Navigational Traffic Phenomena on Narrow Straits
(C—II) On the Development of a Marine Traffic Control Simulator

By
Kazunari YAMADA, Ken’ichi TANAKA, Kenji WATANABE,
Nobuo ARIMURA, Sadami KANEMARU and Kinji HAMAJIMA

Abstract

In order to evaluate signal control systems of marine traffic flow on a restricted water area, a new simulator has been developed by utilizing the merits of a mini-computer and maneuvering performance of human operators. The simulator system contains closed loop circuits for each ship, each of which has three elements, namely an information analyser, a display apparatus and a human operator, and transmits informations for maneuvering each ship.

The main specifications of the system are as follows:
- Maximum ship number: 300,
- Number of size classifications of ships: 5,
- Number of waterway entrances: 12.

1. まえがき

混雑している船舶交通問題解決の手段として，従来，大型電子計算機による船舶交通流シミュレーションが採用されてきた。しかし，これを用いるためには，個々の操船者の操作が異なると，実際の船舶交通システムへの適用が困難であった。

しかし，この船舶交通流シミュレーション法では，操作手の操作があらかじめ設定された条件のプログラムに従う必要があるため，個々の操船者の操作が異なると，操作の難易度が高くなる可能性がある。

一方，この手順として，狭い水域における交通流制御の必要性が強調されるようになり，その制御法の設計と評価が重要な課題となっている。この交通流制御システムにおいても，現状では人的要素を必要とし，かつ，この要素のシステム機能に与える影響も無視することができない。

当所においては，以上の状況を踏まえて，新たに，交通流制御シミュレータ（以下，単にシミュレータと略記する）を開発した。このシミュレータは，来系列の交通流シミュレーションにおける個々の船舶の運動に伴う操船に関するプログラム要素と，交通流制御を行う要素とを実際の人間オペレータによって組み合わせ，いわば人間―機械系を構成要素とする制御システムを有し，これらの機能をオペレータ（以下，それぞれ操船オペレータおよび交通流制御オペレータと呼ぶ）に，操船や交通制御の情報を与えて交通流制御のシミュレーションを行うものである。したがって，ここでは操船
に関する複雑なプログラムを必要とせず、かつ、人間オペレータの持つ意図的な面が効果的に生かされてシミュレーションを行うことができる。

2. シミュレータの構成とシステムの概要

本シミュレータは、定められた対象水域において、その水域内の複数個の入航口より大きさの異なる各種船舶が逐次入航し、かつ、通航が行われるとき、ここで形成される交通流を、種々の制御方法で制御した場合、あるいは、船舶の操作特性を変えた場合などに、この交通流がどのように変化するかを適切に模擬した要素を用いてシミュレーションを行い研究調査する装置である。このシミュレータは高速電子計算機とその附属装置で構成されるが、シミュレーション実行時、このシステムの各船舶の操船と交通流制御に関する部分は、人為（manual）的にそれぞれ操船オペレータと交通制御オペレータの操作により機能し、本システムは人間と機械系の間ループを形づくる構造となっている。したがって、このシミュレーションは、在来の大型電子計算機を用いた船舶交通流シミュレーションと同様、微小時間ごとに現象の遷移を取扱うタイムスライディング法（time slicing method）によることになる。

前述のように、このシミュレータの主体は小型電子計算機であり、その附属装置からなる解析処理装置でシミュレーション実行時には、図1に示されるように、交通流として作動するものであるが、同時にこの装置は、この実行に伴って、それに必要な入航データの作成を行う操船発生としての役割をなし、かつ、シミュレーション終了後、得られた交通流現象のデータの集計処理を行う集計処理部の機能をも併せ

* 使用した機種は基本コア12万のOKITAC 4300Cで言語はJIS规格水準3000のBasic FORTRANである。
有するものである。したがって、解析処理装置の船舶発生部、運航部および集計処理部とはすべてこの順序に時間的にかけ離れたオフライン処理をなすものである。

