有の損失、すなわちノズルからロータまでの長い流路における圧力損失と放熱損失、ロータ入口の温度および速度不均一による付加損失等の詳細な解析は行うことができなかった。

4.2.3 再熱水素燃焼効率

水素燃焼効率はガスクロマトグラフで測定した排気ガス中の消失水素濃度、酸素濃度、炭酸ガス濃度と、水素流量、主空気流量、冷却空気流量から計算で求められる。

図24に排気ガス中の残存水素濃度から求めた再熱水素燃焼効率を示す。図24で実線はTTTs7℃のシリーズ2、点線は94℃のシリーズ1における燃焼効率である。

シリーズ1では燃焼効率の最大値は95％であるが、シリーズ2では50％が達成された。水素流量が主空気流量の0.1wt％になるとシリーズ2においても燃焼効率は96％まで低下する。

シリーズ2の水素燃焼状況の例を図25に示す。水素の流入前後においてロータ周囲がストラットの奥に見える。左側と右側では使用したビデオカメラが異なり色合いが異なる。

(b)と(d)は水素流速1.5g/sで水素燃焼効率100％の場合であり、ノズルリングの全周にわたってよい燃焼状態が観察された。(e)は水素流速2.4g/sで水素の火炎が長くなっているがまだ水素燃焼効率100%の状態である。(c)と(f)は水素流速3.0g/sの場合であり、水素燃焼効率が96％程度に下がった場合の写真で、ビデオ画面では水素火炎が連続して見えようになる。また、一部の火炎の下流で燃焼が不安定化している様子が観察された。火炎が連続して見えるのは、燃焼域がニノズルまでのローターにまで達した結果と思われる。

以上から判断すると、水素の噴き出し量が過大でなく、全周で安定して火炎が保たれれば、タービン内に噴き出した水素の燃焼効率100%の達成は可能と考えられる。ニノズルリングの周方向に主流ガスの温度不均一やノズル周りで一部に強い冷却空気の流れ込みがある場合、局部的に火炎の着火・保持が乱れ、燃焼効率は低下する。火炎はノズル周辺において保持されるが、水素噴き出し速度が早すぎる場合、すなわち水素流量が過大の場合、火炎は下流方向に離れて不安定化し、燃焼効率は低下し、まだ燃焼領域が長くなりローター前で燃焼が完了せず、出力の増加が少なくなるものと思われる。

4.2.4 排気ガス特性

図25にNOx測定結果を示す。シリーズ1、2とも、NOxは再熱、非再熱ではほとんど変わらない。試験タービンの主燃焼器はガスを噴霧燃焼させており、排気ガス中で計測されるNOxのほとんどは主燃焼器で発生したNOxと考えられる。タービン内水素燃焼による主ガスの平均温度上昇は最大で100℃であり、高温燃焼域のガスの滞留時間は0.001秒以下の短時間のため、水素燃焼によるNOxの増加は極めて少なく、計測誤差の範囲に入ると考えられる。

![Combustion Efficiency of H2 %](image)

![Flow Rate of H2 for Reheat g/s](image)

図24 再熱水素燃焼効率

![NOx Concentration ppm](image)

![Flow Rate of Hydrogen for Reheat g/s](image)

図25 排気中のNOx濃度
図26 NO・NOxと水素燃焼効率の時間的経緯

図26で注目されるのは再燃によるNOx/NOx比の変化である。NOx/NOx比は非再燃時には比較的小さいが、再燃時に増加し、特にシリーズ1の全般と、シリーズ2で水素流量が多い場合にNOの比率が増大する。これらNOx/NOx比が大きいケースは水素燃焼効率が100%に達していない場合で、NOx/NOx比と水素燃焼効率の密接な関係は、NOxと水素燃焼効率の時間的経緯を同時に示した図26の測定記録にも見られる。図26では、NOxとNOを1台の計測器で1分ごとに計測した結果とNOを連続的に別の計測器で計測した結果および水素の燃焼効率を示している。この計測はノズル翼付後方で水素は断続的に着火し消えたりしており、この間の水素燃焼効率とNO濃度の変化がよく対応している。残存水素濃度とNO/NOxの関係をさらに検討するため、試験タービン運転で計測されたすべてのデータを図27に整理した。図から明らかのように、NOx/NOx比と残存水素濃度とは相間の高い対数関数関係にある。

