7 eV.
Table 12 Energy group structures for gamma ray of the NGCP9-70

<table>
<thead>
<tr>
<th>Group</th>
<th>Upper Energy (eV)</th>
<th>Lower Energy (eV)</th>
<th>Average Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.4E+7</td>
<td>1.2E+7</td>
<td>1.3E+7</td>
</tr>
<tr>
<td>2</td>
<td>1.2E+7</td>
<td>1.0E+7</td>
<td>1.1E+7</td>
</tr>
<tr>
<td>3</td>
<td>1.0E+7</td>
<td>8.0E+6</td>
<td>9.0E+6</td>
</tr>
<tr>
<td>4</td>
<td>8.0E+6</td>
<td>7.5E+6</td>
<td>7.75E+6</td>
</tr>
<tr>
<td>5</td>
<td>7.5E+6</td>
<td>7.0E+6</td>
<td>7.25E+6</td>
</tr>
<tr>
<td>6</td>
<td>7.0E+6</td>
<td>6.5E+6</td>
<td>6.75E+6</td>
</tr>
<tr>
<td>7</td>
<td>6.5E+6</td>
<td>6.0E+6</td>
<td>6.25E+6</td>
</tr>
<tr>
<td>8</td>
<td>6.0E+6</td>
<td>5.5E+6</td>
<td>5.75E+6</td>
</tr>
<tr>
<td>9</td>
<td>5.5E+6</td>
<td>5.0E+6</td>
<td>5.25E+6</td>
</tr>
<tr>
<td>10</td>
<td>5.0E+6</td>
<td>4.5E+6</td>
<td>4.75E+6</td>
</tr>
<tr>
<td>11</td>
<td>4.5E+6</td>
<td>4.0E+6</td>
<td>4.25E+6</td>
</tr>
<tr>
<td>12</td>
<td>4.0E+6</td>
<td>3.5E+6</td>
<td>3.75E+6</td>
</tr>
<tr>
<td>13</td>
<td>3.5E+6</td>
<td>3.0E+6</td>
<td>3.25E+6</td>
</tr>
<tr>
<td>14</td>
<td>3.0E+6</td>
<td>2.5E+6</td>
<td>2.75E+6</td>
</tr>
<tr>
<td>15</td>
<td>2.5E+6</td>
<td>2.0E+6</td>
<td>2.25E+6</td>
</tr>
<tr>
<td>16</td>
<td>2.0E+6</td>
<td>1.5E+6</td>
<td>1.75E+6</td>
</tr>
<tr>
<td>17</td>
<td>1.5E+6</td>
<td>1.0E+6</td>
<td>1.25E+6</td>
</tr>
<tr>
<td>18</td>
<td>1.0E+6</td>
<td>5.0E+5</td>
<td>7.5E+5</td>
</tr>
<tr>
<td>19</td>
<td>5.0E+5</td>
<td>1.0E+5</td>
<td>3.0E+5</td>
</tr>
<tr>
<td>20</td>
<td>1.0E+5</td>
<td>1.0E+4</td>
<td>5.5E+4</td>
</tr>
</tbody>
</table>

\(^a\) Read as 1.4x10^7.

Table 13 Compositions of ordinary concrete

<table>
<thead>
<tr>
<th>Element</th>
<th>Compositon (atom/cm-b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>7.86-3^a</td>
</tr>
<tr>
<td>Oxygen</td>
<td>4.39-2</td>
</tr>
<tr>
<td>Sodium</td>
<td>1.05-3</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.40-4</td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.39-3</td>
</tr>
<tr>
<td>Silicon</td>
<td>1.58-2</td>
</tr>
<tr>
<td>Potassium</td>
<td>6.90-4</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.92-3</td>
</tr>
<tr>
<td>Iron</td>
<td>3.10-4</td>
</tr>
</tbody>
</table>

^a Read as 7.86x10^-3.
5.4 計算結果および考察

5.4.1 プラズマ計測室における中性子線量率分布およびエネルギースペクトル

プラズマ計測室において円筒ダクトの中心軸方向ばかりでなく、水平方向についても線量率分布およびエネルギースペクトルを計算した。Fig. 27 はそのうち円筒ダクトの中心軸に沿った中性子線量率分布を集約したものである。Fig. 27 の横軸の原点はダクトの出口、即ち X = 0, Y = 209cm, Z = 700cm の点である。FSD は全て統計誤差の伝播を考慮しているが、それでも 0.06以内であり、モンテカルロ分割結合法計算結果は十分信頼性があると考えられる。

ダクトストリーミングを扱った本体系はこれまで解析されていないが、ANISNコードによる一次計算がすでに実施されており、イグループ中やプラズマ計測室の線量率を推定することができる。そこで、Fig. 26 に示すダクトの入口とプラズマ計測室のダクト中心軸上の点における線量率について MORSE の結果と、ANISN の計算から推定した値とを比較した。Fig. 26 でダクトの直径 D は 10cm である。

1. 円筒ダクトの入口：
MORSE = 6 \times 10^7 \text{ (mrem/shot)}
ANISN = 5 \times 10^7 \text{ (mrem/shot)}

2. 円筒ダクトの出口から 250 下った点、即ち、P(0, 209, 450)
MORSE = 3.6 \times 10^7 \text{ (mrem/shot)}
ANISN = 1.1 \times 10^7 \text{ (mrem/shot)}

この MORSE による 3.6 \times 10^7 \text{ mrem/shot} と ANISN の 1.1 \times 10^7 \text{ mrem/shot} の差が逆にこのダクトを通じての中性子ストリーミングである。したがって、むしろ ANISN の計算のみであれば、およそ 3 \times 10^7 以上の過少評価になると予想される。

次に、上記(2)と同じ点におけるエネルギースペクトルを Fig. 28 に示す。本計算では線量率を得るために 14 MeV から熱中性子までのエネルギーフルーエンスを求めているが、特に、14MeV 付近のエネルギー間隔が狭いため対数目盛では表示しても見づらいため、Fig. 28 のように線形目盛で表わした。その結果、1 MeV までしか示していないが、データとしては熱中性子まで計算である。

Fig 28 から分るように 14MeV に顕著なピークがあり、1 MeV まで他のエネルギー群の値より 2 倍かそれ以上大きい。なお、14MeV は NGCP9-70ライブラリーで 5 群 (14.19MeV ～ 13.84MeV) に当る。この原因は検出器位置がダクトの真下にあるため、ストリーミング効果によってほとんど散乱の経験のない 14 MeV 中性子の寄与によると考えられる。

円筒ダクトの中心軸に対し水平方向における中性子
線量率分布を集約したものをFig. 29に示す。Fig. 29の原点は、P（0, 209, 450）の点であり、プラズマ計測室の床上450cmである。水平方向の計算には50,000個の線源中性子のヒストリーを追跡した。その結果、円筒ダクトの中心軸から15cm以上離れた水平方向のFSDは誤差の伝播を考慮した値は0.25〜0.47である。FSDが0.2以上になっているのでダクトの中心軸方向の線量率に対するFSDの0.06に比べればかなり大きく、十分良好なFSDとは言い難いが、0.5以内であり、Table 4を参照すれば一応評価できる値である。

円筒ダクト中心軸方向と同じように、ANISNコードでは中性子のストリーミングは考慮されていないが、MORSEの結果と比較し、その差からダクトの中性子ストリーミング効果が推定できる。

Fig. 29 Neutron dose rate distribution in the horizontal direction toward the duct axis.
209, 450）に対し1/10^4程度になっている。また Fig. 29から分かるように、水平方向では僅か5cm離れる1桁近い縦断面が消失する所もある。特に、このように短い距離間隔で非常に大きい中性子束の変化を正確に解き出せる実用的方法として本研究で提案するモンテカルロ分割総合計算法が適していることが実証できた。本遮蔽体原における全中性子束の減衰は、円筒ダクトの入口とプラズマ計測室のダクト中心軸上および9桁、水平方向ではおよそ12桁もあり、プラズマ領域からの全中性子束の減衰を入るとさらに大きな減衰になる。したがって、この点からも従来のモンテカルロ計算でこの体系を解くことは難しいものと考えられる。