まず、この解析処理装置の船舶発生部には、船舶交通流発生条件と船種特性に関するデータが与えられる。すなわち、シミュレーションにおいて運航する各船は、それそれぞれの大きさとともに対象水域内の入航地点（入航口）と著者地点（出航口）を定めたいわゆるOD（origin-destination）情報を必要とし、設定交通量に対するこれらの船舶は、通常時間がに関してランダム性を持た入航の順序づけが行われなければならない。このためこの船舶発生部は、各入航口における入航船データの作成を行うのである。

つぎに、シミュレーション実行時、同装置の運航部は、同時に入航船データが読込されるがその時点で、水域の存在する全船舶について、それらの速度、位置、出航口など各船に関する交通情報を作成する**。これらの船舶交通情報は、船舶情報表示装置に提供され、その表示装置の水域モデル上に各船がそれぞれ進行方向に向けて位置表示される****。一方、この船舶情報表示装置上には交通制御オペレータによって、交通制御指令が行われる。このときの交通制御オペレータは、船舶交通発生条件からもたらされる運航計画表に従い船舶情報表示装置に示された大型船の入航などの各船交通状態をつかみ、この状態を予め設定された交通制御規則に照らして適切な交通制御指令を行うものである。*****。

なお、船舶情報表示装置に示されている水域モデルは、予め設定された設定条件で従って、可航水域、各船の入出航口、バースなどの地形や交通制御区域などが明示されているものである。

* 本機種では紙テープ出力。
** 本機種ではL Pペーパーシート出力。
*** 本シミュレータにおける船舶位置の表示は、便宜的に操船オペレータがL Pペーパーシートの直角座標表示で読む、この座標位置に船種モデルを移動させる作業によって行われたが、ここでは船舶オペレータの作業を行う必要性はない。船舶交通情報ランナーとして、その位置が何らかの方法により、表示板（表示面）上に示されるがよいわけである。
**** 具体的な例は、大型船の水域モデルの中の指定する水域への入航に際し、他の全船舶の同区域内航行禁止区域を含む場合、その航行禁止指示の指示板を掲げることより、船舶に対して航行禁止を示すものである。
***** 具体的な例は、大型船の水域モデルの中の指定する水域への入港に際し、他の全船舶の同区域内航行禁止区域を含む場合、その航行禁止指示の指示板を掲げることより、船舶に対して航行禁止を示すものである。各船に対しては、それぞれ操船オペレータが対応し、操船オペレータは船舶情報表示装置上における該当船の位置、速度、到達地点（出航口）、その船の近傍の水域形状および他船の航行状態をよく把握し、総合的な判断のもと、以後この船が進行する場合の将来位置を見定める。そして、これが現在の状態から判断して変更を必要とするときは、ここで標準的操船作業を解析処理装置の運航部へ情報伝達する**。運航部では、新たに入航する船舶の情報とこの操船情報とを含めて、数小時間AT（1スティック時間）後における全船舶の航行状態を計算し、前述のような船舶交通情報を作成し、船舶情報表示に供給するのである。

このように、ステップ時間ごとに、この操作が繰返され、所定の時間（シミュレーション時間をもって、継続される。

このシミュレーション実行中、各ステップ時間における各船の交通情報はすべて蓄積され、シミュレーション終了後、解析処理装置の集計処理部で、所定の処理方式により区間内船舶密度分布、区間内操船回数分布、各OD別の平均通過時間などの統計量が集計処理される。

3. シミュレータのシステム設計

このシミュレータは、シミュレーション実行時、船舶交通流を効果的に模擬し、所定の結果を得るため適正なシステム設計を行うなければならない。以下、そのシステム設計について概観する。