このようにNOのNOxへの変換がNOx計測器の中で生じた現象ではないことを確かめるため、低温の標準空気にNO標準ガスを混合し、さらに水素ガスを微量混合した模擬ガスをNOx濃度計で計測した。この場合、NOのNOxへの酸化は全く生じなかったため、上記の現象はタービン内で生じたものであり、水素の不完全燃焼がNOのNOxへの酸化を促進したと考えられる。

一般に排出ガス中のNOはNOxに換算して評価されるため、タービン内で生じるNOx変換は排ガス評価には関係しないので、特に問題とする現象ではないが、NOx濃度の高いガスの計測にあたっての一般的注意事項であるコンバータ効率やコンバータ容量、およびサンプリングガス経路の温度保持について注意が必要である。一方、水素の燃焼が時間的、場所的に変動する場合、水素燃焼効率を連続的に計測することは困難であるが、図26に示したようにNOまたはNOxの計測によって水素燃焼状況を定性的にすることはあるが連続的に監視することができる。

図28にCO濃度測定結果を示す。CO濃度は再燃によって非再燃時の2倍程度に増加した。このようなCO濃度の増加が、水素燃焼域でCOxが還元されたことによるものか、主燃焼器における未燃の燃料が不完全燃焼したものかについては、判断する資料が得られなかった。O2およびCO2濃度も参考のため表9、表10に示した。再燃時は水素燃焼によりO2濃度が低くなり、CO2濃度は
第5章 試験タービンの分解点検

5.1 分解点検結果
最終シリーズの試験を終了後、試験タービンを分解し、内部の検査を行った。試験タービンの燃焼運転回数は40回、運転時間は約4時間であり、タービン内水素燃焼時間は約12時間である。

試験タービンの分解点検は（株）東芝京浜事業所で行った。分解時には試験タービン各部の目視検査、内部ケーシング内壁の測定、ロータ翼チップクリアランスの測定、水素管路の螺れの有無、および測温塗料塗布部の温度の推定を行った。分解後の試験タービン主部の様子を写真15に示す。タービン上流側から順に、(a) 入口内部ケーシング、(b) ノズルリング上流側の外周側防熱ケーシング、(c) ノズルリング上流側の内周側防熱リン、(d) ノズル翼断面（上流側より）、(e) ノズルリング下流側、(f) ノズル翼下流の外周側防熱リングと返熱シュラウドリング、(g) ノズル翼下流の内周側防熱リング、(h) ロータ翼を示す。

1）目視検査
目視によりタービン構造上の異常の有無、特に水素燃焼区間の過熱状況を調べた。水素が燃焼するノズルリングからロータ翼までの高温通路区間に関しては、ノズルリングの内側周に近い所で写真に示すように変色の跡が見られたが、ノズルリングからロータまでの高温通路区間の内周側及び外周側防熱ケーシングには測温塗料の剥離はなかったもの水素燃焼による過熱熱や変形といった異常は見られなかった（写真15のf、g参照）。ロータ翼にも異常は見られなかった。その他の部位、すなわちロータディスク、ロータ軸、タービン内外ケーシングについても構造上の異常は見られなかった。

2）内部ケーシング間隙の測定
図8、図9に見るようにノズルリング入口側のガス通路は、燃焼器からのガスの流れ方向を軸方向に直角に変える入口内部ケーシング（ラビア2a）、外周側防熱ケーシング（ラビア2b）、内周側防熱リング（ラビア2c）などで構成される。これは、内周側はめ込みによって、外周側はリップ状の端部を押しつけて組み立てられている。入口内部ケーシングの上には燃焼器に続く内周部タクトが差し込まれている。以上の内部ケーシングと内部タクトの接続部の間隙からはケーシングの外に流れ低温ガスが高温ガス側に漏れ入り、ガス温度の低下を引き起こす。細い隙間からの漏れ量は隙間幅の3/2乗に比例するため、間隙の不均一は漏れ込み空気量の大きな不均一、その結果周方向に水素燃焼不安定にさせるような局所的なガス温度低下を引