計算時間は、14MeVから熱中性子まで計算に含めているので、FACOM SP-100で1段目の計算に40,000ストリーで30分、2段目の計算では25,000〜50,000ストリーチョッキー、円筒ダクトの中心軸上では1検出点当り10分、水平方向では1検出点当たり20〜50分であった。本計算は熱中性子まで中性子を追跡しているので、計算時間が多少長くなっているが、十分現実的な計算時間に収まっているものと考えられる。

5.4.2 統計誤差伝播を考慮したFSD

本計算で得られたプラズマ計測室の中性子総線量率と、それに対応した2段目のモンテカルロ計算のFSDおよび統計誤差伝播を考慮したFSDをTable14に集約する。誤差の伝播を考慮したFSDは(4.41)式を基にしたORIONコードで計算した。

円筒ダクトの中心軸上においては2段目のモンテカルロ計算のFSDも小さいので、1段目のFSDが0.030であるにもかかわらず、例えば、P(0, 209, 600)点におけるFSDは0.056が誤差の伝播を考慮すると0.064になるように、やや大きくなる。しかし、水平方向、例えば、P(0, 249, 450)点においては2段目のFSDが0.439と1段目に比べ1桁以上大きいので、誤差の伝播を考慮しても2段目とはほとんど同じ0.440である。

水平方向のFSDは1段目のFSDが小さいので統計誤差の伝播を考慮してもどうにか0.5以内に収まった。しかし、ダクトをストリーミングする中性子に直接さらわれる領域におけるFSDの低減の研究は今後も進めなければならないと考える。

Table 14 Neutron Dose Rate in the Diagnostics
Room and the FSDs.

<table>
<thead>
<tr>
<th>Detector Location (cm)</th>
<th>Dose Rate (mrem/shot)</th>
<th>Second Calculation</th>
<th>Using Error-Propagation Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>x y z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 209 710</td>
<td>1.679×10⁹⁺</td>
<td>0.055</td>
<td>0.063</td>
</tr>
<tr>
<td>--- 650</td>
<td>1.029×4</td>
<td>0.055</td>
<td>0.063</td>
</tr>
<tr>
<td>--- 600</td>
<td>7.340×3</td>
<td>0.056</td>
<td>0.064</td>
</tr>
<tr>
<td>--- 550</td>
<td>5.579×3</td>
<td>0.056</td>
<td>0.064</td>
</tr>
<tr>
<td>--- 500</td>
<td>4.343×3</td>
<td>0.056</td>
<td>0.064</td>
</tr>
<tr>
<td>--- 450</td>
<td>3.631×3</td>
<td>0.048</td>
<td>0.057</td>
</tr>
<tr>
<td>0 219 ---</td>
<td>1.828×3</td>
<td>0.095</td>
<td>0.100</td>
</tr>
<tr>
<td>--- 224</td>
<td>2.410×2</td>
<td>0.271</td>
<td>0.273</td>
</tr>
<tr>
<td>--- 229</td>
<td>3.748×1</td>
<td>0.248</td>
<td>0.250</td>
</tr>
<tr>
<td>--- 239</td>
<td>4.549×0</td>
<td>0.354</td>
<td>0.356</td>
</tr>
<tr>
<td>--- 249</td>
<td>3.440×0</td>
<td>0.439</td>
<td>0.440</td>
</tr>
<tr>
<td>--- 259</td>
<td>3.157×0</td>
<td>0.467</td>
<td>0.468</td>
</tr>
</tbody>
</table>

*All detector locations were in the plane of Fig. 20.

Read as 1.679×10⁹⁺.
5.5 結論

本章ではダクトを含む大型遮蔽体系の中性子束分布の遮蔽計算法として前章で提案したモンテカルロ分割結合計算法を3つの体系に適用し、分散の低減と計算時間の短縮を試みた。また、統計誤差伝播の評価コードORIONでFSDを求め、誤差伝播の評価と検討を行った。

その結果、次に示すように、従来のモンテカルロ計算法で得られないような数値的結果が得られた。モンテカルロ分割結合計算法が分散の低減と計算時間の短縮の面から優れた計算法であることが分かった。

1. スリット中性子ストリーミング計算では、特に硫黄放射化箇検出器反応率（S(n, p)P反応）に対し良好な結果を得られた。スリット中の全ての検出器位置の反応率に対しファクター2以内で一致しており、2段目のFSDも0.32～0.36であった。

2. 1.の計算で、カドミックバー金箔放射化検出器反応率に対しては2段目のFSDは0.32～0.65で、0.5を超えるところがあるが、実験値との比較ではファクター2以内で良好な一致を示した。これに対し、従来のモンテカルロ計算ではスリット中の全ての検出器位置でおよそ2桁も過小評価となっており、熱外中性子に対しては妥当な結果が得られないと判断できる。FSDも0.6であった。

3. 屈曲ダクト中性子ストリーミング計算では線源とダクトの出口付近の間で中性子束の減衰がおよそ12倍あったが、特にインジウム放射化検出器反応率（In（n, n'）In、しきいエネルギー4.0MeV）およびニッケル放射化検出器反応率（Ni（n, p）Co、しきいエネルギー2.8MeV）に対し良好な結果を得られた。いずれの検出器の反応率も屈曲ダクト中の全ての検出器位置でファクター2以内で実験値と一致している。インジウム放射化検出器のC/Eはダクトの入口で0.01、出口近くで0.06であった。ニッケル放射化検出器のC/Eはダクトの入口で0.95、出口近くで0.93であった。

4. 2段の屈曲ダクト計算では100ケの2段目の計算値のFSDは0.1前後で良好な値であるが、インジウムやニッケル放射化検出器反応率でも2段目になると、絶対値の比較では良好な一致を示しているもののFSDは0.2～0.6になり、0.5を超える所もある。この傾向はダクトの屈曲数が増えればさらに強くなる予想される。

5. 細管円筒ダクト14MeV中性子ストリーミング計算ではプラズマ計測室においてダクトの中心軸方向ばかりでなく、水平方向の中性子線量率分布を計算した。その結果、円筒ダクトの中心軸方向の線量率分布は緩やかであるが、水平方向には中心軸から僅か30cm離れると3桁も減衰があることが明らかになった。しかし、半径5cmで、長さ250cmのダクトが厚さ250cmのコンクリートを貫通しているにもかかわらず、ダクトの真下250cmでは水平方向50cm離れてても、ダクトが入口として一次元計算した線量率よりも30倍高く、さらに遠方まで中性子ストリーミング効果が及んでいることが分かった。水平方向50cmの位置の線量率は3.2mrem/shotであった。

6. 5の細管円筒ダクト計算は全ての計算結果のFSDについて統計誤差の伝播を考慮している。同質ダクトの中心軸上の線量率に対する誤差伝播を考慮したFSDは0.06以内であり、統計誤差として十分小さい値である。水平方向のFSDは15cm以上離れた位置で0.25～0.47になり、円筒ダクトの中心軸方向に比べると明らかに大きくなっているが、応答、FSD<0.5に収まっている。

7. 総合誤差伝播を考慮したFSDと2段目の計算結果のFSDを比較すると、誤差伝播評価式から容易に分るように、本計算の場合は1段目の全フールエンスに対するFSDが0.03と非常に小さいため、誤差の伝播がほとんどない。

8. プラズマ計測室ではもう1つの課題として計測器や実験器材の放射化があるが、その量は物質の放射化断面積が分れば再度計算することなく、本研究で得られた各位置におけるエネルギーフールエンスを用いて求められ、そのときの誤差の伝播を考慮したFSDも、各群のエネルギーフールエンスに対する誤差伝播式を使って計算できる。