3.1 時間メッシュ

一般に、船舶交通現象を電子計算機で模擬してシミュレーションを行うときは、その現象モデルを変更しないときは、時間メッシュを細かく選ぶ方が、この現象の相似性（similarity）の面からみて望ましいことである。しかし、今回のように、操船オペレータなど人間の介在する人間一機械系の構成を持つシステムでは、このシステムのオペレーション時には、人間に要求される時間当たりに情報量は、時間メッシュの細密化とともに著しく増大し、人間の持つ情報処理能力に対して過大となるようになり、作業効率の低下を招くよ
表1 超小型船と大型船の比較

<table>
<thead>
<tr>
<th>総トン数（トン）</th>
<th>最適速度（m/sec）</th>
<th>旋回半径（m）</th>
<th>回頭角（度）</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.8</td>
<td>10</td>
<td>963</td>
</tr>
<tr>
<td>3000</td>
<td>6.2</td>
<td>175</td>
<td>122</td>
</tr>
</tbody>
</table>

うになる。したがって、さきの相似性とこの作業効率の両面から適切な時間メッシュが選ばれなければならない。

いま、この相似性の面から考察を加えてみよう。

このシミュレータで採用される船舶の運動性能は、従で述べる船舶モデルに関する表1により示される
としているが、超小型船と大型船とでは、この運動性能
に関する諸元の値は、1 倍よりも大小がdifferent となる。
例えば、径を半径と最適速度を求め、総トン
数10トンと3000トンの船舶について、ステップ時間1
分間の旋回が行われた場合、回頭角を求めると表1
のような結果が得られる。船舶の大きさに無関係に非常
に短い時間メッシュをこのシミュレータに与えると

回頭角是非常に大きくなり、しかも、この場合の回頭
角の分解能は、船舶の大きさの相違によって異なって
くるので、当然、前述の相似性の低下をきたすこと
になる。

このため、本システムでは、船舶の運動に関する処
理計算の時間メッシュに応じたステップ時間がdt はシ
ステム全体のステップ時間dT よりも短く、しかも、
船舶の大きさに従属した値を設定されている。その選
定の条件は、回頭角の最大分解能を5度とし、船舶の
大きさに対して

\[dt \leq 5 \times \frac{\pi}{180} \cdot \frac{r}{V_0} < dT \]

の形で与えた（記号 r, V_0 については、船舶モデル
の項参照）。

また、船舶の速度の速度に関しても、これと同様
な考察が行われるが、今回設定された船舶モデルを使
用するかぎり、速度の大きさについては、(3) 式に示
されるように、停止距離や最適速度の性能に関する定数
が、指数定数 a の中に入ることで、回頭角よりも影響
が少ない。このため特に船舶の接岸時の場合、外
回頭角に関する計算の時間メッシュを踏襲してはさすか
えないように思われる。

3.2 船舶モデル

一覧に、船舶の運動性能は、いままで多くの人びと
によって研究調査が行われ、その成果は多岐にわたっ
て便観などに織り込まれている。しかし、このシミュ
レータでは、船舶交通流の特異型の巨視的な現象
を取扱うため、船舶モデルは特に簡略化された運動
性能を持つものとして処理され、

このシミュレータでは、総トン数の異なった多種類
の船舶モデルが採用されたが、これらの船舶モデルの
幅、最適速度（海面速度）V_0、旋回半径 r、停止距
離 S など性能に関する諸元 P は、多数の船舶データ
をもとにして得られた船舶の長さ L_pp を変数とする
藤井の回帰直線

\[\log Q = A \log L_pp + B + \sigma \]

（A, B：定数, \sigma：標準偏差）

で求めることにした。

さらに、この船舶モデルの運動は、これが進路変更
をはじめならば、進路を等流、入、また、進
度の増減を伴う場合は、時間経過に従いそれが指数
的に変るものとして取扱った。

すなわち、tsee 後の速度と現在の速度をそれぞれ
\[|V_1|, |V_0| \] とすれば

\[
(\text{增} \text{速}) \quad |V_1| = |V_0| + (V_0 - |V_0|) \times (1 - \exp(-at))
\]

\[
(\text{減} \text{速}) \quad |V_1| = |V_0| \exp(-at)
\]

\[a = \frac{V_0}{S} \]

