Tip Condition and Numerical Method
Concerning Lifting-Surface Theory (2)

By
Tatsuro HANAOKA

Abstract
The theory presented in this paper is an extension of the lifting-surface theories of Multhopp for steady flow. New modal functions for pressure distribution on a lifting-surface are adopted and the range of the validity of lifting-surface theory is extended to include the wing tip by introducing the condition “tip-upwash finite”.

The analyses in the previous paper is not available for practical use, because a wrong course was taken. They are corrected in this paper.
1. mode function と翼端吹上げ

1.1 mode function

説明を要件するために解を x 軸の負の方向に一定速度で進む定常直進揚力面の線型理論に限定する。更に特に示される限り揚力面の平面形は前後および左右それぞれに対称なものとする。

圧力分布の mode function としては、翼弦方向には Birnbaum 関数列、また翼幅方向には揚力線理論の Prandtl 関数列が用いられるのが一般である。

即ち無次元揚力分布密度 \(\gamma \) を

\[
\gamma = A_0(\eta) \lambda_0(\xi) + A_1(\eta) \lambda_1(\xi) + A_2(\eta) \lambda_2(\xi) + \cdots
\]

(1.1.1)

\[
\lambda_n(\xi) = \sqrt{1 - \xi^2} \quad \lambda_n(\xi) = \xi^{n-\frac{1}{2}} \sqrt{1 - \xi^2} \quad (n \geq 1)
\]

(1.1.2)

のように表わす。この式は単に 2 次元翼と揚力面の理論結果を組み合わせたものである。Jordan は円形揚力面の場合で、Birnbaum 関数列が極めてよい近似性をもつことを数値的に示したが、これまでこの関数列が最も適切なものであるかどうかの検討がなされた例は見当たらない。まず本節では圧力分布の基本形から調べてみる。

\(\rho \) を圧力をすると、線型理論では速度と加速度のポテンシャルは

\[
V \frac{\partial \phi}{\partial x} = \psi = -\frac{\rho}{\rho}
\]

(1.1.3)

の関係にある。揚力面の境界条件は

\[
w = \frac{1}{V} \frac{\partial \phi}{\partial x} \bigg|_{x=0}
\]

(1.1.4)

であるから、それを対応する加速度場の境界条件は

\[
\frac{1}{V^2} \frac{\partial \phi}{\partial x} \bigg|_{x=0} = \frac{\partial w}{\partial x} \quad \text{（揚力面内）}\quad (1.1.5)
\]

\[
\phi \bigg|_{x=0} = 0 \quad \text{（揚力面外）}\quad (1.1.6)
\]

となる。

揚力面の流場を加速度場で考えると、不連続面は揚力面上だけにあり、その外では至るところ連続である。しかも \(\phi \) は

\[
0 = \frac{\partial \phi}{\partial x}
\]

(1.1.7)

を満足するので、揚力面が特定の形状の場合は加速度場のポテンシャル問題としての取扱いが可能で、基礎的研究に有効に役立っている。

ポテンシャル論的揚力面理論が一般的なポテンシャル論と異なるところは、その解が揚力面の周囲で 0 になるものばかりではなく、平板の場合、単に \((1.1.5) \) の右辺が 0 となる境界条件を満たす解として、周囲で无限大になるものを除き全くの必要であることである。前者は第 1 種ポテンシャル、後者は Kinney の第 2 種ポテンシャルに相当するものであるが、M F M における問題点の多くはこの第 2 種ポテンシャルに由来している。
1.1.1 矩形翼端

Landahlは asymptotic expansion の方法を用いて揚力面の前後端附近の第一種ポテンシャルの形を求めた。微小量 ε を用いて前後端附近の場を拡大した座標

\[\tilde{x} = (x - l_1) / \varepsilon, \quad \tilde{z} = z / \varepsilon \]

にとると、(1.1.7) は

\[\frac{\partial \phi}{\partial \tilde{x}} + \frac{\partial \phi}{\partial \tilde{z}} = 0 \]

と書ける。\(\partial / \partial \tilde{z} = \varepsilon^{-1} \partial / \partial \tilde{x} \) であるから、(1.1.5)，(1.1.6) は

\[\begin{align*}
\frac{\partial \phi}{\partial \tilde{x}} |_{\tilde{x} = 0} &= 0, \quad \tilde{x} > 0 \\
\phi |_{\tilde{x} = 0} &= 0, \quad \tilde{x} < 0
\end{align*} \]

となる。この境界条件を満たす (1.1.9) の解は

\[\phi = C(\gamma) Re \left((\gamma \pm i\varepsilon)^{-m-1/2} \right) \]

である。\(C(\gamma) \) は任意常数、\(m \) は整数である。

揚力面の後端については同様に

\[\tilde{x} = (l_2 - x) / \varepsilon, \quad \tilde{z} = z / \varepsilon \]

によって座標拡大を行うと、上と同じ方程式が得られるので、その解は (1.1.11) と同形になる。

前後端では Kutta の流出条件を満たす必要があるので、最少次の条件は \(m = 1 \) であるが、前後端ではこのような拘束はない。外部領域即ち揚力面全体の解との matching によって最少次の \(m = 0 \) が定まる。揚力面上の圧力分布は (1.1.11) で \(\gamma = 0 \) と置いたものであるから、前後端の解を合せたものが (1.1.2) の \(\lambda_h(\varepsilon) \) であり、その第 2 項以下の \(\lambda_h(\varepsilon) \) は (1.1.11) の \(m \) の高次の解に対応する。

以上と同じ方法で翼端の解析を行なってみる。翼端の \(y \) 座標を \(b \) とし、その近傍で座標拡大するため

\[\tilde{y} = (y - b) / \varepsilon, \quad \tilde{z} = z / \varepsilon \]

と置くと、(1.1.7) は

\[\frac{\partial \phi}{\partial \tilde{y}} + \frac{\partial \phi}{\partial \tilde{z}} = 0 \]

となる。境界条件

\[\begin{align*}
\frac{\partial \phi}{\partial \tilde{y}} |_{\tilde{y} = 0} &= 0, \quad \tilde{y} > 0 \\
\phi |_{\tilde{y} = 0} &= 0, \quad \tilde{y} < 0
\end{align*} \]

を満たす解は

\[\phi = C(x) Re \left((\varepsilon + i\gamma)^{-m-1/2} \right) \]

である。この場合も \(C(x) \) および \(m \) は揚力面の解との matching によって定まる。(1.1.1) では \(m \leq -1 \) となっているが、これを定め方は後節に示すようになかなかむずかしい。

1.1.2 円形翼端

円形翼端近傍の解の形は円形揚力面の Kinener の解析解と同じになると考えてよい。Kin ener の第 1 種ポテンシャルによる圧力分布は

\[\phi^1 = C_0 \sqrt{1 - \gamma^2} = C_0 \sqrt{1 - \varepsilon^2} \sqrt{1 - \gamma^2} \]

\[\phi^2 = C_2 r \sqrt{1 - \gamma^2} \cos \gamma \phi^3 = C_3 \varepsilon \sqrt{1 - \gamma^2} (1 - \gamma^2) \]

\[\phi^4 = C_4 (2 - 5 \gamma^2) / 3 \sqrt{1 - \gamma^2} \]

\[\times \sqrt{1 - \varepsilon^2} \sqrt{1 - \gamma^2} \]

\[\phi^5 = C_5 \varepsilon \sqrt{1 - \gamma^2} \cos 2\gamma \]

\[\phi^6 = C_6 (1 - \gamma^2) \sqrt{1 - \varepsilon^2} \sqrt{1 - \gamma^2} \]

(1.1.17)

であり、第 2 種ポテンシャルによる圧力分布は

\[\phi^7 = C_7 \sqrt{1 - \gamma^2} \]

(1.1.18)

である。これは (1.1.1) とはかなり異なる形である。

前後対称の压力分布の \(\eta \) 方向の関数形は有理式で翼端吹上げに特異性はない。一方前後対称の圧力分布の \(\eta \) 方向の関数には \(1 / \sqrt{1 - \gamma^2} \) が含まれ、翼端吹上げ
に特異性がある。

(1.1.18) の積み重ねでは平板翼に対応する解は翼端で収束しない。また矩形翼の corner の解は (1.1.1) のような単純なものではない。求める数の mode function の積み重ねで翼端近傍まで精度よく数值解を得るには、mode function としては翼弦方向がそのままよいとも言え、翼幅方向は従来の形にとられる方がよいし、また (1.1.18) そのままの形がよいことも言え。要はどうしたら翼端近傍で安定した数値解が得られるかということであり、これが次節以下に述べる MFM の翼端問題の主題である。