9. 本研究で新たに作成したNGCP 9-70ライブラ
リーは14MeV中性子の輸送計算に対し，十分妥当な
断面積ライブラリーとして利用できることが実証され
た。

第6章 結言および今後の課題

6.1 結言

モンテカルロ法を適用したダクトを含む大型遮蔽体
系の中性子を分布解析法について検討してきた結果，
以下のような結論を得た。

1. 従来のモンテカルロ計算法を適用した計算例を
調べた結果，大型遮蔽体系を1回の計算で解こうと
すると，過少評価になることが第2章で明らかになっ
た。

2. 第3章は，大型遮蔽体系を貫通する直円筒ダク
トの出口における高速中性子計算にアジョイントモン
テカルロ法を利用した計算を行った。1つの方法は，
アジョイントモンテカルロ計算でイイベント・バリー
およびポルトバリーを求め，それぞれ飛程長および
角度バイアスをとるためにインバータス関数として
フォワードモンテカルロ計算を行うもので，もう1つ
は，フォワード・アジョイント反復計算法である。ダ
クトの出口における高速中性子に対してはFSDが
0.1以下に低減することができた。しかし，これらの方
法ではダクトの形状および位置についてパラメトリック
計算する場合や検出点が多数ある場合には，計算時間
の点で不利である。

3. 第4章では，大型遮蔽体系の中性子分計算法
の1つとして，線源領域も含め三次元計算ができる
モンテカルロ分割結合計算法を提案した。モンテカレ
ロ分割結合計算法は実際の線源と検出器との間に新た
に仮想検出器を設定し，1段目の計算で仮想検出器の
角度フーレンス等の諸量を求める。2段目の計算は
1段目の計算で得られた諸量から作ったpdfを基に，
仮想検出器を結合面にし，そこから中性子を発生させ
て実際の検出器に対する中性子の寄与を求める。最終
的に求める量は実際の線源強度や仮想検出器の面積を
考慮し，2段の結果を結合することによって計算でき
る。その結果，求める量に寄与するエネルギー群から
より多くの中性子発生することになり，従来のモンテ
カルロ計算よりも分散が小さくなることが期待できる。

5. さらに，線源が同じであれば，ダクトやスリッ
トは形状や位置が変わっても，適切な位置に仮想検出器
を設定することによって，2段目の計算だけで求める量
が計算できる。したがって，遮蔽設計で必ず必要にな
るパラメトリック計算には都合の良い計算法である。

6. また，第4章では，モンテカルロ分割結合計算
法を適用する場合の統計誤差の伝播を考慮したFSD
を計算するための計算式を導出した。この計算式は基
にORIONコードを作成した。

7. モンテカルロ分割結合計算法が実際にダクトを
含む大型遮蔽体系の中性子束分布を短い計算時間で，
しかも分散を低減できることを確かめるために，絶対
値で反応率が得られている実験体素2例と，核融合反
実験装置1例を対象に第5章で解析した。またORION
コードで誤差伝播を考慮したFSDも計算し
た。

（1）JRR-4号炉における中性子スリットストリミ
ング計算では，従来のモンテカルロ法による計算結
果と比較し，著しい改善が見られた。特に硫黄放射化
箔検出器の反応率では，全ての検出器位置でファクタ
ー2以内で測定値と一致した。

（2）JRR-4号炉における二重環境箇所ダクト中
性子ストリーミング計算では，特にインジウムおよび
ニッケル放射化箔検出器反応率に対し良好な結果が得
られ，ダクト全体にわたってファクター2以内で実験
値と一致した。また，ダクトダクトの入口と出口付近の
間では上記の検出器の反応率は8桁程度の減衰があ
ったが，入口および出口のC/Nは両検出器の反応率
が1に近い値であった。本遮蔽体系全体の中性子束の
減衰はおよそ8～12桁である。ESDは第1脚中の反応
率で0.1程度に低減できた。しかし，第2脚に入ると
0.5を超えるところもあった。計算時間は，熱中性子を
計算に含めていないので，FACOM M-200で1段目の
計算に10,000ヒストリーで10分，2段目の計算は
2,000～10,000ヒストリーで1検出点当り5～10分であ
った。

（3）R-Tokamakの14MeV中性子細管ストリミ
ング計算ではプラズマ計測室中で，円筒ダクトの中
心軸上ばかりでなく，水平方向に沿った中性子線量率
分布も計算し，細管ダクトのストリーミング効果を明
らかにした。その結果，1次元輸送計算と比較し，円
筒ダクト中心軸上で4箇所、中心軸から水平方向に50cm離れても30倍程度高い値を示した。その結果、半径5cmの細管が厚さ2.5mmのコンクリートを貫通しているにもかかわらず、ダクトの中心軸からかなり離れたところまで、ストリーミング効果が及ぶことが明らかになった。さらに、水平方向ではダクト中心軸から僅か30cm離れて3箇、5cmの間隔で1箇所の線量率の変化が見られた。このように激しい線量率分布の変化を確実に計算できる実用的手法として、本分割結合法が優れていることが明らかになった。誤差伝播を考慮したFSDも円筒ダクトの中心軸上の中性子線量率では0.06以下であり、非常に小さいFSDであった。また、中心軸から水平方向に離れた検出点でもFSDは0.10〜0.47であり、0.5以下になっている。計算時間は、14mMeVから中性子まで計算に含めているが、それでもFACOM SP-100で1段目の計算が40,000ヒストリーで30分、2段目の計算では25,000〜50,000ヒストリーを追跡し、円筒ダクト中心軸上で1検出点当たり10分、水平方向では20〜50分である。これは、現実的な計算時間である。

8. 本研究を総括すると、まず、本研究で提案したモンテカルロ分割結合法を適用することによってダクトを含む大型遮蔽系の中性子束分布計算が短い計算時間で、しかも分散の小さい結果が得られることが明らかになった。また、遮蔽設計に必要なダクトやスリットの形状や位置を変えてパラメトリック計算する場合にも都合の良い計算方法であることも明らかになった。さらに、細管円筒ダクトによる中性子ストリーミング効果も、分割結合法によって過少評価することなく計算できることも分かった。そして、モンテカルロ分割結合法を適用した場合の計算結果の統計誤差を評価する統計誤差の伝播計算式も導出し、誤差伝播を考慮したFSDを計算するためORIONコードが作成された。

6.2 今後の課題

本研究によって提案されたモンテカルロ分割結合法は、ダクトを含む大型遮蔽系の遮蔽計算を短い計算で効率良く、しかも分散の小さな結果をもたらすことが期待できるが、さらに本計算法を進歩発展させるためには、次に掲げるような課題が残されている。

1. 径の細い屈曲ダクトストリーミング計算において、第2脚後のダクト中における計算結果のFSDをさらに低減させるサンプリング法の工業化が第1であ

る。第2脚中に入射する中性子の確率を単に大きくするためには、従来の角度バイアスやスプリッティングを採用すれば良いが、この方法では入射する中性子の重みのばらつきが大きくなり、分散を大きくしたり、不必要的粒子の追跡に多くの計算時間を費し、計算効率が低下することになる。したがって、計算効率を低下させずに分散を低減させるためには、第2脚後のダクト中に重みのできるだけ影した中性子をより多く入射できるような方法であることが要求される。

2. 今までの遮蔽計算では普通線源領域が1つの場合を扱ってきたが、一般には線源領域が多数ある場合もある。そのような体系を従来の計算法で扱おうとすれば、1つの線源領域に対し1関の計算を実施し、その結果を重畳しなければ求める量が得られないので計算効率が非常に悪い。そこで、複数個の線源領域がある体系を計算する場合、モンテカルロ分割結合法の成功のキーポイントになった仮想検出器の設定法が適用でき、各線源に対し1つの仮想検出器を設定し、2段目の計算の結び面にすれば、2段目の計算だけで複数個の線源があっても求めめる量が得られることになる。この場合、仮想検出器も複数個になるので、検出点により寄與する仮想検出器からより多くの中性子を発生できるような方法を工夫することも考えなければならない。そうすれば、モンテカルロ分割結合法の新たな応用分野になるであろう。