と、また、進路を変えたときの回頭角 \(\varphi \) は

\[\varphi = \int_0^t \frac{|V_1|}{r} dt \]

に従うものとして簡略化が行われている。

その結果、本シミュレータシステムでは、小型船か
ら大型船までを一元的な処理によって取扱う方法が採
用された。

しかし、研究目的によっては、別の観点から運動性
能を規定する船舶モデルが必要であると思われる。

3.3 船舶交通流の設定方法

本シミュレータにおける船舶交通流のパターン設定
には、この対象水域と運航する船舶の入航口別に与え
られた表2 の条件内容より、この地点から進入する船
舶の発生条件を指定する方法が採用されている。

この方法は、つまり、水深モデルにおける船舶交通
流の境界条件を定めるものであり、この処理は解析処
理装置の船舶発生数が当たるものである。

ここで、シミュレータシステム構成上必要とする船
舶交通流関係の船情情報を列記する。

① 船舶取扱いのための一連番号

② その船舶の大きさを示すタイプ番号
表-2 各入航口における船の発生条件

<table>
<thead>
<tr>
<th>入 航 口 (パ - ス) 番号</th>
<th>位置座標 R_i</th>
<th>幅員 (長さ) r_i</th>
<th>サンプリング時間 T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

入航口における船舶の平均進入方位 $\bar{\alpha}_i$

<table>
<thead>
<tr>
<th>船の大小</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

③ この船舶がどの入航口からこの水域に入ったらかを示す入航口番号
④ ③と同様に出航口を示す出航口番号
⑤ この船舶の現在位置
⑥ この船舶の現在速度
⑦ この船舶の現在加速度
⑧ この船舶が対象水域に入った時刻

したがって、各入航口より進出する船舶は、前記の
②〜⑧の項目の船舶情報が必要であり、これらの初期
値をシミュレーション実行の前情報として与えられた船
舶交通流パターン条件で選定するため、本システムで
は各入航口で表示-2に示す項目が取扱われている。

この表-2の項は、入航口の番号 (i) 指定から
始まって、その水域モデル上における位置座標 (中
心位置) R_i とその大きさを表わす航路幅 r_i など、入
航口の構造に関するものなのか、この入航口へ進出す
る船舶の交通量 G_i とそのサンプリング時間 T_i,
ならびに、それら船舶の平均進入方位 $\bar{\alpha}_i$ など船
舶交通に関するものである。この表ではこのほか、船舶の
交通流パターンに関するものでは船舶の大きさと
到達地（出航口）に関する分類表がある。

なお、航路幅ベクトル \vec{r}_i の方向は、進入船の左
航から右航に向う方向とする。また、ここで分類表が取
扱われるわけは、通常、船舶航海水域を取り囲む立地
条件から、この周辺水域における経済活動は固有の傾
向を示し、必ずしも、船舶交通流パターンとこれを構
成する船舶の大きさは独立でないことが多いよう

図-2 船舶発生部のシステム図

(157)
3.4 船舶発生部システム

船舶発生部システムは図-2に示す通りで、これは、入航口に現われる船舶の数とその船舶の大きさや到着点を、これに応じて確率を累積分布から定める方式をとっている。発生する船舶の数の決定には、必要に応じてこのシステムに組込まれた乱数発生機構で計算される0から1までに8桁の係数を用い、これと前記の累積分布とを比較して、各入航口における値を決定する方式である。なお、この場合の船舶の諸元は、前述の船舶モデルの式を用いる。