1.2 矩端吹上げの特異性

圧力分布に対する mode function を定めると、解法に強い制限が加わるので、それの選定は MFM にとっては極めて重要である。例えば mode function をしてそれが翼端吹上げが有限になるものだけを選んだならば解は収束しない。したがって mode function として個々のは翼端吹上げに特異性がもつことが重要である。ただそれの有限個の組合せによって特異性が消去できるものであれば、(1.1.16) における m の次数の (m の次数のものほどの翼端吹上げの特異性は次高となる) まで取れておいた方が翼端附近での数値解の安定がよいであろう。ただところで低次のものをとったらよいとすれば翼端吹上げの特異性を MFM の一つ、Multhopp 法を利用して調べてみる。

mode function で \(\lambda_0(\xi) \) を用いると、揚力面の積分方程式は

\[
-w(\xi, \eta) = \frac{1}{2\pi} \sum_{n=0}^{\infty} \mathbf{H} \int_{-1}^{1} \frac{\mu_n(\eta) i_n(X, \eta; \eta') \, d\eta'}{(\eta - \eta')} + \mu_n(\eta) A_n(\eta) / b
\]

\[= \rho(\eta) A_n(\eta) / b \] （1.2.1）

\[i_n(\xi, \eta; \eta') \equiv i_n(X, Y_1) = \int_{-1}^{1} \lambda_n(\xi') \times \left(\frac{X' - X}{\sqrt{(X - X')^2 + Y_1^2}} \right) dX' \]

\[X = (x - L_1') / (2\alpha'), X' = (x' - L_1') / (2\alpha'), \]

\[Y_1 = (\eta - \eta') / (2\alpha') \]

（1.2.2）

のように書ける。ただし \(H \int_{-1}^{1} \) は Hadama-

rd の意味の発散積分の有限部分を表わす。\(i_n(X, Y_1) \) は influence function といわれる、Multhopp 系の MFM で支配的役割をする重要な因子である。

1.2.1 矩端翼

\(i_n(X, Y_1) / Y_1 \) は \(Y_1 = y \) のところに 2 位の極と対数特異性をもつことはよく知られている。Jordan および Wagner はそれが \(X = 0 \) のところに 3/2 位と 1/2 位の極にかかわることを示したが、それは矩形翼端の吹上げ特異性に重要な係わりを持っている。ここでではより一般の \(n \) に対する \(i_n(0, Y_1) / Y_1 \) の特異性を簡潔に示す必要があるので、(1.1.2) の \(\lambda_0(\xi) \) を組み入れ

\[\lambda_0(\xi) = \frac{\sqrt{1 - \xi^2}}{1 + \xi^2}, \quad \lambda_1(\xi) = \sqrt{1 - \xi^2}, \quad \lambda_2(\xi) = \xi \sqrt{1 - \xi^2} \]

（1.2.3）

と \(\lambda_0(\xi) = (1 - \xi^2)^{1/2}, \lambda_1(\xi) = \xi (1 - \xi^2)^{1/2}, \lambda_2(\xi) = \xi^2 (1 - \xi^2)^{1/2}, \ldots \)

（1.2.4）

とする。 (1.2.2) で \(X = 0, X' = Y_1 s \) と置くと \(i_n(0, Y_1) = Y_1 f_n(Y_1) \)

（1.2.5）

と書かれる。

(1.2.5) の積分は \(Y_1 = y \) としても収束するので、この関数に特異性はない。よって \(Y_1 = 0 \) の近傍では \(f_n(Y_1) = f_n(0) + Y_1 f_n'(0) + \cdots \)

（1.2.6）

ただし \(f_n(0) = \int_{0}^{|\alpha|} \frac{1}{1 - s / \sqrt{1 + s^2}} \right) ds \)

\[f_n'(0) = -\frac{1}{2} \int_{0}^{|\alpha|} \sqrt{s} \]

\[\times \left(1 - \frac{s}{\sqrt{1 + s^2}} \right) ds \]

のように表わされる。これらの常数は

\[\rho(\eta) A_n(\eta) / b \]

（1.2.7）

または

\[f_n(0) = -\frac{4\pi^3/2}{|\Gamma(1/4)|^2}, \quad f_n'(0) = -\frac{|\Gamma(1/4)|^2}{12\sqrt{\pi}} \]

である（附録 A 参照）。

同じ電荷を後続について行うとき

\[i_n(1, Y_1) = -\int Y_1^{1/4} \sqrt{s} \int_{0}^{|\alpha|} \left(1 - \frac{s}{\sqrt{1 + s^2}} \right) ds + \]

（1.2.8）
であるから、\(i_n(1, Y_1)/Y_1^{1/2} = Y_1 = 0 \) のところに 2 位と 1/2 位の極があることがわかる。

更に \(n > 0 \) のときの前線値における \(i_n/Y_1^{1/2} \) の特異性を同じ方法で求めると

\[
\begin{align*}
i_0(0, Y_1) &= Y_1^{1/2} f_0(Y_1) \\
i_0(0, Y_1) &= -Y_1^{1/2} f_0(Y_1) \\
i_n(1, Y_1) &= Y_1^{1/2} f_n(Y_1) + \pi b_{n+1} \\
i_n(1, Y_1) &= -Y_1^{1/2} f_n(Y_1)
\end{align*}
\]

ただし

\[
\begin{align*}
f_n(Y_1) = & \frac{2n+1}{2} \left[s(1-Y_1 s) \right]^{n/2} \\
 & \times \left[1 - \frac{s}{\sqrt{1+s^2}} \right] ds \\
h_n(Y_1) = & \frac{2n+1}{2} \left[(1-2Y_1 s) s(1-Y_1 s) \right]^{n/2} \\
 & \times \left[1 - \frac{s}{\sqrt{1+s^2}} \right] ds
\end{align*}
\]

\[
b_n = \frac{1}{\pi} \int_1^n \frac{x^n}{\sqrt{1-x^2}} dx = \frac{\sqrt{\pi} \Gamma(n+1/2)}{2^{n-1} \Gamma(n+1)} \quad n > 1
\]

であるから、\(i_n/Y_1^{1/2} \) の特異性は

\[
\begin{align*}
i_0(0, Y_1)/Y_1^{1/2} & = -f_0'(0) \\
i_0(0, Y_1)/Y_1^{1/2} & = f_0(0) \\
i_n(1, Y_1)/Y_1^{1/2} & = -f_n(0) + \pi b_n \\
i_n(1, Y_1)/Y_1^{1/2} & = f_n(0)
\end{align*}
\]

となる。その係数は

\[
f_0(0) = b_0(0) = -4f_0'(0)
\]

である。

(1.2.1) で (1.2.3) の \(\lambda_n(\xi) \) に対応する吹上げを \(w_0(\xi, \eta) \) の記号で表わすことにより、\(\lambda_n(\xi) \) における \(\eta \) 方向の mode function を

\[
A_n(\eta) = F_n \sqrt{1-\eta^2}
\]

と仮定すると、\(\xi = -1 \) の吹上げは

\[
w_0(-1, \eta) = \frac{F_n f_0(0)}{2 \sqrt{2} \pi A} H \int_1^n \frac{\sqrt{1-\eta^2}}{\sqrt{1-s^2}} ds
\]

と R.P. (1.2.15)

である。ただし \(A = b/c \), R.P. は regular part を意味する。この式から \(\eta = 1 \) の近傍の \(w_0 \) を求めてみる。

1. \(h \ll 1 \) とすると

\[
w_0(-1, \eta) = \frac{F_n f_0(0)}{2 \pi A} H \int_1^n \frac{\sqrt{1-\eta^2}}{\sqrt{1-s^2}} ds + R.P.
\]

となる。部分積分を行なうなどして有限積分を求めるとき

\[
w_0(-1, \eta) = -\frac{F_n f_0(0)}{2 \pi A} \ln(1-\eta) + R.P.
\]

(1.2.16)

が得られる。即ち前線 corner の吹上げに特異性は現わる。 (1.2.7) の \(f_n'(0) \) を用いると (1.2.17) は Garner and Miller (11) の示した式と一致する。ここでは corner の特異性を前線吹上げから求めたが、 Garner and Miller は翼端吹上げによって求めている。

\(n = 1, 2 \) の場合、\(i_n(0, Y_1)/Y_1^{1/2} \) の特異性は \(Y_1^{-1/2} \)

であるから、\(A_n(\eta) \) の分布形が (1.2.14) と同様ならば、翼端吹上げ corner には吹上げの特異性がないことは同様の計算で確かめられる。これは既に Ray and Miller (13) が数値計算で確認している。また

\[
A_n(\eta) = F_n \sqrt{1-\eta^2}
\]

\(m \geq 2 \) として \(w_0(-1, \eta) \) を計算しても前線 corner に特異性は現われない。次に

\[
A_n(\eta) = \frac{F_n}{\sqrt{1-\eta^2}}
\]

