ITTC Foil-Headform Combination
によるキャビテーション初生試験

門井 弘行*、黒部 雄三*、吉田 三雄*、牧野 雅彦*

Cavitation Inception Tests on the ITTC Foil-Headform Combination

By
Hiroyuki Kadoi, Yuzo Kurobe, Mitsuo Yoshida and Masahiko Makino

Abstract

The Cavitation Committee of the 15th ITTC submitted the following recommendation:
“A test program should be initiated with the Cavitation Committee’s proposed foil-headform combination to evaluate facility cavitation characteristics and for comparative measurements between facilities.”

According to this recommendation the Cavitation Committee of the 16th ITTC organised a comparative test program with the foil-headform combination.

The foil-headform combination has been tested in the several facilities. In participating in the comparative test program, cavitation inception tests with the foil-headform combination were carried out in the cavitation tunnel of the Ship Research Institute, and the results of the tests are compared with the results in the other facilities.

記
号
1. はじめに
2. 供試体
3. 試験方法
4. 試験結果および考察

記

\[\alpha_s = \frac{P_0 - P_r}{(1/2)p V_0^2} \]
\[\alpha_i = \frac{P_i - P_r}{(1/2)p V_0^2} \]
\[P_0 = \text{供試体の軸中心における圧力} \] (kg/m²)
\[P_r = \text{供試水の蒸気圧} \] (kg/m²)

V₀＝計測部における一様流速 (m/s)
\(\rho = \text{供試水の密度 (kg-m}^{-2}\cdot s^{-2}) \)
\(\alpha/\alpha_s = \text{供試水の空気含有率} \)
\(\alpha = \text{標準状態 (0°C, 760 mmHg) における供試水の空気含有量 (体積比)} \)
\(\alpha_s = \text{標準状態における供試水の飽和空気含有量} \)
\(C_{p_{min}} = \text{最小圧力係数} \)
\(C_{ps} = \text{剰余点の圧力係数} \)

* 推進性能部
原稿受付: 昭和 58 年 9 月 2 日

(499)
1. はじめに

キャビテーション現象は周囲の環境に影響される度合が大きく、キャビテーション試験水槽の形式・仕様、供試体の寸法等の他に、水槽水の水質・気泡核の分布・空気含有量、試験時の水温、流速等の物理量も影響因子として考えられる。したがって環境の異なる試験水槽間で、同じ供試体により試験を行ってその試験結果を比較することは有意義である。

第15回国際試験水槽会議（ITTC）において、キャビテーション技術委員会より、試験水槽のキャビテーション特性を評価し、各試験水槽間で比較試験を行うために、foil-headform combinationを用いた試験の計画を行うことの必要性が勧告された。この勧告を受けて、第16回ITTCのキャビテーション技術委員会で比較試験の計画が行われ、foil-headform combinationがベルリン工科大学（Technische Universität Berlin）で製作された。最初にオランダのNetherlands Ship Model Basin（現在のMaritime Research Institute Netherlands）の大型キャビテーション試験水槽においてキャビテーション初生試験が行われた。その後、foil-headform combinationは各国のキャビテーション試験水槽を持ち込みされ、同様なキャビテーション初生試験が実施され、その結果が比較、検討されている。

我国でもこの比較試験計画に協力することになり、船舶技術研究所の大型キャビテーション試験水槽においてもfoil-headform combinationのキャビテーション初生試験が実施され、他水槽の試験結果と比較された。

2. 供試体

foil-headform combinationはステンレス製で、Fig. 1に示すようにハブに取り付けられた2枚の3次元翼と、ハブの上端部分に取り付けられた半球状試験体で構成されている。3次元翼の全幅は300 mmで、翼断面形状はNACA 16-012の上下対称翼で、一方の翼は+10°、他方の翼は−10°の迎角がついている。半球状試験体の直径は40 mmである。Fig. 2に示すように、試験体は2本のストラットにより上部観測窓のアクリル製の取り付け板に固定される。試験体の軸中心は取り付け板の下方200 mm、水槽中心より上方130 mmの位置にある。