表-2から、ステップ時間4T内に、1つ以上の入航口よりこの対象水域へ入航する船舶数をHとすれば、その確率qHは

\[
q_n = \frac{M}{G_n + M}, \quad n = 0
\]

\[
q_n = \frac{G_n}{G_n + 1} \cdot \frac{G_n + M - 1}{G_n + 1} \cdot \ldots \cdot \frac{1}{G_n + M - H_n}, \quad n = 1, 2, \ldots, G_n
\]

\[
M = T_1 \cdot 4T
\]

de与えられる。また、H以上の船舶の大きさを示すタイプ番号（n=1, 2, \ldots, H）に関する確率 Wiとそれぞれの船舶の到着点（出航口）の番号D（D=1, 2, \ldots, H）に関する確率Wnは、表-2における分類表の成分gamma_nと、（p行q列）から、それぞれ

\[
W_n = \sum_{m=1}^{H} \gamma_{n,m} / \sum_{n=1}^{H} \sum_{m=1}^{H} \gamma_{n,m}
\]

\[
W_n = \sum_{m=1}^{H} \gamma_{n,m}
\]

が得られる。

また、具体的に、この入航口への入航する船舶の位置、到着点の選定には、この入航口（パース）の幅（長さ）が船舶の占有幅（占有率）に競って非常に大きく、船舶を密に並べると10隻以上の多大の場合のあることを考慮して次式のような方法を探った。

すなわち、船舶の出現位置の座標 \(\vec{R}_0 \)は（入航口の場合）

\[
\vec{R}_0 = \vec{R}_i + \xi \left(1 - \frac{b_1}{|r_1|}, 2 - \frac{b_1}{|r_1|} \right)
\]

（パースの場合）

\[
\vec{R}_0 = \vec{R}_i + \xi \left(1 - \frac{a_1}{|r_1|} + \frac{a_1}{|r_1|} \right)
\]

ただし、\(\vec{R}_i, \xi \)は表-2に示されるもので、\(a_1, b_1 \)は船舶の長さと幅で、また、添字Iは船舶の大きさを示すタイプ番号であり、\(\xi \)は乱数である。

1つ入航口ごとに2隻以上の船隻が入港するとき、前述の式で船隻の出現位置の座標を計算すると、船隻同士が重なることもあるので、この場合は、再度乱数を引き直して、これを避けている。

また、入航口における選定時の船隻速度は、その方位を表-2に示された遠近方位になるようにし、また、その大きさをその船隻の最適速度になるように選定している。ただし、この水域の制限速度よりも最適速度が大きい場合にはその制限速度を用いた。

3.5 運航部システム

この運航部システムは、このシミュレータにおける各種の処理機能を決定する重要な部分である。

ここで開発したこの部分のシステム構造を、図-3のように、シミュレータシステムのスタグごとに、この水域を航行する船舶の各操船オペレータと対話し、オペレータの判断による指示に従って各船舶の運航状態を随時計算させる方式となっている。そして、この部分のシステム制御は前述のようにタイムスライリング法で行っているが、とくに操船操作に伴う船の速度や位置の計算処理過程では、このシミュレータシステムの時間メッシュよりも細かい前述の(1)式的条件で選定された船舶の大きさで異なる時間メッシュが用いられており、各シミュレータの相対性の向上が計られている。

つぎに、この運航システムのステップごとに行われる処理経過はつきの通りである。

まず、対象水域へ進入する船隻に関するデータを読み込む。そして、この水域中にある全船の速度・位置などの船隻情報が船搬情報表示装置へ提供するためのシートを作成する。

さらに、これらの船隻の1ステップ後における速度および位置に関する計算処理が行われるがその場合、各船の航行状態から、操船オペレータの判断によって操船操作に関する指示が与えられた船、その指示内容に従った運動を行い、そして、指示のないその他の船は現在の速度で等速運動するものとして、それぞれ取り扱われている。

また、この対象水域を通じた新たな船隻に対する処理はその船隻の番号および通過（出航）の情報を運航部に提供されると、運航部ではその船隻が水域を通過
図-3 運航部のシステム図