\(n \geq 1 \) として \(n > 0 \) の \(w_0(\xi, \eta) \) を計算してみる。

(1.2.1) の核関数は前線吹上げのところでは \(\eta = \eta' \)

に 2 位の極と対数特異点があるので、それに対応する (1.2.19) の圧力分布の翼端吹上げを調べてみる。

\[
\frac{1}{\pi} \int_1^n \frac{\ln |\eta-\eta'|}{\sqrt{1-s^2}} ds = -\ln 2
\]

であるから核関数の対数特異性による翼端吹上げは有限である。よって 2 位の極だけで収束して

\[
w_0(\xi, \eta) = \frac{F_n f_0(X_0)}{2 \sqrt{2} \pi A} H \int_1^n \frac{\sqrt{1-\eta^2}}{\sqrt{1-s^2}} ds + R.P.
\]

(1.2.20)

である。これの微分を求めるとき

\[
w_0(\xi, \eta) = \frac{F_n f_0(X_0)}{2 \sqrt{2} \pi A} H \int_1^n \frac{\sqrt{1-\eta^2}}{\sqrt{1-s^2}} ds
\]

(55)
であるから、(1.2.19) の圧力分布に対し前後線を除けば翼端吹上げに特異性のないことがわかる。その後線線を調べてみる。(1.2.12) で示したように \(n=1,2 \) に対して \(i_n(X, Y, Y') \) は前線線に \(1/\sqrt{|\eta-\eta'|} \) の特異性があるので、それに応じた翼端吹上げを計算すると

\[
\begin{align*}
 w_1(-1, \eta) &= -\frac{\sqrt{AF}}{8\pi} \left\{ \int_0^1 \frac{dy'}{\sqrt{1-\eta'}} \ln(1-\eta') + R.P. \right. \\
 &+ \left. \int_0^1 \frac{dy'}{\sqrt{1-\eta'}} \right\} + R.P. \\
 &= \frac{\sqrt{AF}}{8\pi} \ln(1-\eta) + R.P. \ (1.2.22)
\end{align*}
\]

のように前線 corner に (1.2.17) と同じ形の吹上げ特異性が現われる。同様にして \(w_2 \) 等の吹上げ特異性を求めることができる。\(i_1(X, Y)/Y^2 \) には \(Y^{-1/2} \) の外に \(Y^{-1} \) の特異性が加わるが、2 位の極からは吹上げに特異性が生じないことは (1.2.21) で示した通りである。よって

\[
\begin{align*}
 w_2(-1, \eta) &= -\frac{\sqrt{AF}}{8\pi} \ln(1-\eta) + R.P. \\
 w_1(1, \eta) &= -\frac{\sqrt{AF}}{8\pi} \ln(1-\eta) + R.P. \\
 w_2(1, \eta) &= -\frac{\sqrt{AF}}{8\pi} \ln(1-\eta) + R.P. \\
 &= \frac{\sqrt{AF}}{8\pi} \ln(1-\eta) + R.P. \ (1.2.23)
\end{align*}
\]

となる。

1.2.2 横円翼

(1.2.2) の変数 \(X, X' \) を \(X = (1+\xi)/2, \ X' = (1+\xi')/2 \) によって \(\xi, \ xi' \) に変えると

\[
\begin{align*}
 i_n(1+\xi, Y) &= \frac{1}{2} \int \lambda_n(\xi') \\
 &\times \left\{ 1 - \frac{\xi - \xi'}{\sqrt{(\xi - \xi')^2 + Y^2}} \right\} d\zeta' \ (1.2.24)
\end{align*}
\]

である。これを

\[
\begin{align*}
 i_n(1+\xi, Y) &= \frac{1}{2} \int \lambda_n(\xi') \sqrt{(\xi - \xi')^2 + Y^2} d\zeta' \\
 j_n(\xi, Y) &= \frac{1}{2} \int \lambda_n(\xi') \sqrt{(\xi - \xi')^2 + Y^2} d\zeta'
\end{align*}
\]

に書き、\(\lambda_n(\xi) \) については

\[
\begin{align*}
 \lambda_1 &= 1/\sqrt{1-\xi^2}, \quad \lambda_2 = -1/\sqrt{1-\xi^2}, \\
 \lambda_3 &= \sqrt{1-\xi^2}, \quad \lambda_4 = \sqrt{1-\xi^2}, \\
 \lambda_5 &= \xi \sqrt{1-\xi^2}
\end{align*}
\]

のように前後対称と反対称のものに分けてしまうと、\(l_n \) は対称分布、\(j_n(0, Y) \) には対称分布だけが関与する。それで吹上げとこの 2 つの系列に分けて考えることになる。

1.2.2.1 対称分布

\(n \) が偶数のとき \(l_n = 0 \) で奇数のときは

\[
\begin{align*}
 l_{-1} &= \frac{1}{2} \int \frac{d\zeta}{\sqrt{1-\zeta^2}} = -\frac{1}{2} b_0 \\
 b_0 &= \left(\frac{\sqrt{2}}{\pi} \right) \frac{1}{2} \left(b_{2n-2} - b_{2n} \right) \\
 l_{2n-1} &= \frac{1}{2} \int \frac{\sqrt{1-\zeta^2}}{\sqrt{1-\zeta^2}} d\zeta = \frac{\pi}{2} \left(b_{2n-2} - b_{2n} \right) \ (1.2.27)
\end{align*}
\]

となる。\(b_n \) は (1.2.11) に示す常数である。

これに対する吹上げは Kinber が揚力線と言ってい

もるものに該当する。

\[
\begin{align*}
 c(\eta) &= \frac{\sqrt{1-\eta^2}}{\pi} \\
 A_{2n-1} &= \frac{\sqrt{2}}{\pi} \frac{1}{2} \left(b_{2n-2} - b_{2n} \right) \ (1.2.29)
\end{align*}
\]

とする。\(b/a = A \) と書くと

\[
\begin{align*}
 \hat{w}_n(\eta) &= \frac{\sqrt{AF}}{8\pi} \frac{1}{\eta^2} \frac{1}{\sqrt{1-\eta^2}} \frac{1}{\sqrt{1-\eta^2}} \\
 &= -\frac{\sqrt{AF}}{8\pi} \frac{1}{\eta^2} \frac{1}{\sqrt{1-\eta^2}} \ (1.2.30)
\end{align*}
\]

となり、吹上げは翼端に 1 位の極をもつ。また

\[
\begin{align*}
 \hat{A}_{2n-1} &= \frac{\sqrt{2}}{\pi} \frac{1}{2} \left(b_{2n-2} - b_{2n} \right) \ (1.2.31)
\end{align*}
\]

とすると、翼端吹上げは

\[
\begin{align*}
 \hat{w}_n(\eta) &= \frac{\sqrt{AF}}{8\pi} \frac{1}{\eta^2} \frac{1}{\sqrt{1-\eta^2}} \frac{1}{\sqrt{1-\eta^2}} \frac{1}{\sqrt{1-\eta^2}} \\
 &= \frac{\sqrt{AF}}{8\pi} \frac{1}{\eta^2} \frac{1}{\sqrt{1-\eta^2}} \frac{1}{\sqrt{1-\eta^2}} \frac{1}{\sqrt{1-\eta^2}} \ (1.2.32)
\end{align*}
\]

のように対称特異点をもつことになる。
1.2.2.2 反対称分布
翼端吹上げの特異性は翼弦中点における吹上げから求めると計算が容易である。対称分布に対して \(j_n (0, Y) = 0 \) であるから、\(n \) が偶数の場合だけ取上げる。

（1.2.1）の右辺の積分から吹上げに特異性が現われるとすれば、それは \(j_n (Y) \) の \(Y = 0 \) における極および対称項に由来する。\(\eta = \cos \varphi \) と置くと、（1.2.28）で表わされる半弦長は \(c(\eta) = a \sin \varphi \) である。\(\eta = 1 \) で \(|\eta - \eta'| \to 0 \) のとき

\[
\lim_{|\eta - \eta'| \to 0} Y = \lim_{|\eta - \eta'| \to 0} \frac{1 - \cos \eta'}{a \sin \eta'} = -\frac{\pi}{2} \left(b_{2n} - b_{2n+2} \right) \tag{1.2.33}
\]

であるから、翼端吹上げの特異性は \(j_n (Y) \) の極および対称特異項だけについて調べればよい。計算を行なってみると対称項は翼端特異性に関係ないことが確かめられるので、構造は特異性の処理は省略する。

\[
j_n (0, Y) / Y^2 \text{ の 2 位の極の係数 } j_n (0, 0) \text{ は } \]

\[
j_n (0, 0) = \frac{1}{2} \int_{-1}^{1} \frac{x^2}{1 - x^2} dx = \frac{\pi}{2} \]

\[
\frac{\pi}{2} (b_{2n} - b_{2n+2}) \tag{1.2.34}
\]