謝辞

本研究は、船舶技術研究所において、使用核燃料の船舶輸送における放射線遮蔽の研究の一部として行われたものである。研究遂行に当たり、ご助言、ご激励をいただいた布施卓章原子力船部長、山越寿夫室長ならびに中田正也前原子力船部長に深く感謝致します。また、本研究の内容についてご指導いただいた竹内清海支所長に深く謝意を表します。

本研究のまとめに際し、懇熱なご助言とご指導をいただいた京都大学兵ヘンツ学教授ならびに東京大学原子核研究所中村尚司助教授に深く感謝の意を表します。
参考文献

10) 森田考夫; モンテカルロ法とシミュレーション, 培風館 (1969)
11) 宮武修, 中山隆; モンテカルロ法, 日刊工業新 聞社 (1960)
12) Herman Kahn: Application of Monte Carlo, AECU - 3259 (1965)
15) D. J. Raso; Nucl. Sci. Eng., 17, 411 (1963)
19) F. H. Clark, N. A. Betz, and J. Brown; Monte Carlo Calculations of the Penetration of Normally Incident Neutron Beams Through Concrete, ORNL - 3976 (1967)
20) F. H. Clark; The Exponential Transform as an Importance Sampling - A Review, ORNL - RSIC - 14 (1966)
22) F. J. Allen, A. Futterer, and W. Wright; Dependence of Neutron Albedos upon Hydrogen Content of a Shield, BRL - 1224 (1963), in Reactor Shielding for Nuclear Engineers, N. M. Schaeffer (Ed.), U. S. ATOMIC ENERGY COMMISSION (1973)
24) M. B. Wells; Differential Dose Albedos for Caluculation of Gamma - Ray Reflection from Concrete, RRA - T46 (1964)
26) D. G. Collins and L. W. Mclearry; A Systemization and Penetration Study for Straight Cylindrical Ducts, NARF - 63 - 3T 1963), in Reactor Shielding for Nuclear Engineers, N. M. Schaeffer (Ed.), U. S. ATOMIC ENERGY COMMISSION (1973)
28) V. R. Cain; Calculation of Thermal - Neutron Flux Distribution in Concrete - Walled Ducts Using Albedo Monte Carlo Techniques, ORNL - 3507 (1964)
29) R. E. Maerker and F. J. Muckenthaler; Nucl.
30) R. E. Maeker and V. R. Cain; AMC: A Monte Carlo code Utilizing the Albedo Approach for Calculating Neutron and Capture Gamma - Ray Distributions in Rectangular Concrete Ducts, ORNL - 3964 (1967)

31) R. E. Maeker and F. J. Muckenthaler; Monte Carlo Calculations Using the Albedo Concept of Fast - Neutron Dose Rates Along the Center Lines of One - and Two-Legged Square Concrete Open Ducts and Comparison with Experiment, ORNL - TM - 1557 (1966)

33) 日本原子力研究機関東京研究部, 粒物理委員会・遮蔽専門部会: ディスクリート・オーディネイトコードおよびモンテカルロコードによる二次元遮蔽ベンチマーク計算 (No.1), JAERI - M7799 (1978)

44) R. W. Roussin; 40 Group Coupled Neutron and Gamma - Ray Cross Section Data, DLC - 23, RSIC Data Library Collection (1972)

46) P. N. Stevens; Theory of Adjoint Monte Carlo and its Application, Tennessee Industries Week, University of Tennessee, Knoxville (1977)

48) 植木絹太郎, 他: モンテカルロコード MORSE-CG によるベンチマーク実験の解析, JAERI - M83 - 142 (1983)

49) 売西義夫, 他: 一般過程実験マニュアル (前期), 原子炉設計書テキスト, JAERI6018, (1968)

50) 宮坂俊一, 他: 黒鉛スロットからの中性子の漏洩, JAERI - M8686, 97 (1980)

51) 三浦俊正, 竹内清, 布施卓喜: 円環ダクト漏洩放射線の測定と計算, 船舶技術報告, 16, 329 (1979)

with Experiment, ORNL - 7878 (1981)
62) Long - Poe Ku and Joseph G. Kolibal; Nucl.
Tech./Fusion, 2, 313 (1982)
(1983)
64) W. T. Urban, T. J. Seed, and D. J. Dudziak;
Nucl. Tech./Fusion, 2, 261 (1982)
65) R. A. Lillie, et. al.; Nucl. Tech./Fusion, 2, 325
(1982)
66) 植木紳太郎：日本原子力学会誌, 26, 883(1984)
67) “ENDF/B Summary Documentation, “
BNLNCS - 17541 (ENDF - 201), 2nd ed. (ENDF/B
IV), D. Garber, Ed., available from the National
Nuclear Data Center, Brookhaven National Labora-
tory, Upton, New York (Oct.1975)
68) 小山輝二，他：遮蔽材料の群定数―中性子100
群・ガンマ線20群・P₈近似―, JAERI - M6928 (1977)
System for Generating Coupled Neutran and
Gamma - Ray Group Constants and Analyzing
Radiation Transport, JAERI - M7155 (1977)
70) N. M. Greene, et al.; A Modular Code System
for Generation Coupled Multi - Group Neutron -
Gamma Libraries from ENDF/B, ORNL/TM - 3706
(1976), (Revised 1978)
71) W. W. Engle, Jr; A Users Manual for ANISN,
A One Dimensional Discrete Ordinates Transport
Code, K 1693 (1967)
72) U. Fano, L. V. Spencer, and M. J. Berger;
Penetration and Diffusion of X Ray, Handbuch der
Physik, Vol. XXXVIII/2, p660, S. Flugge (Ed.), Sprin-
ger - Verlag, (1969)
73) 植木紳太郎：モンテカルロ法による遮蔽問題の
解析（総説）, 日本原子力学会誌, 22, 535 (1980)
74) H. A. Steinberg and M. H. Kalos; Nucl. Sci.
Eng., 44,406 (1971)
75) A. Dubi and Y. S. Horowitz; Nucl. Sci. Eng.,
71, 29 (1979)
76) S. K. Fraley and J. J. Hoffman; Nucl. Sci. Eng.,
70, 14 (1979)
77) N. M. Schaeffer (Ed.); Radiation Shielding for
Nuclear Engineers, U. S. ATOMIC ENERGY
Appendix A

(3.8) 式を基に、MORSEコードの文献(2)に沿って、ジョイントモードに対する積分型現実仮想粒子密度方程式を導出する。

(3.8) 式を最終的には輸送核と衝突核を用いて書き表わすために、まず次のように変形した輸送核を導入する。

\[T_o(\vec{r} \rightarrow \vec{r}', \vec{Q}) = T_o(\vec{r} \rightarrow \vec{r}', \vec{Q}) \frac{\Sigma^x_o(\vec{r}')}{\Sigma^x(\vec{r})} \quad (A.1) \]

この新しい輸送核 \(T_o(\vec{r} \rightarrow \vec{r}', \vec{Q}) \) はフーリエ変換で用いた輸送核 \(T_o(\vec{r} \rightarrow \vec{r}', \vec{Q}) \) に対応する。また、(3.8) 式における,

\[\sum_{\vec{r}'} \int d\vec{Q} \frac{\Sigma^x_o(\vec{r}', \vec{Q})}{\Sigma^x(\vec{r})} \quad (A.2) \]