するに要した通過時間を計算したのち、この船舶に関する一切の情報を抹消するようになっている。

以下、これの手順が模倣される機構になっている。

なお、操船操作を指示された操船内容や出航船の通過時間をは、前に述べたように、その都度記録され、後でなければ交通流シミュレーション結果の集計処理に備えてある。

3.6 船舶の速度および位置の計算モデル

ここでは、本シミュレーションの運航部で行う船舶の速度および位置の計算について具体的に説明する。

この計算モデルは図-4 に示した通りである。

この運航システムでは、操船管理が操船操作を必要とする場合に行う指示は、この操作終了後ににおける船舶の速度の大きさ V と現在の進行方向に対する回頭角 φ 的である。したがって、図-4 における操船操作終了後における最終の速度 V_e は

\[
\left(\begin{array}{c} V_e_x \\ V_e_y \\ V_e_z \\ \end{array} \right) = V_f \cdot \left(\begin{array}{c} \cos \phi_f \\ -\sin \phi_f \\ \cos \phi_f \\ \end{array} \right) \left(\begin{array}{c} V_f_x \\ V_f_y \\ V_f_z \\ \end{array} \right)
\]

を成分とするものが与えられる。ただし、座標 x, y は直角座標における x および y 方向の成分を表すものである。

また、この操船操作開始時の加速度 A は、船舶モデルの(3)式を使って、

\[
\ddot{A} = \dot{\vec{V}} = \frac{d \vec{V}}{dt} = \frac{d}{dt} (|\vec{V}| \cdot \vec{v})
\]

と、

\[
\frac{d |\vec{V}|}{dt} = \begin{cases} a V_e - |\vec{V}| & \text{増速} \\ 0 & \text{等速} \\ -a |\vec{V}| & \text{減速} \end{cases}
\]

(159)
で近似的に与えた。そして、図式中の は船体の旋回方向に関する単位ベクトルである。向成分は、右旋回の場合（, ）
直進 （0, 0）
左旋回 （, ）
とする。
つきに、この操船操作の終了に伴う船舶の運動終了の判定は、つぎのように取扱った。

速度の増減を伴うときの判定は、 を計算中の船舶速度とするととき、 の絶対値が、その船舶の最高速度の5%の未満の場合に速度の増減操作は中止され、以後、等速となるとする。また、船体の軌跡方向の変更を行わせるときには、 と の単位ベクトルで仮想を作り。この値の絶対値が 5°よりも小さくなると、この変針操作は中止され、以後、直進するものとした。

（160）
したがって、この判定の機構によって、操船操作の内容があるステップ内に完了した場合、そのステップ内のこの終了時点から、船舶は自動的に等速運動を行うことになる。しかし、このステップで完了しなかった場合、この船舶に対して、操船オペレータが新たな操船操作の指示を与えいかぎり、残りの操船操作内容は、自動的以降のステップに継続され、前述の判定規準を満たすまで計算処理される。

3.7 操船操作の指示内容の規準化
このシミュレータシステムでは、操船操作が複雑になることを防ぐため、操船オペレータが行う操船操作の指示内容の規準化（レベル）が行われている。

前項で言及したように、操船オペレータの行う操船操作の指示内容は、これに伴う船舶の運動の最終値（目標値）になっているが、この目標値は、その船舶の現在速度を基準として、相対的に設定する方式を採用している。

すなわち、減速操作においては、現在の速度の大きさの何分の1まで減速させるか、また、増速操作の場合、その船舶の最高速度あるいは対象水域での制限速度のいずれかの低い値と現在の速度との差をとって、この値の何倍まで増速させるかを設定する方式として、よってそれぞれの値を1/2, 1/3, ……, 1/9および1/2, 1/3, ……, 9割に設定することで、速度の増減操作に対して規準化が行われる。実際、これらに対する操作コードは1, 2, ……, 9および1, 2, ……, 9とし、速度の増減を伴わない場合のコードは0とし、したがって、合計19通り取扱われることにした。

また、船舶の針路変更を伴う操作では、現在の進行方向より右または左に何度かというように10度刻みの値で指示を行うようにした。このときの回頭角に関するレベルコードは直進を含め0, ±1, ±2, ……, ±18の計37通り取扱われるように定めた。ここで、0は直進で、1は右へ10度、-1は左10度それぞれ旋回する場合を意味する。