のように表わされる。

（1.2.29）および（1.2.31）と同じに

\[
A_{2n} = \frac{F_{2n}}{\sqrt{1 - \eta^2}} \tag{1.2.35}
\]

\[
A_{2n} = \frac{F_{2n}}{\sqrt{1 - \eta^2}} \tag{1.2.36}
\]

と仮定すると、それに対応する翼端近傍の吹上げは

\[
\frac{\pi}{2} (b_{2n} - b_{2n+2}) \tag{1.2.34}
\]

\[
\frac{\pi}{2} (b_{2n} - b_{2n+2}) \tag{1.2.34}
\]

となり。

Kinner の解（1.1.17），（1.1.18）と同じように，\(A_{2n} (\eta) \) を \(\eta \) の有理式で表わすと，翼端吹上げに特異性は現われない。

1.3 翼端吹上げ有限の条件

前節に示した翼端吹上げの特異性を避ける最も単純な方法は，そのような mode function を（1.1.1）から除外することである。例えば矩形器翼の場合

\[
A_n (\eta) = \frac{1 - \eta^2}{(1 - \eta^2)^{n/2} \sum_{n=0}^{\infty} s_n \eta^n} \tag{1.3.1}
\]

とし，\(n = 0 \) では \(m = 3, n \geq 1 \) では \(m = 1 \) というように \(m \) の次数を増やすとよいし，また補円翼では \(A_n (\eta) \) をすべて有理式で表わすようにすべきである。しかしこのと数値計算で収束解がなかなか得られないという不都合が出る。それに対して解析解に依拠して最小次の \(m \) を定め，それによって生じる翼端吹上げの特異性は互に消し合うように \(A_n \) の組合せを選ぶ。この方法は既に *Kinner* の理論の中に見られるが，数値解法で取上げた例は多い。以下に翼端吹上げの特異性を消す方法，即ち翼端吹上げ有限の条件について述べる。

1.3.1 矩形器翼

（1.1.16）を参考にして翼端方向の圧力分布を

\[
A_n (\eta) = \frac{\sqrt{1 - \eta^2}}{\eta} F \tag{1.3.2}
\]

のように置く。

この圧力分布に対する翼端前後極近傍の吹上げは、（1.2.22），（1.2.23）を参照すると

\[
w(-1, \eta) = \frac{F_0 f_0 (0)}{2 \pi \sqrt{\eta}} \ln (1 - \eta) + \frac{\sqrt{A f_1 (0)}}{8 \pi} \times (F_1 - F_2) \ln (1 - \eta) + R. P. \tag{1.3.3}
\]

\[
w(1, \eta) = -\frac{\sqrt{A f_1 (0)}}{8 \pi} (F_1 + F_2) \ln (1 - \eta) + R. P. \tag{1.3.4}
\]

のように表わされる。ただし \(F_n = F_n (\pm 1) \) である。

\[
F_1 = -F_2 \tag{1.3.5}
\]

ならば後縁 corner の吹上げの特異性はなくなる。更に

\[
4 F_0 f_0 (0) - A f_1 (0) \cdot (F_1 - F_2) = 0 \tag{1.3.6}
\]

ならば前縁 corner の吹上げの特異性もなくなる。

（1.3.5），（1.3.6）および（1.2.7），（1.2.13）により

\[
\frac{F_1}{F_0} = \frac{-F_2}{F_0} = \frac{24 \pi^2}{A (F_1 F_2)^2} \approx 1.370 \tag{1.3.7}
\]

が得られる。即ち，矩形器翼では吹上げを有限にするには，そこで圧力が無限大になるような項が必要で，それは最大値比に逆比例して増加する。\(A = b/c \) の \(c \) は翼端における半弦長をとる。

1.3.2 円形器翼

Kinner の解を見ると，前後対称分布にかかる翼端方向分布形は \(F_n (\eta) / \sqrt{1 - \eta^2} \) である。これに対して翼端吹上げ

（57）
に特異性がある。一方，対称流分布にかかる翼端方向分布形は \eta の有理式で，吹上げに翼端特異性はない。
したがって基本解の吹上げ特異性の消去は対称分布の中だけで行う作で，完全には消えないと。
数値解の場合はこのようにすると収束が悪くして実用にならないから，対称流分布の翼端方向分布形も対称分布のものと同形にし，両方で吹上げ特異性を消去することを考えめてよい。

\[A_n(\eta) = \frac{F_n(\eta)}{\sqrt{1-\eta^2}}, \quad F_n(\eta) = \sum_{r=0}^{\infty} s_{2r}(1-\eta^2)^r \]

（1.3.8）

と置くと，（1.2.30）と（1.2.37）とより翼端近傍の吹上げは

\[w(0, \eta) = -\frac{1}{\pi A} \frac{1}{1-\eta^2} \left\{ \sum_{n=0}^{\infty} F_{2n-1} l_{2n-1} + \sum_{n=0}^{\infty} F_{2n} j_{2n} \right\} \]

+ R. P.

ただし \(F_n = s_{2n} \)

のように表わされる。したがって

\[\sum_{n=0}^{\infty} F_{2n-1} l_{2n-1} + \sum_{n=0}^{\infty} F_{2n} j_{2n} = 0 \]

（1.3.9）

とすれば翼端吹上げの特異性は除かれる。

\[F_{2n-1} = F_{-n}, \quad F_{2n} = F_0 \]

（1.3.10）

すると，（1.2.27），（1.2.34）より

\[\sum_{n=0}^{\infty} F_{2n-1} l_{2n-1} = -\frac{\pi}{2} b_0 F_{-1} \]

\[\sum_{n=0}^{\infty} F_{2n} j_{2n} = \bar{b}_0 F_0 \]

（1.3.11）

となる。\(b_0 \) は収束の悪い数列であるから，この項を多くとれるだけに吹上げ特異性を消すのは 有効 である。

（1.3.9）を厳密に満たすためには翼端方向 mode function の最終形に

\[\lambda_{2n-1} = \frac{\xi_{2n-1}}{\sqrt{1-\xi^2}}, \quad \lambda_{2n} = \frac{\xi_{2n}}{\sqrt{1-\xi^2}} \]

（1.3.12）

を配置すればよい。これの翼端方向分布関数が翼端で

\[F_{2n+1} = F_{-n}, \quad F_{2n+2} = F_0 \]

（1.3.13）

ならば，

\[\sum_{n=0}^{\infty} F_{2n-1} l_{2n-1} = 0, \quad \sum_{n=0}^{\infty} F_{2n} j_{2n} = 0 \]

となり，（1.3.9）が満足される。更に \(F_0 = -F_{-1} \) とすると，\(\lambda_{-1}, \lambda_0 \) および \(\lambda_{2n+1}, \lambda_{2n+2} \) による翼端方向の圧力分布は

\[F_0 \sqrt{\frac{1-\xi}{1+\xi}}, \quad -F_0 \sqrt{\frac{1-\xi}{1+\xi}} \]

となり，Kutta の流出条件が満足される。

以上をみると少しだけ数で Kutta の条件と翼端条件の両方を満足させるには，対称流分布についても翼端方向分布形が（1.3.8）の形をとることの必要性がわかる。

結局，圧力分布の mode function 表示としては

\[\gamma = \sum_{n=0}^{\infty} \lambda_n A_n(\eta) = -\frac{1}{\sqrt{1-\eta^2}} \sum_{n=0}^{\infty} \lambda_n F_n(\eta) \]

（1.3.14）

\[\lambda_0 = \sqrt{\frac{1-\xi}{1+\xi}}, \quad \lambda_1 = \sqrt{\frac{1-\xi}{1+\xi}}, \quad \lambda_2 = \xi \sqrt{\frac{1-\xi}{1+\xi}}, \quad \lambda_3 = \xi^2 \sqrt{\frac{1-\xi}{1+\xi}}, \quad \lambda_4 = \xi^3 \sqrt{\frac{1-\xi}{1+\xi}} \]

（1.3.15）

のように表わし，

\[F_n(\pm 1) = (-1)^n F_0 \]

（1.3.16）

とすれば翼端吹上げの特異性は除かれる。\(\lambda_n \) の \(n \) が偶数で続けるときも同じで，（1.3.15）の最終項の mode function は \(\lambda_n = \xi^{n-1} \sqrt{1-\xi}/(1+\xi) \) とする。 （1.3.15）と（1.3.16）によると

\[\sum_{n=0}^{\infty} \lambda_n(\xi) F_n(\pm 1) = 0 \]