き起こす可能性がある。このため、試験タービン分解にあたっては特にノズルリング入口ガス温度に大きな影響を与える可能性のある入口内部ケーシングと外周側防熱ケーシング・内周側防熱リングの間の間隙の計測を試みた。計測の結果、内周側には幅0.2～0.35mm、長さ10～20mmの間隙が6ヶ所確認された。写真15に内周側の計測状況を示す。外周側ケーシングの間隙はシリーズ1のあとオースチンを挿入した所（写真16参照）であり、タービン下部側は測定できなかったが、上半部180度の全範囲にわたって幅0.7～0.9mmの間隙が確認された。今回の測定で間隙幅は比較的狭いが、入口部ケーシングが軸に対して非対称な形状であり、高温での運転時には形状の変形が重なり、間隙の不均一を拡大する可能性が考えられる。

3）ロータ翼チップクリアランスの測定
ロータ翼外径と外周側防熱シュラウドリング内径を測定した結果は、それぞれ329.94mm、333.43mmであった。ロータ翼のチップクリアランスは1.75mmであり、通常のタービンに比べてかなり過大である。これ
は初のタービン内燃焼の試験機として回転部の安全を重視してクリアランスに余裕をもった細部設計の結果であるが、試験タービン出力が、クリアランスゼロで行った基本設計値に対して大幅に低い結果となって理由のひとつに、このチップクリアランスの過大と考えられる。

4) 水素導入管接続部の漏れの有無

水素はタービン外部ケーシングの外に設けられた環状の水素導入管からノズルリングを構成する25枚のノズル翼にそれぞれ6mmの管により導かれる。水素経路でこれが生じた場合、再燃温度上昇は不十分、さらに予定しない場で燃焼が起きて、爆発の危険が生じたりする。水素導入経路の確認のため、水素導入管から0.1MPaの空気圧をかけ、6mm管の経路に沿ぐこと4カ所あるリングジョイント全てについて石炭液を用いて漏れの有無を調べた（写真17参照）。検査の結果、写真18に示すわずかな漏れが1カ所に認められた。この程度の重み量は周囲を流れる主空気によって薄められ、爆発の危険はなかったと思われが、リングジョイントの使用は極力避け、漏れの防止に十分な注意を払う必要がある。

5) 測温塗料を塗布した部分の温度の推定

試験タービンの製作・組立時に、高温流路部表面や軸受けケーシング、冷却空気通路などの測温塗料を塗布し、今回の試験タービン分解後、塗料の変色からその部位の温度を推定した。高速流にさらされた面、特に外周側面はほとんど全面にわたって、塗料がはがれており、また板や筋の付着もあって推定温度範囲幅は大きいが、参考値として表12に推定された温度を示す。

5.2 ノズル翼の詳細検査

ノズル翼内周側エンドウォール上には、写真19に示すように、高温ガス流によると思われる変色跡が見られた。変色部はノズル翼後縁部から始まって下流に広がり接するノズル翼エンドウォール（写真左側）までわたっている。しかし、この変色域に変形や溶融といった物理的変化は認められなかった。外周側エンドウォールにも変色跡が見られたが、変色の程度はわずかでその範囲も小さい（写真20）。翼後縁の再熱素

<table>
<thead>
<tr>
<th>部品名</th>
<th>推定温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>内部入口ケーシング（内側）</td>
<td>550-825℃</td>
</tr>
<tr>
<td>ノズル上流外周側湿熱ケーシング（ガス側）</td>
<td>670-825℃</td>
</tr>
<tr>
<td>ノズル上流内周側防熱リング（ガス側）</td>
<td>430-825℃</td>
</tr>
<tr>
<td>ノズル翼表面</td>
<td>不明</td>
</tr>
<tr>
<td>外周側防熱リング（ガス側表面）</td>
<td>670-825℃</td>
</tr>
<tr>
<td>内周側防熱リング（ガス側表面）</td>
<td>不明</td>
</tr>
<tr>
<td>防熱シュラウドリング（ガス側表面）</td>
<td>不明</td>
</tr>
</tbody>
</table>