は仮想粒子数が引き起こす位相変化 \(g \rightarrow g', \vec{Q} \rightarrow \vec{Q}' \) を表している。したがって、(A-2) 式は新しい衝突核 \(\tilde{C}_{\nu-o}(\vec{r}, \vec{Q} \rightarrow \vec{Q}') \) になり、フーリエ変換方程式で用いられた衝突核と全く同じである。

\[\tilde{C}_{\nu-o}(\vec{r}, \vec{Q} \rightarrow \vec{Q}') = \sum_{\vec{r}'} \int d\vec{Q} \frac{\Sigma^x_o(\vec{r}', \vec{Q} \rightarrow \vec{Q}')}{\Sigma^x(\vec{r})} \quad (A.3) \]

(A.1) および (A.3) 式を用いると、仮想粒子に対するモンテカルロ解析のポインタリュー定義式は次式のようになる。

\[\chi^x_o(\vec{r}, \vec{Q}) = P^x_o(\vec{r}, \vec{Q}) + \]

\[T_o(\vec{r} \rightarrow \vec{r}', \vec{Q}) \frac{\Sigma^x_o(\vec{r}')}{\Sigma^x(\vec{r})} \tilde{C}_{\nu-o}(\vec{r}', \vec{Q} \rightarrow \vec{Q}') \]

\[\times \chi^x_o(\vec{r}', \vec{Q}') \quad (A.4) \]

(A.4) 式はモンテカルロ解析のジョイントモードに対し、基本的には正確な関係式である。しかし、このまま解こうとすると、特別な重み補正 \(\Sigma^x(\vec{r}')/\Sigma^x(\vec{r}) \) が必要であり、そのためには次の衝突点を選定した後で重みの計算をしなければならない。

この特別な重み補正を避けるために、次のような量を新たに定義する。

\[H_o(\vec{r}, \vec{Q}) = \Sigma^x(\vec{r}) \chi^x_o(\vec{r}, \vec{Q}) \quad (A.5) \]

\[H_o(\vec{r}, \vec{Q}) = T_o(\vec{r} \rightarrow \vec{r}', \vec{Q}) C_o(\vec{r}', \vec{Q}) \quad (A.6) \]

また、イベントバリーとポイントバリーとの間に次のような関係式がある。

\[\chi^x_o(\vec{r}, \vec{Q}) = H_o(\vec{r}', \vec{Q}) W_o(\vec{r}', \vec{Q}) \quad (A.7) \]

(3.5) 式で、\(\chi^x_o(\vec{r}, \vec{Q}) \) は線束に似た変数であるので、新しい変数 \(H_o(\vec{r}, \vec{Q}) \) は象意密度 (event density) であり、(A.6) 式の \(G_o(\vec{r}, \vec{Q}) \) は現実粒子密度 (emergent particle density) に似た量であると見なせる。これによって、ジョイント事象密度 \(H(\vec{r}, \vec{Q}) \) に対する基本式は積分型ポイントバリー方程式 \(\chi^x \) に基にして次のようにして定義される。

\[\chi^x(\vec{r}, \vec{Q}) = H_o(\vec{r} \rightarrow \vec{r}', \vec{Q}) \left\{ P^x_o(\vec{r}, \vec{Q}) + \right. \]

\[\left. C_{\nu-o}(\vec{r}', \vec{Q} \rightarrow \vec{Q}') \chi^x_o(\vec{r}', \vec{Q}') \right\} \]

\[= \int d\vec{Q} \Sigma^x(\vec{r}) e^{-\beta \mu(\vec{r}, \vec{Q})} \left\{ P^x_o(\vec{r}, \vec{Q}) + \right. \]

\[\left. C_{\nu-o}(\vec{r}', \vec{Q} \rightarrow \vec{Q}') \chi^x_o(\vec{r}', \vec{Q}') \right\} \quad (A.8) \]

ここで、

\[P^x_o(\vec{r}, \vec{Q}) = P^x_o(\vec{r}, \vec{Q}) / \Sigma^x(\vec{r}) \]

(A.8) 式の両辺に \(\Sigma^x(\vec{r}) \) を乗じ、次のよう整理する。

\[\Sigma^x(\vec{r}) \chi^x_o(\vec{r}, \vec{Q}) = \int d\vec{Q} \Sigma^x(\vec{r}) e^{-\beta \mu(\vec{r}, \vec{Q})} \]

\[\times \left\{ \Sigma^x(\vec{r}) P^x_o(\vec{r}, \vec{Q}) + \right. \]

\[\left. C_{\nu-o}(\vec{r}', \vec{Q} \rightarrow \vec{Q}') \Sigma^x(\vec{r}') \chi^x_o(\vec{r}', \vec{Q}') \right\} \]

\[= \Sigma^x(\vec{r}) \int d\vec{Q} \Sigma^x(\vec{r}') \tilde{C}_{\nu-o}(\vec{r}', \vec{Q} \rightarrow \vec{Q}') \]

\[\times \chi^x_o(\vec{r}', \vec{Q}') \quad (A.9) \]

ここで、\(H = \Sigma^x \chi^x \) および \(P^x = \Sigma^x P^x \) の関係式を使えば、(A.9) 式は次のように書き換えられる。

\[H_o(\vec{r}, \vec{Q}) = T_o(\vec{r} \rightarrow \vec{r}', \vec{Q}) \left\{ P^x_o(\vec{r}, \vec{Q}) + \right. \]

\[\left. C_{\nu-o}(\vec{r}', \vec{Q} \rightarrow \vec{Q}') H_o(\vec{r}', \vec{Q}') \right\} \]

\[= \Sigma^x(\vec{r}) \int d\vec{Q} \Sigma^x(\vec{r}') \tilde{C}_{\nu-o}(\vec{r}', \vec{Q} \rightarrow \vec{Q}') \]

\[\times \chi^x_o(\vec{r}', \vec{Q}') \quad (A.10) \]

ここで、

\[C_{\nu-o}(\vec{r}', \vec{Q} \rightarrow \vec{Q}') = \tilde{C}_{\nu-o}(\vec{r}', \vec{Q} \rightarrow \vec{Q}') \]

\[\frac{\Sigma^x(\vec{r}')}{\Sigma^x(\vec{r})} \quad (A.11) \]

(A.10) 式と (A.6) 式とを比較すると次のような関係式が見い出される。

\[G_o(\vec{r}, \vec{Q}) = P^x_o(\vec{r}, \vec{Q}) + C_{\nu-o}(\vec{r}, \vec{Q} \rightarrow \vec{Q}') H_o(\vec{r}', \vec{Q}') \]

\[\quad (A.13) \]

(A.13) 式と (3.5) 式とを比較すると、

\[\chi_o(\vec{r}, \vec{Q}) = S_o(\vec{r}, \vec{Q}) + \]

\[C_{\nu-o}(\vec{r}, \vec{Q} \rightarrow \vec{Q}') T_o(\vec{r} \rightarrow \vec{r}', \vec{Q}') \chi_o(\vec{r}', \vec{Q}') \]

\[\quad (3.5) \]

これら二つの式はモンテカルロ計算を実行する上で全く同じ論理で解くことができることが分る。この両式がMORSEコードで実際に採用されている式である。
Appendix B イベントバリュー関数の導出