（1.3.17）

が得られる。これが翼端吹上げ有効の第 1 の条件である。

\[F_n(\eta) = \gamma \]

の有理関数と仮定しているので \(\eta = 1 \) の近傍では \(\Sigma \lambda_n F_n(\eta) = 1 - \eta \) に比例し，したがって \(\gamma = \sqrt{1-\eta} \) に比例することになる。即ち個々の \(A_n(\eta) \) は翼端で無限大であるが，それの総和（揚力係数）は翼端で 0 になる。

以上のようにすると翼端吹上げ特異性のうち極の部分は除かれるが，まだ対数特異性が残っている。（1.3.8）の \(1 - \eta^2 \) の係数 \(s_{n1} \) について（1.3.16）と同じに

\[s_{n1} = (-1)^n s_{00} \]

（1.3.18）

になるように \(s_{n1} \) を定めれば，吹上げの対数特異性は消える。\(s_{n1} \) についても（1.3.17）と同じに

\[\sum_{n=0}^{\infty} \lambda_n(\xi)s_{n1} = 0 \]

（1.3.19）

が成立つ。これが翼端吹上げ有効の第 2 の条件である。
2. 数値解法と翼端問題

2.1 Multhopp 法における翼端問題の処理

従来，MFM では \(A_0(\gamma=\pm 1)=0 \) 仮定し，翼端
吹上げの特徴は無視している。既に前章で説明した
ように，この mode function によると制約が強すぎ
て翼端附近で解が安定しない。そこで前章の解析結果
に基づき翼端附近の解を精度よく求められる解法を組
立ててみた。矩形翼端と円形翼端とでは少しその計算法
が異なるが，ここでは円形翼端の場合だけを取り上げる。

前章では半翼弦長 \(c \) を (1.2.28) のように書き \(a \) を
一定と仮定したが，一般には

\[
e(\gamma)/b = a(\gamma) \sqrt{1-\eta^2}
\]

(2.1.1)

である。この \(a(\gamma) \) を \(\lambda N(\xi) \) にかかる \(\eta \) 方向分布関
数 \(A^{(N)}(\gamma) \) と組み立て

\[
a(\gamma)A^{(N)}(\gamma) = F^{(N)}(\gamma) \frac{1}{\sqrt{1-\eta}}
\]

(2.1.2)

と書き，\(F^{(N)}(\gamma) \) を前章の \(F_0(\gamma) \) と同じに取扱う。

\(a(\gamma) \) は \(\eta=\pm 1 \) で有限確定値をとり，それは

\[
a(1) = \lim_{\eta \to 1} b(\eta) \frac{1}{\sin \phi} \left| \frac{d\phi}{d\theta} \right|_{\eta = 1}
\]

から求められるものとする。ただし \(\eta = \cos \phi \) である。

\[
G^{(N)}(\phi, \phi') = F^{(N)}(\eta') i N(\xi, \gamma; \gamma')
\]

(2.1.3)

と書くと，(2.1.1) は

\[
-w(\xi, \eta) = -\frac{1}{2\pi} \sum_{N=0}^{m} H^\prime_0 \sin \frac{\phi}{\cos \phi - \cos \phi'}
\]

(2.1.4)

のように表される。この級数には対数特異性があ
るので，実用計算ではここで Mangler と Spencer
のようにしてそれを精度よく積分する演算を挿入した
ければならないが，理論の明確さを保つため，それ
を行なわないうま解析を進める。(2.1.4) の \(\phi' \) につ
いて部分積分を行なうと

\[
-w(\xi, \eta) = -\frac{1}{2\pi} \sum_{N=0}^{m} H^\prime_0 \left\{ \frac{G^{(N)}(\phi, \pi, \xi)}{1+s\xi} + \frac{G^{(N)}(\phi, 0, \xi)}{1+s\xi} \right\}
\]

\[
-\frac{1}{2\pi} \sum_{N=0}^{m} H^\prime_0 \left(\frac{\partial}{\partial \phi'} G^{(N)}(\phi, \phi', \eta') \right) \sin \frac{\phi}{\cos \phi - \cos \phi'}
\]

(2.1.5)

である。翼端条件 (1.3.17) により，右辺第 1 項は 0
とみせる。

\[
G^{(N)}(\phi, \phi') = \frac{2}{m+1} \sum_{i=0}^{m+1} \epsilon_i G^{(N)}(\phi, \phi)
\]

(2.1.6)

と置いて (2.1.5) の積分を行なう。ただし

\[
\phi_s = \pi/(m+1), \quad \epsilon_s = \begin{cases} 1/2, & s, r = 0, m+1 \\ 1, & s, r \neq 0, m+1 \end{cases}
\]

とすると，(2.1.5) は

\[
-w(\phi) = \frac{1}{\pi(m+1)} \sum_{N=0}^{m} \sum_{i=0}^{m+1} \epsilon_i G^{(N)}(\phi)
\]

\[
\times \sum_{r=1}^{m+1} \epsilon_r r \cos \phi_r \mathcal{S}_0(\phi)
\]

(2.1.7)

と書く。係数は (2.1.5) は

\[
-w(\phi) = \frac{1}{\pi(m+1)} \sum_{N=0}^{m} \sum_{i=0}^{m+1} \epsilon_i G^{(N)}(\phi)
\]

\[
\times \sum_{r=1}^{m+1} \epsilon_r r \cos \phi_r \mathcal{S}_0(\phi)
\]

(2.1.8)

となる。

\[
\mathcal{S}_0(\phi) = \eta = \pm 1 \text{ に対数特異点をもつ関数で，}\eta = \pm 1 \text{ の近傍では}
\]

\[
\lim_{\eta \to \pm 1} \mathcal{S}_0(\phi) = \ln \frac{1+\eta}{1-\eta}
\]

(2.1.9)

のように表われる（附録 B 参照）。\(\phi \to 0 \) のとき

\[
\mathcal{S}_0(\phi) \text{ の中 } \ln \frac{1+\eta}{1-\eta} \text{ を係数にもつ項を } -w(\phi)^* \text{ で表すと}
\]

\[
\lim_{\phi \to 0} -w(\phi)^*(\phi) = \frac{1}{\pi(m+1)} \sum_{N=0}^{m} \sum_{i=0}^{m+1} \epsilon_i G^{(N)}(\phi)
\]

\[
\times \sum_{r=1}^{m+1} \epsilon_r r \cos \phi_r \ln \frac{1+\eta}{1-\eta}
\]

(2.1.10)

である。右辺の \(\ln \frac{1+\eta}{1-\eta} \) の係数は (2.1.6) を \(\phi' \) で 2
回微分して \(\phi' = 0 \) とした形に相当するので

\[
\lim_{\phi \to 0} -w(\phi)^*(\phi) = -\frac{1}{2\pi} \sum_{N=0}^{m} \frac{\partial^2}{\partial \phi'^2} G^{(N)}(0, \phi') \big|_{\phi' = 0}
\]

(2.1.11)

と書かれる。

(1.3.8) の第 2 式によると

\[
\frac{d^2}{d\phi'^2} G^{(N)}(\phi) \big|_{\phi'=0} = \mathcal{S}_1
\]

であるから，(1.3.17)，(1.3.19) の翼端条件を用い
ると

\[
\frac{1}{\pi} \sum_{N=0}^{m} \frac{\partial^2}{\partial \phi'^2} G^{(N)}(0, \phi') \big|_{\phi' = 0} = 0
\]

が得られる。結局
\[-w^{(0)}(0) = \frac{1}{\pi (m+1)} \sum_{i=0}^{\infty} \frac{z_i}{\sum_{i=0}^{\infty} z_i} G_i^{(a)}(0) \]
\[\times \sum_{r=1}^{m+1} \epsilon_r \cos r \phi_r \cdot V_r. \tag{2.12.12} \]

となる。\[-w^{(0)}(\pi)\]についても同じ方法によって同形の表示式が得られる。

以上、前節で導いた翼端条件が数値解の方法でどのように使用されるかを具体的に示した。

両翼端では（1.3.16）の関係があるので、そのでは \(F^{(0)}(0)\), \(F^{(0)}(\pi)\)がわかられば他は定まる。\(\varphi_0 = \varphi/\pi / (m+1)\)とすると、\(F^{(0)}(\varphi_0)\)の未知数の数は \(m\times (R+1)+2\)であるから、（2.1.8）と（2.1.12）の連立方程式からそれらが得られる。\(F^{(0)}(0)\), \(F^{(0)}(\pi)\)は単に他の位置の\(F^{(0)}(\varphi_0)\)を求めるために必要な量で、最終解析として表面に現われることはない。したがって、\(w^{(0)}(0)\)に対しては、\(p\)をいずれか一定定め、翼形状から \(\lim_{\varphi \to 0} w^{(0)}(\varphi)\)を求めるものを用いればよい。