このように、本シミュレータにおける操船操作に伴う船舶の運動の変更は、上の操船コードを介して行われ、作業の簡略化が計られている。

3.8 集計処理システム
シミュレーション実行時、ステップ時間ごとに記録された船舶交通情報は、一連のシミュレーション終了後、船舶交通流特性の評価を行うに必要な諸量を得るためこの集計処理部で処理される。

ここで開発したこの処理プログラムの主なものはつきの通りである。
① 船舶交通流のOD別ならびに船舶の大きさ別の通過時間を集計するもの。
② モデル水域の区間別ならびに船舶の大きさ別に船舶数数を集計し、その時間変化による分布を得るもの。
③ 船舶別に操船オペレータによって行われた操船操作の開始時刻やその操作内容を対象水域への入航から出航まで通過時間を従って集計し、操船操作レコードとして記録するもの。

4. むすび
いままで、船舶交通流の制御や交通流中における個々の船舶の運動を人間の判断のもとに制御するシミュレーションの手法は、実際の交通流現象の中で人間の判断で行う操作の占める割合が多いにかかわらず、ほとんど行われていなかったようである。

そこで、今回、新しい試みとして、船舶の交通状態を解明する手段として、いわゆる人間-機械系を交通流システムの中に作りこんだ船舶交通流制御シミュレータの開発を行った。

そして、当所の機種の場合、このシミュレータの能力は、最大12個所の入航口および対象水域を対象水域内に最大約300隻に達するような交通状態を処理するものであった。

この装置の運用に当たり、操船オペレータが各自の判断で、比較的妥当と思われる操船操作を行えば、交通流特性の定性的な把握はもちろいること、実業観測や実験結果から得られる操船特性を十分理解した上でのシミュレータの操船に関する操作を行うときは、定量的にもこの船舶交通流特性の把握が可能となるものと考えられる。

今後、このシミュレータのシステムの改良と、この装置のハードウェアの充実を計り、この種の問題解決手法として、この装置を十分役立たせたいと思っている。
図A-1 船舶情報

図A-2 操船オペレータによる操船内容と対象水域を通過し終了した船舶の情報

コロナ社, 昭40-12。
3) 藤井弥平: 海峡および水道の船舶交通現象に関する研究（B-1） 航行船案の試算, 船舶技術研究所報告, 第3巻第5号, 昭41-9。

付録 データシートについて

今回開発されたシミュレータの実験がシミュレーション実行時に印刷した船舶情報と操船操作内容および水域を通じて記録した船舶に関する情報を各LPベーパシートの一部を図A-1, 図A-2に示す。

図A-1の1行目は, 左から月日（日）と時間（分）と海域の全変数である。同図の2行目以下は, 各船の船舶情報を記録したものである。

左から, 船番号, 位置座標（x, y）, (m), 速度の大きさ（m/sec）, OD, 船の大きさに関するタイプ番号（1→1船10トン, 2→100トン, 3→500トン, 4→1000トン, 5→3000トン）, この水域に進入した入航時刻を示す。

また, 図A-2の1行目は, 解析処理装置が操船オペレータ（全船舶）に対して, 操船操作に伴う船舶の運動する方向, 速度（ベクトル）の変更の有無を観察する目で, これに対して, このオペレータのうちの1人が, 変更ありのコード1を解析処理装置の操作員に示し, 操作員がそのコードを打鍵したもののである。2行目以下15行目までは, 同様オペレータの指示にもとづいて, 操作員がそれぞれの船番号, 回頭角のレベルコード, 速度の増減のレベルコードを打鍵したものを表す。また, 16行目は前同様, 解析処理装置が操船オペレータに出撃船の有無を問うているもので, これに記載して“あり”のコード1を打鍵したものである。さらに, 17行目以下は, これを通じて終了した船舶に関する情報で, 左から, 船番号, OD, 通過時間（分）を示している。