アジェントモンテカルロ計算の過程でイベントバリュー \(W_\theta (\tilde{r}, \tilde{\Omega}) \) を計算する関係式を導出する。
Appendix A の（A.12）式の両辺を \(\sum_i^\theta (\tilde{r}) \) で割る。
\[
\frac{G_\theta (\tilde{r}, \tilde{\Omega})}{\sum_i^\theta (\tilde{r})} = \frac{P_\theta^o (\tilde{r}, \tilde{\Omega})}{\sum_i^\theta (\tilde{r})} + \frac{C_{\theta - \theta^o} (\tilde{r}, \tilde{\Omega} \rightarrow \tilde{\Omega}^o)}{\sum_i^\theta (\tilde{r})} \cdot H_\theta (\tilde{r}, \tilde{\Omega}^o) \tag{B.1}
\]
(B.1) 式は Appendix A の（A.5）式および（A.11）式、さらに、
\[
P_\theta^o (\tilde{r}, \tilde{\Omega}) = \sum_i^\theta (\tilde{r}) P_\theta^o (\tilde{r}, \tilde{\Omega})
\]
という関係式を用い、次のように変形できる。
\[
\frac{G_\theta (\tilde{r}, \tilde{\Omega})}{\sum_i^\theta (\tilde{r})} = P_\theta^o (\tilde{r}, \tilde{\Omega}) + \frac{\sum_i^\theta (\tilde{r}) C_{\theta - \theta^o} (\tilde{r}, \tilde{\Omega} \rightarrow \tilde{\Omega}^o) \chi_\theta^o (\tilde{r}, \tilde{\Omega}^o)}{\sum_i^\theta (\tilde{r})}
= P_\theta^o (\tilde{r}, \tilde{\Omega}) + C_{\theta - \theta^o} (\tilde{r}, \tilde{\Omega} \rightarrow \tilde{\Omega}^o) \chi_\theta^o (\tilde{r}, \tilde{\Omega}^o) \tag{B.2}
\]
(B.2) 式をイベントバリューの定義式と比較する。
\[
W_\theta (\tilde{r}, \tilde{\Omega}) = P_\theta^o (\tilde{r}, \tilde{\Omega}) + C_{\theta - \theta^o} (\tilde{r}, \tilde{\Omega} \rightarrow \tilde{\Omega}^o) \chi_\theta^o (\tilde{r}, \tilde{\Omega}^o) \tag{B.3}
\]
ここで、
\[
\tilde{C}_{\theta - \theta^o} (\tilde{r}, \tilde{\Omega} \rightarrow \tilde{\Omega}^o) := C_{\theta - \theta^o} (\tilde{r}, \tilde{\Omega} \rightarrow \tilde{\Omega}^o) \tag{B.4}
\]
の定義がある。
したがって、(B.2) 式と (B.3) 式から次の関係式が得られる。
\[
W_\theta (\tilde{r}, \tilde{\Omega}) = G_\theta (\tilde{r}, \tilde{\Omega}) / \sum_i^\theta (\tilde{r}) \tag{B.5}
\]
あるいは、
\[
G_\theta (\tilde{r}, \tilde{\Omega}) = W_\theta (\tilde{r}, \tilde{\Omega}) \sum_i^\theta (\tilde{r}) \tag{B.6}
\]
MORSE コードでは (B.5) 式の \(G_\theta (\tilde{r}, \tilde{\Omega}) \) を計算しているので、イベントバリュー \(W_\theta (\tilde{r}, \tilde{\Omega}) \) を求めるにはサブルーチン \(\text{MORSE} \) を改訂し、\(W_\theta (\tilde{r}, \tilde{\Omega}) \) を記録するためのディメンション（dimension）を設け、さらにサブルーチン \(\text{NSIGTA} \) を呼んで \(\sum_i^\theta (\tilde{r}) \) を用意する。
(B.5) 式はモンテカルロ計算でイベントバリューが求められるように本研究で導出した計算式である。

Appendix C

アジェントモンテカルロ法で (3.9) 式を解く手順を次に説明する。
Step 1
線源項は物理的な線源分布 \(S_\theta (\tilde{r}, \tilde{\Omega}) \) ではなく、レスポンス関数 \(P_\theta^o (\tilde{r}, \tilde{\Omega}) \)（例えば、線量率換算係数、反応断面積、全フルーレンスに対する係数（？））である。
Step 2
輸送距離 \(R \) を以下のような分布関数から選定する。
\[
\xi (\tilde{r} + R \tilde{\Omega}) \exp \left[- \int_0^R \sum_i^\theta (\tilde{r}' \rightarrow \tilde{\Omega} \rightarrow \tilde{\Omega}') dR \right]
\]
\(R \) が得られたら、
\[
\tilde{r} = \tilde{r}' + R \tilde{\Omega}' \text{とする。}
\]
もし、\(r \) が体系外であれば、仮想粒子は体系を脱出したことにより、ヒストリーは終了する。
Step 3
重みの調整をする。
\[
\tilde{W} = W_\theta \cdot \frac{\sum_i^\theta (\tilde{r})}{\sum_i^\theta (\tilde{r})}
\]
Step 4
新しいエネルギー間 \(g \) と方向 \(\tilde{\Omega} \) を決定する。
手続きについてはフォワードモードの Step 4 と全く同じである。
Step 5
エネルギー間 \(g \) が制限内であれば Step 2 にもなる。
そうでなければヒストリーは終了する。
ボイントバリュー \(\chi_\theta^o (\tilde{r}, \tilde{\Omega}) \) は Step 2 の開始時点の仮想粒子の重みを集計して得られ、イベントバリュー \(W_\theta (\tilde{r}, \tilde{\Omega}) \) は Step 3 の開始時点の重みを集計して求められる。その結果、一般に、
\[
W_\theta (\tilde{r}, \tilde{\Omega}) < \chi_\theta^o (\tilde{r}, \tilde{\Omega}) \tag{C.1}
\]
になる。

Appendix D 従来のサンプリング法とバイアス

ここで述べるサンプリング法およびバイアスはモンテカルロ法でポルツァ管輸送方程式を解き、その結果の分散を低減する手法である。

1. Rejection Technique

Rejection Technique の応用例としてはガンマ線の輸送計算をエネルギー連続モデルで解く場合、Klein-Nishina の式から衝突後の波長の変化（エネルギーバイアス）を求める方法が良く知られているが、この流れ図を Fig. 30 に示す。
Fig. 30 Flow diagram of the procedure for sampling wavelength changes from the Klein-Nishina distribution.

Fig. 30を構成する基礎式は、Klein-Nishinaの式を次のように変形したものである。

\[K(\beta, a_n) = \frac{a_n + 2}{9a_n + 2} g_1(\beta) h_1(\beta) + \frac{8a_n}{9a_n + 2} g_2(\beta) h_2(\beta) \] \hspace{1cm} (D.1)

ここで、
\[\beta = \frac{a_{n+1}}{a_n} \]
\[g_1 = \frac{a_n}{2} \]
\[h_1 = 4 \left(\frac{1}{\beta} - \frac{1}{\beta^2} \right) \]
\[g_2 = (a_n + 2)/2\beta^2 \]
\[h_2 = \frac{1}{2} \left((1 - a_n \beta + a_n)^2 + \frac{1}{\beta} \right) \]

Fig. 30から分かりるように、3個の乱数を使い、最終的に乱数が受け入れられるか、それとも拒否されるかを判定し、受け入れられるまで乱数を新しくして計算を続行する。受け入れられると、次に \(a_{n+1} = \beta a_n \) によって衝突後の波長（エネルギー）が決定される。

2. 期待値法

期待値法（Expected Value Method）はランダムウォークする過程で評価法（estimator）を使って粒子の検出器への寄与を計算する手法である。したがって期待値法はランダムサンプリング法と決定的手法の結合であると考えてよい。

いくつかの評価法と粒子の寄与 \(C_w \) を求める計算式について述べる。

(1) 衝突密度評価法（collision density estimator）
衝突体中の小体積を \(\delta V \) 衝突前の粒子の重みを \(W_i \) とすれば、フルーレンスに対する衝突当りの寄与は次のように書かれる。

\[C_w = W_i/\delta V \] \hspace{1cm} (D.2)

このフルーレンスの定義は体積 \(\delta V \) の平均である。

(2) 飛程長評価法（tracklength estimator）
飛程長評価法は小体積 \(\delta V \) 中の粒子の飛程長を計算し、体積 \(\delta V \) で割って寄与を求めめる。

\[C_w = L/\delta V \] \hspace{1cm} (D.3)

ここで、
\[L = \sum_i^\infty W_i \cdot \ell_i \]
\[\ell_i = \delta V \] における \(i \) 番目の飛程長
この評価法は体積 \(\delta V \) をボイド（真空）中に設けることができる。