2.2 核関数展開法における円形翼端の特性と応答

核関数展開による数値解法では核関数を展開したため、円形翼端の場合、一般的 \(MFM\) とはまた別の新たな特性が加わることになる。これは核関数展開法特有の翼端問題であるが、これまでそれの処理を特に考えなかった。一般的翼端問題に入る前にまず本節ではその問題について、従来の mode function を用いた場合の対応策を考えてみる。ただし矩形翼端では従来のままでよい。

揚力面の積分方程式を核関数の Taylor 展開によって連立方程式方程式に書き改めると

\[-w^{(m)}(\varphi) = \frac{1}{2\pi} \sum_{n=0}^{\infty} B_n \int_0^{2\pi} A^{(n)}(\varphi') K^{(m,n)}(\varphi, \varphi') d\varphi' \tag{2.2.1} \]

ただし

\[w^{(m)}(\varphi) = w(0, \varphi), w^{(b)}(\varphi) = \left(\frac{\partial}{\partial z} \right)^k w(0, \varphi) \mid_{t=0} \tag{2.2.2} \]

\[K^{(m,n)}(\varphi, \varphi') = \int_0^{\infty} \frac{e^{-\lambda s}}{s^{n+1}} \frac{\lambda \psi(\varphi')}{\sqrt{1 - e^{-\lambda s}}} \frac{\epsilon}{2\pi} \frac{|1 - e^{-\lambda s}|}{(1 - e^{-\lambda s})^{n+1}} d\varphi' \]

\[K^{(m,n)}(\varphi, \varphi') = - \frac{(1 - e^{-\lambda s})^{n+1}}{2} \frac{\lambda \psi(\varphi')}{\sqrt{1 - e^{-\lambda s}}} \frac{\epsilon}{2\pi} \frac{|1 - e^{-\lambda s}|}{(1 - e^{-\lambda s})^{n+1}} d\varphi' \tag{2.2.3} \]

である。この式の \(A^{(n)}(\varphi)\) は（1.1.1）の \(A_n(\varphi)\) と同じ意味の mode function とする。\(\lambda \psi(\varphi)\)を（1.1.2）と同じに Birnbaum 関数列とすると、核関数 \(K^{(m,n)}\) は次に示すように \(Y = 0\) で 2 位の極と対数特異点をもつ。即ち

\[K^{(m,n)} = \left\{ \begin{array}{ll}
-\frac{\lambda \psi(\varphi)}{2\pi} & \text{if } Y = 0 \\
-\frac{\lambda \psi(\varphi)}{2\pi} & \text{if } Y = 0 \end{array} \right. \tag{2.2.4} \]

\[K^{(m,n)} = \left\{ \begin{array}{ll}
-\frac{\lambda \psi(\varphi)}{2\pi} & \text{if } Y = 0 \\
-\frac{\lambda \psi(\varphi)}{2\pi} & \text{if } Y = 0 \end{array} \right. \tag{2.2.5} \]

\[K^{(m,n)} = \left\{ \begin{array}{ll}
-\frac{\lambda \psi(\varphi)}{2\pi} & \text{if } Y = 0 \\
-\frac{\lambda \psi(\varphi)}{2\pi} & \text{if } Y = 0 \end{array} \right. \tag{2.2.6} \]

\[K^{(m,n)} = \left\{ \begin{array}{ll}
-\frac{\lambda \psi(\varphi)}{2\pi} & \text{if } Y = 0 \\
-\frac{\lambda \psi(\varphi)}{2\pi} & \text{if } Y = 0 \end{array} \right. \tag{2.2.7} \]

（60）
\[k = \frac{1}{2} \left(M - \frac{1}{2} - M \right) \]
(2.2.7)

と書き、これを

\[H^{(M,N)}(\varphi, \varphi') = \frac{2}{m+1} \sum_{i=1}^{m} H^{(M,N)}(\varphi, \varphi_i) \]

\[\times \sum_{r=1}^{m} \sin r \varphi_i \sin r \varphi' \]
(2.2.8)

とすると

\[-w^{(M)}(\varphi) = \frac{2}{m+1} \sum_{i=1}^{m} [a(\varphi_i)]^{M} \]

\[\times H^{(M,N)}(\varphi, \varphi_i) C^{(M)}_{r} \]
(2.2.9)

と書かれる。この式の \(C^{(M)}_{r} \) は

\[C^{(M)}_{r} = \frac{1}{m+1} \sum_{r=1}^{m} \sin r \varphi_i J_{r}^{(M)}(\varphi_i) \]
(2.2.10)

\[\frac{\sin r \varphi'}{(1-\eta^2)(\eta-\eta')^2} d\eta' \]
(2.2.11)

によって与えられる。

\(M=0,1 \) に対しては

\[C^{(M)}_{r} = \frac{1}{m+1} \sum_{r=1}^{m} \sin r \varphi_i (\sin \varphi_i)^M \]

\[\times \frac{\sin r \varphi'}{\cos \varphi_i - \cos \varphi_i} \]
(2.2.12)

である。

\(M \geq 2 \) に対しては、(2.2.11) の被積分関数に

\[\frac{1}{(1-\eta^2)(\eta-\eta')^2} = \frac{1}{1-\eta^2} \frac{\eta + \eta'}{(\eta-\eta')^2} \]

\[\frac{1}{1-\eta^2} \frac{1}{(1-\eta^2)(\eta-\eta')^2} \]
(2.2.13)

の恒等式を適用すると、常用の方法で発散積分の有限部分を求めることができる。

\[H^{(M,N)}(\varphi, \varphi') = \frac{1}{(1-\eta^2)(\eta-\eta')^2} \frac{\eta + \eta'}{(\eta-\eta')^2} \frac{1}{1-\eta^2} \]
(2.2.14)

の恒等式を適用すると、常用の方法で発散積分の有限部分を求めることができる。

\[H^{(M,N)}(\varphi, \varphi') = \frac{1}{(1-\eta^2)(\eta-\eta')^2} \frac{\eta + \eta'}{(\eta-\eta')^2} \]
(2.2.15)

すると

\[C^{(M)}_{r} = C^{(M-1)}_{r} - D^{(M)}_{r} \]
(2.2.16)

である。\(J^{(M)}_{r}(\varphi) \) には

\[J^{(M)}_{0}(\varphi) = 0 \]

\[J^{(M)}_{1}(\varphi) = -\left(\sin \varphi \right)^{M-1} \]

\[J^{(M)}_{2}(\varphi) = -4 \sin \varphi \cos \varphi \]
(2.2.17)

の形式があるから、逐次値が求められ、(2.2.14) によって \(D^{(M)}_{r} \) を計算することができる。

\(M>3 \) のときは (2.2.13) の恒等式を更に重ねて行なうことになるので、運搬は少し繁雑になる。

2.3 核関数展開法における異常問題の処理

(1.2.24) の \(\lambda_{n} \) は揚力面の異常方向の吹上げの分布形を表す関数である。このうち (1.2.25) の \(\lambda_{n} \) は異常方向に一定であるのに対し、\(J_{n} \) は \(\xi \) の関数となっている。そこでこれには

\[\lambda_{n}(-\xi) = \lambda_{n}(\xi) \]
(2.3.1)

の性質がある。\(J_{n-1} \) で、これに対応する吹上げ \(w_{n-1} \) は前後対称であり、また \(J_{n} \) に対応する吹上げ \(w_{n} \) も前後対称である。(1.2.30)，(1.2.32) および (1.2.37)，(1.2.38) に示すようにこの 2 組の前後対称の吹上げに対してのみ翼端に吹上げの特異性がある。したがって \(\eta \) 方向 mode function を (2.1.2) の形に仮定すると、(2.2.1) の \(M \) が奇数のとき翼端に特異性が現われるはずである。以下これに対する処理法を示す。

(2.1.2) の記号を用いると、(2.2.7) の \(H^{(M,N)}(\varphi, \varphi') \) は

\[H^{(M,N)}(\varphi, \varphi') = k^{(M,N)}(\varphi, \varphi') \frac{k^{(M,N)}(\varphi, \varphi')}{[a(\varphi')]^{M} (1-\eta^2)^{M/2}} \]
(2.3.2)