3. 試験方法

試験は、大型キャビテーション試験水槽の第1計測部で、空気含有率0.2～0.6の2状態について、流速を種々に変化させて行った。キャビテーション初生の定義は、ITTCの定義に従い、次のように行った。

ハブボルテックスキャビテーション：ハブに付着したキャビテーションが観測に要した時間の75％の時間の間、連続して発生している場合。

サクションサイドキャビテーション：翼面上の前縁に近い部分に帯状にキャビテーションが発生し始めた場合。

チップボルテックスキャビテーション：翼先端に付着したボルテックスキャビテーションが観測に要した時間の75％の時間の間連続して発生している場合。

半球状試験体上のキャビテーション：試験体上にバブルキャビテーションもしくは細い帯状にシートキャビテーションが発生し始めた場合。
3 次元翼のキャビテーション発生については1翼層別（迎角＝+10° の翼では翼上面上に、迎角＝−10° の翼では翼下面にキャビテーションが発生）に観測を行い、発生を判定した。

4. 試験結果および考察

キャビテーション発生状況の概略を Fig. 3 に、試験結果を Table 1 & 2 および Fig. 4～Fig. 7 に示す。

最初にハブポルタルストキャビテーションが発生することが、発生状況は不安定で間欠的であり、初生の判定が難しい。

次に 3 次元翼の翼面上、前線近くに翼幅方向に翼幅の約 1/2 長さのごく微細なバブルが集まってできた帯状

Table 1 Inception cavitation number for \(\alpha/\alpha_s = 0.2 \)

<table>
<thead>
<tr>
<th>(\rho) (m/s)</th>
<th>Hub vortex</th>
<th>Suction side</th>
<th>Tip vortex</th>
<th>Headform</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>—</td>
<td>2.89(L) 2.76(U)</td>
<td>1.38(L) 1.41(U)</td>
<td>0.611</td>
</tr>
<tr>
<td>9.0</td>
<td>—</td>
<td>2.64 2.63</td>
<td>1.32 1.37</td>
<td>0.609</td>
</tr>
<tr>
<td>8.0</td>
<td>4.60</td>
<td>2.75 2.72</td>
<td>1.33 1.43</td>
<td>0.592</td>
</tr>
<tr>
<td>7.0</td>
<td>4.15</td>
<td>2.50 2.60</td>
<td>1.28 1.31</td>
<td>0.599</td>
</tr>
<tr>
<td>6.0</td>
<td>4.00</td>
<td>2.41 2.53</td>
<td>1.20 1.36</td>
<td>0.563</td>
</tr>
<tr>
<td>5.0</td>
<td>3.44</td>
<td>2.04 2.44</td>
<td>1.12 1.31</td>
<td>0.555</td>
</tr>
<tr>
<td>4.0</td>
<td>3.70(3.03)</td>
<td>2.03 2.30</td>
<td>1.15 1.20</td>
<td>—</td>
</tr>
<tr>
<td>3.5</td>
<td>—</td>
<td>2.05 2.00</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Remarks: (L) is lower and (U) is upper side of the foils

Table 2 Inception cavitation number for \(\alpha/\alpha_s = 0.6 \)

<table>
<thead>
<tr>
<th>(\rho) (m/s)</th>
<th>Hub vortex</th>
<th>Suction side</th>
<th>Tip vortex</th>
<th>Headform</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>—</td>
<td>3.03(L) 3.26</td>
<td>1.40(L) 1.53(U)</td>
<td>0.650</td>
</tr>
<tr>
<td>9.0</td>
<td>—</td>
<td>2.83 3.15</td>
<td>1.43 1.49</td>
<td>0.648</td>
</tr>
<tr>
<td>8.0</td>
<td>4.84</td>
<td>2.74 3.15</td>
<td>1.42 1.49</td>
<td>0.625</td>
</tr>
<tr>
<td>7.0</td>
<td>4.49</td>
<td>2.62 3.08</td>
<td>1.38 1.43</td>
<td>0.637</td>
</tr>
<tr>
<td>6.0</td>
<td>4.12</td>
<td>2.61 2.92</td>
<td>1.34 1.46</td>
<td>0.600</td>
</tr>
<tr>
<td>5.0</td>
<td>3.80</td>
<td>2.48 2.97</td>
<td>1.32 1.38</td>
<td>0.630</td>
</tr>
<tr>
<td>4.0</td>
<td>3.50</td>
<td>2.15 2.80</td>
<td>1.25 1.38</td>
<td>—</td>
</tr>
<tr>
<td>3.5</td>
<td>3.63</td>
<td>2.11 2.61</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Remarks: (L) is lower and (U) is upper side of the foils