(3) 表面交差評価法（surface crossing estimator）
フルーレンスを求めようとする面積を \(A \) とすれば、面積で平均化したフルーレンスが得られる。1回の粒子の交差当りの寄与は次のようになる。
\(C_w = \frac{W_t}{A \cdot |\vec{n} \cdot \vec{Q}|} \) \hspace{1cm} (D.4)

この評価法では、grazing angle, \(\vec{n} \cdot \vec{Q} \rightarrow 0.0 \) に近づくと、\(C_w \rightarrow \infty \)になるという問題がある。このときは、
\(|\vec{n} \cdot \vec{Q}| \leq 0.01, \ |\vec{n} \cdot \vec{Q}| = 0.005 \)
のようにして、問題を解決する方法がある。

(4) NESXE (next event surface crossing estimator) (次期面交差評価法)

前に述べた面交差評価法は粒子が実際に面を交差したときに初めて寄与が計算できた。しかし、粒子が次の衝突する以前に面をよぎる確率を使っても寄与を推定することができる。\(C_w = \frac{W_t \cdot e^{-\eta}}{A \cdot |\vec{n} \cdot \vec{Q}|} \) \hspace{1cm} (D.6)

衝突から現出した粒子が与えられた面方向を向いていなければ \(C_w \) はゼロになる。もし、衝突点が閉じた面の中にあるれば、必ず1つの寄与がある。また、もし衝突が閉じた面の外であれば、寄与の数は（ゼロ、1あるいは2）粒子の方向ベクトル \(\vec{Q} \) に依存する。

(5) 点検出器評価法 (point detector estimator)

この評価法は正にその点 \(\vec{r} \) における粒子の寄与を推定する。
\(C_w = W_t \cdot e^{-\sigma \cdot f_{y} (\vec{r}, \vec{Q} \rightarrow \vec{Q})} / R^2 \) \hspace{1cm} (D.7)

ここで、
\(f_{y} (\vec{r}, \vec{Q} \rightarrow \vec{Q}) = g^{0} \) は粒子が \(\vec{r} \) で衝突し、\(\vec{Q} \) から \(\vec{Q} \) のまわりの単位立体角の中に散乱される確率を表す。
等方性源の場合 \(f_{y} = 1/4\pi, \) に、\(\sigma \) MORSE コードでは、\(f_{y} \) を求めるためにシュードルの展開係数を用いるので、散乱の角の (discrete scattering angle) を計算した後でも、展開係数を保存しておく必要がある。

\(R = \) 衝突点と検出器間の距離

この評価法では \(R \rightarrow 0 \) のとき、\(C_w \rightarrow \infty \) になり、非常に大きな分散が発生する。この問題を解決するためこれまでいくつかの方法が提案されているが、著者

(6) は衝突点が半径1cmの小球の中に入ると \(C_w \) はNESXEによって \(C_w \) を計算するという方法を取った。

以上5つの評価法を紹介したが、問題に応じた適切な評価法を採用することによって、分散の低減と効率的な計算が可能になる。

3. インポータンスサンプリング

インポータンスサンプリングという言葉は分散の低減のために不可欠である、と言われている。それでは、

\[J = \int_{0}^{1} Z(x) \, dx \] \hspace{1cm} (D.8)

インポータンスサンプリングはまずインポータンス関数 \(f(x) \) を導入することから始まる。すなわち、

\[J = \int_{0}^{1} \frac{Z(x)}{f(x)} \cdot f(x) \, dx = \int_{0}^{1} g(x) \cdot f(x) \, dx \]

\[= \int_{0}^{1} g(x) \cdot dF(x) \] \hspace{1cm} (D.9)

ここで、

\[dF(x) = f(x) \, dx \]

\[F(x) = \int_{0}^{x} f(x') \, dx' \]

インポータンスサンプリングの手順、

1) 乱数 \(\xi \) を \(\xi_1, \xi_2, \ldots, \xi_N \) から選定する。

2) \(\xi = F(x) = \int_{0}^{x} f(x') \, dx' \) のようにする。

3) \(g(x) = \frac{Z(x)}{f(x)} \equiv g_i \) を求める。

4) \(g_i \) を \(\Sigma g_i \) に加える。

5) 1)～4) を \(N \) 回繰り返すと次のようになる。

\[\bar{g} = \frac{1}{N} \sum_{i=1}^{N} g_i \] \hspace{1cm} (D.10)
したがって、g_iの分散は次式によって計算される。

$$a_s^2 = \int (g(x) - \bar{g})^2 f(x) \, dx$$

あるいは、

$$a_s^2 = \frac{1}{N} \sum_{i=1}^{N} (g(x_i) - \bar{g})^2$$

(11)

また、平均値に対する分散は次のようになる。

$$a_g^2 = \frac{1}{N} \, a_s^2$$

(12)

(11) 式から分るように、インポータンスサンプリングの分散は、$Z(x)/\hat{f}(x) = g(x)$ が一定に近ければ近い程小さくなる。もし、完全に一定であれば分散はゼロになる。すなわち、$g(x)$ を矩形分布 (rectangular distribution) になるようにすべきである。

以上によって、適切な $f(x)$ を選定すれば分散が低減する、ということが理論的に分ったので、次に、ポルツマン輸送方程式に対してインポータンスサンプリングを適用する。

ポルツマン輸送方程式は次のように書くことができる。

$$\chi(\vec{P}) = S(\vec{P}) + \int K(\vec{P} \rightarrow \vec{P}') \chi(\vec{P}') \, d\vec{P}'$$

(13)

(13) 式の両辺にインポータンス関数 $I(\vec{P})$ を乗ずると、

$$\chi(\vec{P})I(\vec{P}) = S(\vec{P})I(\vec{P}) + \int \chi(\vec{P}')I(\vec{P}')K(\vec{P} \rightarrow \vec{P}') \, d\vec{P}'$$

$$= S(\vec{P})I(\vec{P}) + \int \chi(\vec{P}')I(\vec{P}')K(\vec{P} \rightarrow \vec{P}') \, d\vec{P}'$$

$$\frac{I(\vec{P})}{I(\vec{P})} \, d\vec{P}'$$

(14)

(14) 式を次のように書き換える。

$$\tilde{\chi}(\vec{P}) = S(\vec{P}) + \int \tilde{K}(\vec{P} \rightarrow \vec{P}') \chi(\vec{P}') \, d\vec{P}'$$

(15)

ここで、

$$\tilde{\chi}(\vec{P}) = \chi(\vec{P})I(\vec{P})$$

$$\tilde{S}(\vec{P}) = S(\vec{P})I(\vec{P})$$

$$\tilde{K}(\vec{P} \rightarrow \vec{P}') = K(\vec{P} \rightarrow \vec{P}') \frac{I(\vec{P})}{I(\vec{P})}$$

(15) は修正された粒子密度 $\tilde{\chi}(\vec{P})$ よび輸送核 $\tilde{K}(\vec{P} \rightarrow \vec{P}')$ を用い輸送方程式を表わしたものであると見なす。

$\tilde{\chi}(\vec{P})$ の定義式 (15) 式は最初の $\chi(\vec{P})$ の定義式 (13) と同等であるので、$\chi(\vec{P})$ を計算するために

統計的重みの修正は不要である。しかし、実際に必要な量 $\tilde{\chi}(\vec{P})$ は、

$$\chi(\vec{P}) = \tilde{\chi}(\vec{P})/I(\vec{P})$$

(16)

のようにして求める。

最終的に求める量は次のように与えられる。

$$\lambda = \int \chi(\vec{P})P(\vec{P}) \, d\vec{P}$$

(17)

あるいは、

$$\lambda = \int \tilde{\chi}(\vec{P})P(\vec{P}) \, d\vec{P}$$

(18)