と書かれる。

\(M=0 \) のときは \(k^{(M,N)}(\varphi, \varphi') \) は \(i \eta(0; \varphi; \varphi') \) に等しいから、2.1 節の遊星をそのまま利用することができる。(2.1.8)，(2.1.12) の \(G^{(N)}(\varphi) \) を \(H^{(M,N)}(\varphi, \varphi) \) で置きかえたものが \(w^{(M)}(\varphi) \) に対応する。
\[-w^{(0)}(\varphi) = \frac{1}{\pi(m+1)} \sum_{N=0}^{\infty} \sum_{r=0}^{m+1} \varepsilon_r H_0^{(0N)}(\varphi) \]
\[\times \sum_{r=1}^{m+1} \varepsilon_r r \cos r \varphi S_r(\varphi) \]
\[-w^{(0)}(0) = \frac{1}{\pi(m+1)} \sum_{N=0}^{\infty} \sum_{r=0}^{m+1} \varepsilon_r H_0^{(0N)}(0) \]
\[\times \sum_{r=1}^{m+1} \varepsilon_r r^2 \cos r \varphi V_r \]
(2.3.3)

である。ただし \(H_0^{(MN)}(\varphi) \equiv H_0^{(MN)}(\varphi, \varphi) \) とする。

\(M \) が奇数のとき、\(H_0^{(MN)} \) には \(1/\sqrt{1-\eta^2} \) がかかっているので,
\[L^{(MN)}(\varphi, \varphi') = \frac{1}{\sqrt{1-\eta^2}} \frac{1}{2} \left(1 - (1-\eta^2)/2\right) \]
(2.3.4)

と置くと、\(L^{(MN)}(\varphi, \varphi') \) は翼面の至るところで有限である。それ故 (2.1.6) の Fourier 余弦級数で置きかえて (2.2.1) の \(\gamma' \) の積分を行なう。\(w^{(0)} \) は翼端に特異性がないので演算は単純で,
\[-w^{(0)}(\varphi) = a(\varphi) \sqrt{1-\eta^2} \]
\[\times \frac{1}{2\pi} \sum_{N=0}^{\infty} \sum_{r=0}^{m+1} \varepsilon_r L_r^{(1N)}(\varphi) M_r(\varphi) \]
(2.3.5)
のように表わされる。ただし
\[M_0(\varphi) = \frac{1}{m+1} \sum_{r=1}^{m+1} \varepsilon_r \cos r \varphi m_r(\varphi) \]
(2.3.6)
\[m_r(\varphi) = \frac{1}{\pi} \frac{1}{2} \sqrt{1-\eta^2} \cos \varphi' \]
(2.3.7)
である。\(m_r(\varphi) \) は正規化式を用いると逐次その値を求めることができる。\(\sqrt{1-\eta^2} m_r(\varphi) |_{\varphi=0} = 0 \) であるから、\(w^{(0)}(\varphi) \) は \(\varphi = 0, \pi \) に特異性はなく (附録 C 参照)。

\(M=2 \) のとき
\[-w^{(0)}(\varphi) = \frac{1}{2\pi} \sum_{N=0}^{\infty} \frac{1}{\sqrt{1-\eta^2}} B_{1-N}^{1-N} \]
\[\times H_0^{(1N)}(\varphi, \varphi') (1-\eta^2)(\eta-\eta') d\eta' \]
(2.3.8)
である。(2.2.13) を用いると
\[-w^{(0)}(\varphi) = \frac{1}{2\pi} \sum_{N=0}^{\infty} B_{1-N}^{1-N} H_0^{(1N)}(\varphi, \varphi') \]
\[\times d\eta' = \frac{1}{2\pi} \sum_{N=0}^{\infty} B_{1-N}^{1-N} H_0^{(1N)}(\varphi, \varphi') \]
(62)

\[\times H_0^{(1N)}(\varphi, \varphi')(\gamma+\gamma')(\eta-\eta') \]
(2.3.9)
と書かれる。右辺第 1 項は \(w^{(0)} \) の場合と同じようにすると \(\eta = \pm 1 \) でも有限な値が得られないので、第 2 項は
\[\frac{1}{1-\eta^2}(\eta-\eta') = \frac{1}{1-\eta^2} \left(\frac{1}{\eta-\eta'} - \frac{1}{1-\eta^2} \right) \]
(2.3.10)
の恒等式をあてはめてみると容易にわかるように特異性が現われる。即ち 1.3 項の翼端条件だけでは吹上げの微分値を有限にすることができない。\(M > 0 \) では翼端で境界条件を与える必要がないので、\(\gamma = \pm 1 \) で \(w^{(0)}(\varphi) \) が発散するような式を作ったとしても計算に支障はない。あるいは第 2 項の \(H_0^{(1N)}(\varphi, \varphi') \) を Fourier 正弦級数で表わしておけば、両端ははじめから除かれているし、演算子の計算も容易である。(2.3.9) の右辺第 1 項の \(\gamma' \) について部分積分し、翼端条件を入れると
\[-w^{(0)}(\varphi) = \frac{1}{2\pi} \sum_{N=0}^{\infty} B_{1-N}^{1-N} \int_{-1}^{1} \]
\[\times (\delta/\delta \gamma') H_0^{(1N)}(\varphi, \varphi')(\eta-\eta') d\gamma' \]
\[- \frac{1}{2\pi} \sum_{N=0}^{\infty} R_{-1}^{1} H_0^{(1N)}(\varphi, \varphi')(\gamma+\gamma')(\eta-\eta') d\gamma' \]
(2.3.11)
となる。ここで \(H_0^{(1N)}(\varphi, \varphi') \) を (2.1.6) で置きかえて \(\gamma' \) の積分を行なうようにするとよい。

\(M=3 \) のときも (2.2.13) を用いると
\[-w^{(0)}(\varphi) = \frac{1}{2\pi} \sum_{N=0}^{\infty} \frac{H_0^{(1N)}(\varphi, \varphi')}{\sqrt{1-\eta^2}} \]
\[\times L_{1-N}^{1-N}(\varphi, \varphi') (1-\eta^2)(\eta-\eta') d\gamma' \]
(2.3.12)
と書かれる。

(2.3.10) によると
\[I = \frac{1}{\pi} \int_{-1}^{1} \cos \varphi' \cos \varphi' (1-\eta^2)(\eta-\eta') d\gamma' \]
\[= \frac{1}{\pi} \int_{-1}^{1} \cos \varphi' \cos \varphi' (1-\eta^2)(\eta-\eta') d\gamma' \]
\[= \frac{1}{\pi} \int_{-1}^{1} \cos \varphi' (1-\eta^2)(\eta-\eta') d\gamma' \]
と書かれる。\(r \) の寄数値に対し

\[
\sqrt{1-\eta^2}I = - \frac{\sin \rho}{\sin \varphi} \int_0^{\varphi} \frac{H_r}{2\pi} \cos \rho' d\rho'
\]

\[
\begin{cases}
1 \cos \varphi' - \frac{1}{1+\cos \varphi'} \\
\sin \varphi \sin \rho'
\end{cases}
\]

\[
= - \frac{\sin \rho}{\sin \varphi} \int_0^{\varphi} \frac{\sin \rho'}{\sin \varphi} \sin \rho' d\rho'
\]

\[
\begin{cases}
1 \cos \varphi' + \frac{1}{1+\cos \varphi'} \\
\sin \varphi \sin \rho'
\end{cases}
\]

\[r \] の寄数値に対し

\[
\sqrt{1-\eta^2}I = - \frac{\sin \rho}{\sin \varphi} \int_0^{\varphi} \frac{H_r}{2\pi} \cos \rho' d\rho'
\]

\[
\begin{cases}
1 \cos \varphi' + \frac{1}{1+\cos \varphi'} \\
\sin \varphi \sin \rho'
\end{cases}
\]

\[
= - \frac{\sin \rho}{\sin \varphi} \int_0^{\varphi} \frac{\sin \rho'}{\sin \varphi} \sin \rho' d\rho'
\]

\[
\begin{cases}
1 \cos \varphi' - \frac{1}{1+\cos \varphi'} \\
\sin \varphi \sin \rho'
\end{cases}
\]

であるから、\(\varphi \to 0 \) のとき \(\eta = 0 \) となる。また駆動 \(C \)
によって (2.3.7) で定義される関数は

\[
\sqrt{1-\eta^2}m_r (\varphi) \big|_{\eta=0} = 0
\]

である。したがって (2.3.12) の \(H (\eta, \varphi') \) (2.1.6) の Fourier 級数で 置き換えて積分したものは \(\varphi=0, \varphi' \) のとき 0 となり、\(M = 2 \) の場合
のように不都合はない。

以上のように円形翼端をもつ揚力面に対して翼端を
正確に計算しようとするとき、核能展開法による数値
解法はなかなか熊雑で取扱いにくい。

あ と が き

前著は数値解法の中で不都合と思われるものを
さがし、それを除くことを考えたもので、問題点の
所在を誤り、実用には役立たないものとなった。前著は
問題点の根元から解析を進め、それを数値解法に応用
したものです。明快な結果に到達している。