図29 EPMA試験片位置
の吹き出し孔近傍及び吹き出し孔を塞いだ溶接部に異常は全く観察されなかった。

ノズル部および部材の変形状態の有無を調べるため、図31に示す7か所から試験片を切り出し、EPMA（電子プロープX線マイクロアナライザ）を用いて、断面の元素濃度分布を調べた。検査部位は以下の通りである。

A部：再熱用水素導入部（燃焼ガスに含まれない）
B部：外周側エンドウォールの比較的軽微な変色部（写真20参照）
C部：窪部の溶接補修部
D部：内周側エンドウォールの変色域（窪部側の加熱）（写真19参照）
E部：内周側エンドウォールの変色域（写真19参照）
F部：窪部の水素吹出し孔
G部：窪部

目視で変色の程度が顕著であったD部のEPMA画像を写真21に示す。(a)が酸素、(b)がクロム、(c)がコバルトの濃度分布であり、明るい領域ほど相対的濃度が高い。(d)は反射電子像で表面の凹凸に対応した像が得られる。

(a)、(b)に見られる部材表面に近い酸素及びクロムの濃度の領域（I層）は、保護膜として形成されたクロムの酸化膜である。(b)では、I層の下に、クロム原子が表面のI層に移動したことによって生じたクロム濃度の低い層が観察される（II層）。さらにその内部に再び濃度の高い層が観察されるが、この層が本来のクロム濃度を示している。II層はII層の濃度が低下したコバルトを含む層である。コバルトがII層に移動することにより、II層はコバルトの濃度が高い層を形成している。ニッケルの分析結果においても、コバルトと同様にII層に高濃度のニッケル層が観察される。II層では(2)～(d)のすべての観察像において、組成の変動が見られず、状態の変化を通じて酸化状態の反射が観察される。このようにI層とII層は、加熱によって生じた酸化影響層と考えることができる。各検査部位の酸化影響層の厚さは、以下のようになっただけである。

A部：酸化影響層は全くない。
B部：10 μmに達しない程度の非常に薄い酸化影響層が見られる。
C部：10 μmに達しない程度の非常に薄い酸化影響層が見られる。
D部：30 μmの酸化影響層が見られる。
E部：D部と同程度の酸化影響層が見られる。
F部：水素吹出し孔及び窪部側面とも全く酸化影響層は見られない。
G部：酸化影響層は全くない。

(株)東芝のノッケル基合金IN939に近い組成を有するニッケル基合金IN738LCについては、放物線筋及びWagner理論に基づき、材料表面と酸化層の厚さの時間的な変化の関連を考察している。その結果を本文報告のケースに適用すると、酸化影響層が頑著に見られるD及びE部では表面温度はおよそ870℃程度に、B及びC部では840℃程度に達したものと推定される。測温塗料により推定される酸化層表面温度は675℃～825℃であり、窪部のエンドウォールの変色域はタービン内の旋回流れによる半径方向圧力分布によって高さの水素燃焼ガスが窪部に沿って窪部側に流れ、エンドウォールを加熱した結果と考えられる。

今回の試験タービンではこの変色域の酸化影響層の厚さが高々30 μmであり、溶融時においては酸化層の厚さが全く問題と判断される。今回の試験タービンの再熱運転時間は12時間であるが、運転時間がさらに行なう場合は、酸化層が窪部側に形成される。ニッケルの分析結果においても、コバルトと同様にII層に高濃度のニッケル層が観察される。II層では(2)～(d)のすべての観察像において、組成の変動が見られず、状態の変化を通じて酸化状態の反射が観察される。このようにI層とII層は、加熱によって生じた酸化影響層と考えることができる。各検査部位の酸化影響層の厚さは、以下のようになっただけである。

A部：酸化影響層は全くない。
B部：10 μmに達しない程度の非常に薄い酸化影響層が見られる。
C部：10 μmに達しない程度の非常に薄い酸化影響層が見られる。
D部：30 μmの酸化影響層が見られる。
E部：D部と同程度の酸化影響層が見られる。
F部：水素吹出し孔及び窪部側面とも全く酸化影響層は見られない。
G部：酸化影響層は全くない。