ここで、

$$P(\vec{P}), P(\vec{P}')$$ は共有レスポンス関数であり、

$$P(\vec{P}) = P(\vec{P})/I(\vec{P})$$ である。

$\chi(\vec{P})$ よりも $\tilde{\chi}(\vec{P})$ を採用した計算が優れているかどうかということは、一に、$I(\vec{P})$ の選択にかかっており、それによって $\chi(\vec{P})$ がより容易に計算でき、深層透過において分散の低減になるかどうかである。

一般には、$I(\vec{P})$ としてジョイントフレックス $\chi(\vec{P})$ が良いとされている。

もう 1 つの方法はインポータンス関数を $\chi(\vec{P})$ の定義式中に導入する。

$$\chi(\vec{P}) = \frac{1}{I(\vec{P})} S(\vec{P})I(\vec{P}) + \int \chi(\vec{P}') \frac{1}{I(\vec{P})} K(\vec{P} \rightarrow \vec{P}') \, d\vec{P}'$$

(19)

(19) 式は次のように書き換えられる。

$$\chi(\vec{P}) = \int \chi(\vec{P}') \frac{1}{I(\vec{P})} S(\vec{P}) + \int \chi(\vec{P}') \frac{1}{I(\vec{P})} K(\vec{P} \rightarrow \vec{P}') \, d\vec{P}'$$

(20)

ここで、$\tilde{S}(\vec{P}) = S(\vec{P})I(\vec{P})$$$

$$\tilde{K}(\vec{P} \rightarrow \vec{P}') = K(\vec{P} \rightarrow \vec{P}') I(\vec{P})$$

(20) 式では $\chi(\vec{P})$ は不変である。線源粒子は $\tilde{S}(\vec{P})$ にしたがって選定され、その重みは $1/I(\vec{P})$ だけ補正される。粒子が $\tilde{K}(\vec{P} \rightarrow \vec{P}')$ にしたがって $\vec{P} \rightarrow \vec{P}$ に輸送された場合、その重みは再び $1/I(\vec{P})$ だけ補正される。最終的に求める量 λ は次のようにになる。

$$\lambda = \int \chi(\vec{P})P(\vec{P}) \, d\vec{P}$$

4. バイアス (biasing)

バイアスとは適当なインポータンス関数を用いて、より関心のある位相空間でより多くのランダムウォークを行い、意味のある答えが得られるように人工的に促
進する方法である。パイアスには必ず重みの補正が必要である。次に、従来の簡単なパイアスを紹介する。\(^2\) 73, 77\)

(1) 線源パイアス

最も手近で簡単なパイアスは線源パイアスである。
円板線源を例にとり、\(I_0(R)\) を線源位置パイアス関数とすれば、パイアスした線源分布関数は、

\[
\bar{S}(R) = \frac{S}{\int R S(R) dR} \tag{D.21}
\]

(2) 散乱角パイアス

このパイアスは衝突点から検出器方向に向けて現出する粒子の確率を増大させる手段である。散乱角パイアス (probability angular biasing) にはポインタバイアスがインボータンス関数として適切であると考えられているが、詳細については第 3 章で論ずる。

(3) 機械パイアス

飛行パイアス (pathlength biasing) は衝突点から検出器方向に向かって進行する粒子の飛程を伸長する手段であり、インボータンス関数としてイベントバイアスが適しているとされているが、これも第 3 章で論ずる。

(4) 生き残りパイアス

ボルツマン輸送方程式を積分形にした積分形積出粒子密度方程式には \(\sum_i \frac{\sum_i}{\sum_i} = \text{1} \) という項がある。すなわち、粒子は衝突のたびに \(\sum_i \frac{\sum_i}{\sum_i} \) だけ重みの変化がある。

\[
W_{n+1} = W_n \cdot \sum_i \frac{\sum_i}{\sum_i} \tag{D.30}
\]

(30) 式にしたがって粒子を追跡する手法を生き残りパイアス (survival biasing) というが、現在のモンテカルロコードにはそれでもこの方法が採用されていると見られる。

5. ルシアンルーレットとスプリッティング

ルシアンルーレットとスプリッティングを実行するには、領域ごとに粒子の平均重み \(W_{ave} \) に、下限重み \(W_{low} \) および上限重み \(W_{high} \) を設定する必要がある。これらの重みは正確さはあまり要求されないものの、ルシアンルーレットやスプリッティングを行わない計算をまず実施し、各領域における全粒子の衝突総数と、それに対応した重みから、合計が計算できる。

ルシアンルーレットは粒子の重みが \(W_{low} \) より小さくなった場合に実行される。

1）粒子は乱数 \(\xi\) がかぎりでであれば死ね。ここで、\(\xi\) は生き残り確率である。
2）もし、\(\xi \geq \xi\) であれば粒子は生き残り、重みは \(1/\xi\) になる。
3）MORSE コードでは次のようにしている。

\[
\xi \leq \xi = \frac{W_{ave}}{W_{low}} \tag{D.31}
\]

をテストし、\(Yes\) なら生き残り、\(No\) なら死である。生き残った場合の重みは次のように補正する。
\[W_i = W_t / \xi = W_{t, \text{ave}} \quad (D. 32) \]

スプリッティングは粒子の重みが \(W_i > W_{t, \text{high}} \) となったとき実行される。スプリッティングが実行されると、1個の粒子が \(N' \) 個になり、重みは \(W_i/N \) に分配される。

MORSE コードでは次のような手順になっている。

1) 粒子の発生数 \(N \) は、
\[N = \frac{W_t}{W_{t, \text{ave}}} \rightarrow \begin{cases} N' \text{個の粒子} & \text{端数 } (N-N') \end{cases} \quad (D. 33) \]

端数 \((N-N')\) を生き残り確立として再びルシアムルーレットを行う。

\(\xi > (N-N') \) この場合、端数粒子は死に、\(N' \)粒子が \(W_{t, \text{ave}} \) の重みで発生する。
\(\xi \equiv (N-N') \) この場合、(\(N' + 1 \)) 個の粒子が \(W_{t, \text{ave}} \) の重みで発生する。

6. 指数変換 (exponential transform)
指数変換は衝突点において与えられた方向 \(\vec{Q}_0 \) に向う粒子の飛程が最も伸長される技法である。
物理的飛程分布は次式で表わされる。
\[f(\eta) d\eta = e^{-\omega} d\eta \quad (D. 35) \]
ここに、
\[\eta = \sum \tau \cdot R \]
粒子の飛程分布のインポータンス関数が、
\[I(\eta) = e^{\tau \omega} \quad (D. 36) \]
ここで、
\(\tau \) = 定数
\[\omega = \vec{Q}_0 \cdot \vec{Q}_s = \cos \theta \]

で表わすことができるものとすると、
\[f(\eta) I(\eta) / I(\eta) \equiv \tilde{f}(\eta) / I(\eta) \quad (D. 37) \]
のようになる。（E. 37）式は次のように変形できる。
\[\frac{B}{I(\eta)} \cdot \tilde{f}(\eta) = (B e^{-\tau \omega}) \cdot \frac{(e^{-\omega B})}{B} \quad (D. 38) \]
ここで、
\[B = \frac{1}{1-\tau \omega} \]
したがって、バイアスをした飛程は次式から選定される。
\[\tilde{F}(\eta) = \int_0^\eta \tilde{f}(\eta) = e^{-\eta}/B \quad (D. 39) \]
このときの重み補正は以下のようになる。
\[W_e = \frac{1}{1-\tau \omega} e^{-\tau \omega} \quad (D. 40) \]
今、\(\omega > 0 \) のとき
1) \(\tau = 0 \) であれば \(B = 1 \) になり、飛程の変化はない。
2) \(0 < \tau < 1 \) であれば \(B > 1 \) になり、飛程が伸長する。
\(\omega < 0 \) のときは、
3) \(0 < \tau < 1 \) であれば \(B < 1 \) になり、飛程が短縮する。

MORSE コードでは \(B = \text{BIAS}, \tau = \text{PATH}, \omega = \text{DIREC} \) が対応する。