翼の流れを線型揚力面型によって解析することは
実用的に極めて有効な手段であるが、翼端近傍となる
と模型と現実の現象との間にかなりの食違いがあり
、そこで正確に計算することの実用的意義は少ない
ように見える。しかし揚力面全体として正確な解が得
られるようにすることが理論を発展させる上に重
要である。翼端問題はその目的に沿って一つの課題で
翼端方向 mode function の項数を定め、圧力分布を
計算したとき、翼端近傍で安定した解を得るようにす
る。即ち、翼端方向の標点数を増加させれば解
が定まる方法を見出す。これが翼端問題を解決すること
の実用的意義である。翼端問題の解法はほかにも方
Evaluation of the Downwash Integral for a Lifting Rectangular Planform

15) 小山昌一, “揚力面の数値計算について”, 船舶技術研究所報告, 第13巻, 第1号, (昭和51年)

附録A
\[f_0, f_0' の計算法 \]
\[f_0 = \int_0^\infty \frac{1}{\sqrt{s}} \left(1 - \frac{s}{\sqrt{1+s^2}}\right) ds \quad (A-1) \]

の計算法を示す。

(A-1) で部分積分を行なうと
\[f_0 = \frac{2}{\sqrt{s}} \int_0^\infty \frac{\sqrt{s}}{(1+s^2)^{3/2}} ds \quad (A-2) \]

となる。

\[1+s^2 = 1/\alpha \quad (A-3) \]

と置くと
\[f_0 = 4 \int_0^1 \frac{d\alpha}{\alpha(1-\alpha)^{1/4}} = \frac{4\pi^{3/2}}{|\Gamma(1/4)|^2} \quad (A-4) \]

である。

また (A-2) で
\[1+s^2 = 2/(1+\xi) \]

と置くと
\[f_0 = \sqrt{2} \int_0^\pi \frac{\sqrt{1+\xi}}{(1+\xi)^{3/2}} d\xi \]

となる。

\[\xi = \cos \theta \quad (A-5) \]

である。\(K(k) \) を \(k \) を母数とする第1種完全楕円積分とすると
\[f_0 = \left[\frac{1}{k} \frac{dK(k)}{dk} \right]_{k=1} \quad (A-6) \]

となる。

次に
\[f_0' = -\frac{1}{2} \int_0^\infty \sqrt{s} \left(1 - \frac{s}{\sqrt{1+s^2}}\right) ds \quad (A-7) \]

の計算法を示す。\(s \) について部分積分を2回行なうと
\[f_0' = -\frac{1}{6} \int_0^\infty \frac{ds}{\sqrt{s(1+s^2)}} \quad (A-8) \]

となる。(A-3) の置きかえをすると
\[f_0' = -\frac{1}{12} \int_{\gamma} \frac{d\alpha}{\alpha(1-\alpha)^{3/4}} = -\frac{\Gamma(1/4)^2}{12 \sqrt{\pi}} \quad (A-9) \]

となる。

附録B
\(S_n \) の \(n = \pm 1 \) の近傍の関数形
\[S_n(\gamma) = \int_0^\gamma \frac{\sin n\varphi \nu'}{\cos \varphi - \cos \varphi' \nu'} d\varphi' \quad (B-1) \]

で定義される関数は次の性質をもつ。ただし \(\gamma = \cos \varphi \) とする。
\[S_1 = \int_{-1}^1 \frac{d\gamma'}{\gamma - \gamma'} = \ln \frac{1+\gamma}{1-\gamma} \quad (B-2) \]
\[S_{n+1} + S_{n-1} = 2 \int_\varphi \sin n\varphi' \cos \varphi' d\varphi' \]
\[= \frac{2}{n} \left[(-1)^n - 1 \right] + 2\eta S_n \quad (B-3) \]
である。したがって
\[S_{n+1} + \eta S_n = \frac{n}{\eta} S_n = S_{n-1} + \frac{2}{n} \left[(-1)^n - 1 \right] \]
\[(B-4) \]
\[n = 1 \] とすると
\[S_0 - S_1 = \frac{n}{\eta} S_0 - 4 = \eta \ln \frac{1 + \eta}{1 - \eta} - 4 \]
\[(B-5) \]
\[\eta \equiv 1 \] として、(B-5) を (B-4) に逐次代入していくと
\[S_{n+1} = S_n \ln \frac{1 + \eta}{1 - \eta} - 4 \left[1 + \frac{1}{3} + \frac{1}{5} + \cdots \right] + \frac{1}{2n} \left[1 - (-1)^n \right] \]
\[(B-6) \]
となる。この式を \(n = 1 \) から \(n - 1 \) までならべて逐次加えると、\(\eta \equiv 1 \) のとき
\[S_n = n \ln \frac{1 + \eta}{1 - \eta} + V_n \]
\[(B-7) \]
となる。ただし
\[V_n = -4 \left\{ n \left(1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{n-1} \right) - \frac{n}{2} \right\} \]
\[n: \text{偶数} \]
\[V_n = -4 \left\{ n \left(1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{n-2} \right) - \frac{n-1}{2} \right\} \]
\[n: \text{奇数} \]
\[(B-8) \]
である。

次に \(S_n(\eta) \) と \(S_n(-\eta) \) の関係を求めめる。

(B-1) で \(\eta \) を \(-\eta \) で置きかえ、変数を \(\varphi' = \pi - \varphi'' \) と置くと
\[S_n(-\eta) = \cos n\eta \int_\varphi \sin n\varphi' \cos \varphi' d\varphi' \]
\[= (-1)^n S_n(\eta) \quad (B-9) \]
が得られる。

附録-C \(m_\varepsilon(\varphi) \) の計算法
\[m_\varepsilon(\varphi) = \frac{1}{\pi} \int_\varphi^\varepsilon \frac{\cos \varphi'}{\left(\cos \varphi - \cos \varphi' \right)^2} d\varphi' \]
\[(C-1) \]
の値は次のようにして求める。
\[m_\varepsilon(\varphi) = \frac{1}{\pi} \int_\varphi^\varepsilon \frac{\sqrt{1 - \eta^2}}{\left(1 - \eta^2 \right)(\eta - \eta')^2} d\eta' \]
である。これに(2.2.13)，(2.3.10)を適用して因数分解し、各項ごとに積分を行うと
\[m_\varepsilon(\varphi) = \begin{cases} m_0(\varphi) & \text{場合} \\ m_1(\varphi) = -\frac{1}{\pi} \int_\varphi^\varepsilon \frac{d\varphi'}{\cos \varphi - \cos \varphi'} & \text{場合} \\ \cos \varphi \cdot m_0(\varphi) = 0 & \end{cases} \]
\[(C-2) \]
が得られる。

\[m_{k+1} + m_{k-1} = \frac{2}{\sin \varphi} \sin k\varphi + 2 \cos \varphi \cdot m_k \quad (C-3) \]
であるから、(C-2) とこれに適用して逐次 \(m_k \) を求めると
\[m_1 = 2, m_2 = \frac{4}{\sin \varphi} \sin 2\varphi, m_3 = \frac{6}{\sin \varphi} \sin 3\varphi + 2 \]
\[m_4 = \frac{8}{\sin \varphi} \sin 4\varphi + \frac{4}{\sin \varphi} \sin 2\varphi \]
などとなる。
＜第13巻第1号＞

揚力面の翼端条件と数値解法（続）

花岡達郎

正誤表

P. 57 (1.2.34) 式

\[j_0(0, 0) = \frac{1}{2} \int_{-1}^{1} \frac{\xi^2}{\sqrt{1 - \xi^2}} d\xi = \frac{\pi}{2} b_2 \]

\[j_{2n}(0, 0) = -\frac{1}{2} \int_{-1}^{1} \frac{\xi^{2n}(1 - \xi^2)}{\sqrt{1 - \xi^2}} d\xi \]

\[= -\frac{\pi}{2} (b_{2n} - b_{2n+2}) \]

P. 58 (1.3.11) 式

\[\sum_{n=0}^{q} F_{2n} j_{2n} = \frac{\pi}{2} b_{2q+2} F_0 \]

正

\[j_0(0, 0) = \frac{1}{2} \int_{-1}^{1} \frac{\xi^2}{\sqrt{1 - \xi^2}} |\xi| = \frac{\pi}{2} b_2^* \]

\[j_{2n}(0, 0) = -\frac{1}{2} \int_{-1}^{1} \frac{\xi^{2n}(1 - \xi^2)}{\sqrt{1 - \xi^2}} |\xi| \]

\[= -\frac{\pi}{2} (b_{2n}^* - b_{2n+2}^*) \]

\[\sum_{n=0}^{q} F_{2n} j_{2n} = \frac{\pi}{2} b_{2q+2}^* F_0 \]