(株)東芝のノッケル基合金IN939に近い組成を有するニッケル基合金IN738LCについては、放物線筋及びWagner理論に基づき、材料表面と酸化層の厚さの時間的な変化の関連を考察している。その結果を本文報告のケースに適用すると、酸化影響層が頑著に見られるD及びE部では表面温度はおよそ870℃程度に、B及びC部では840℃程度に達した後と推定される。測温塗料により推定される酸化層表面温度は675℃～825℃であり、窪部のエンドウォールの変色域はタービン内の旋回流れによる半径方向圧力分布によって高さの水素燃焼ガスが窪部に沿って窪部側に流れ、エンドウォールを加熱した結果と考えられる。

今回の試験タービンではこの変色域の酸化影響層の厚さは高々30 μmであり、溶融時においては酸化層の厚さが全く問題と判断される。今回の試験タービンの再熱運転時間は12時間であるが、運転時間がさらに行なう場合は、酸化層が窪部側に形成される。ニッケルの分析結果においても、コバルトと同様にII層に高濃度のニッケル層が観察される。II層では(2)～(d)のすべての観察像において、組成の変動が見られず、状態の変化を通じて酸化状態の反射が観察される。このようにI層とII層は、加熱によって生じた酸化影響層と考えることができる。各検査部位の酸化影響層の厚さは、以下のようになっただけである。

A部：酸化影響層は全くない。
B部：10 μmに達しない程度の非常に薄い酸化影響層が見られる。
C部：10 μmに達しない程度の非常に薄い酸化影響層が見られる。
D部：30 μmの酸化影響層が見られる。
E部：D部と同程度の酸化影響層が見られる。
F部：水素吹出し孔及び窪部側面とも全く酸化影響層は見られない。
G部：酸化影響層は全くない。

(株)東芝のノッケル基合金IN939に近い組成を有するニッケル基合金IN738LCについては、放物線筋及びWagner理論に基づき、材料表面と酸化層の厚さの時間的な変化の関連を考察している。その結果を本文報告のケースに適用すると、酸化影響層が頑著に見られるD及びE部では表面温度はおよそ870℃程度に、B及びC部では840℃程度に達した後と推定される。測温塗料により推定される酸化層表面温度は675℃～825℃であり、窪部のエンドウォールの変色域はタービン内の旋回流れによる半径方向圧力分布によって高さの水素燃焼ガスが窪部に沿って窪部側に流れ、エンドウォールを加熱した結果と考えられる。

今回の試験タービンではこの変色域の酸化影響層の厚さは高々30 μmであり、溶融時においては酸化層の厚さが全く問題と判断される。今回の試験タービンの再熱運転時間は12時間であるが、運転時間がさらに行なう場合は、酸化層が窪部側に形成される。ニッケルの分析結果においても、コバルトと同様にII層に高濃度のニッケル層が観察される。II層では(2)～(d)のすべての観察像において、組成の変動が見られず、状態の変化を通じて酸化状態の反射が観察される。このようにI層とII層は、加熱によって生じた酸化影響層を考えることができる。各検査部位の酸化影響層の厚さは、以下のようになっただけである。

A部：酸化影響層は全くない。
B部：10 μmに達しない程度の非常に薄い酸化影響層が見られる。
C部：10 μmに達しない程度の非常に薄い酸化影響層が見られる。
D部：30 μmの酸化影響層が見られる。
E部：D部と同程度の酸化影響層が見られる。
F部：水素吹出し孔及び窪部側面とも全く酸化影響層は見られない。
G部：酸化影響層は全くない。
第6章 結論

タービン内再燃水素燃焼ガスタービンは、タービン内部に独創的な方式によるコンパクトな再燃過程を実現し、再燃再生サイクルとすることで高熱効率が得られるシステムである。

本研究ではタービン内再燃の概念を実機を模擬した環境下で実証するために単段試験タービンを製作し、水素再燃運転試験を実施した。主たる結果を以下に示す。

1) 試験タービンのノズル翼入口温度940℃レベルにおいて、全てのノズル翼からノズル翼とロータ翼に挟まれた軸方向距離85mmの空間に水素を噴き出し、燃焼させた。

水素は、燃焼が困難と予想されたノズル翼下流と