Fig. 4 Hub vortex cavitation inception

Fig. 5 Suction side cavitation inception
初生が早い。これは試験体が $0^\circ + 0.1^\circ$ 軽度の精度で取りつけられ、迎角 $= + 10^\circ$ の翼は迎角が増える、迎角 $= - 10^\circ$ の翼は迎角の絶対値が減ったためである。

続いて翼の先端からチップボルテックスキャビテーションが発生する。発生状況は安定しているが、これはサクションサイドキャビテーションが翼先端からも発達した後、これに付随した形でチップボルテックスキャビテーションが発生するためと考えられる。

ただし、初生の判定に観測者の個人差の入り込む余地があり、初生の判定に多少のあいまいさが残る。

最後に半球状試験体の外周に沿って、試験体の上側部分に細い帯状のシートキャビテーションが発生する。児玉他4)は直径 30 mm の半球状試験体を用いてキャビテーション初生試験を行ったが、その際に計算した半球状試験体の圧力分布を Fig. 8 に示す。また Fig. 8 中に児玉他4)および Arakel 他5)が計測した剣離泡の発生位置と今回観測したシートキャビテーションの発生位置が矢印で示されている。児玉他らの計測結果には水槽側壁の影響が強く入っており、側壁影響が小さいと考えられる Arakel および今回の試験結果と直接比較するのには多少問題があるが、定性的な傾向をみるとするため、あえて引用した。シートキャビテーションの初生は物体表面の境界層剣離と密接な関係があり、層流境界層が剣離を起こし、乱流に遷移して再付着するとき剣離点の下流に剣離泡が形成される。この剣離泡を起点としてキャビテーションが発生すると、それは上流端が剣離点近傍において物体表面に固定された扁平なキャビティ、すなわちシートキャビテーションである4)といわれている。また、剣離泡内の圧力はほぼ一定で剣離点での圧力（係数）$C_{p, m}$ に一致し、このためシートキャビテーションの初生キャビテーション数 σ_i は最小圧力係数 $C_{p, \min}$ よりも $C_{p, m}$ に左右されるという実験結果5)、さらには 2 次元翼の圧力分布と σ_i の比较から、σ_i は $C_{p, m}$ に等しいかまたはやや小さいという結論6)、7)が得られている。これらの結果を踏まえて今回の試験結果を検討してみると、初生キャビテーション数の値およびシートキャビテーション発生位置とともに妥当なものと評価できる。なお、今回の試験では ITTC ヘッドフォーム3)について行った試験3)の場合と異なり、バブルキャビテーションはまったく観測されなかった。

5. 試験結果の比較

これまで行われた他の試験水槽の試験結果と今回得られた試験結果との比較を行った。比較した研究機関およびキャビテーション試験水槽の概要を Table 3 に、空気含有率 $= 0.2$ の場合の比較を Fig. 9～Fig. 12 に示す。なお、空気含有率 $= 0.6$ の場合の各試験水槽の試験結果の間にみられる差違の傾向は、空気含有率 $= 0.2$ の場合と大差がない。

初生キャビテーション数で比較すると、
1) ハプボルテックスキャビテーションは、NSMB および PARIS の σ_i が一番高く、SRI, CTU およ
び KMW2 の σ_i がほぼ等しい値を示しており、Fig. 9 に示されるように、いずれも流速が増すと σ_i が増大する傾向がみられる。

2) サクションサイドキャビテーションは、NSMB および PARIS の σ_i が一番高く、SRI, CTU および KMW2 の σ_i がほぼ等しい値を示しているが、Fig. 10 に示されるように、5 水槽間の σ_i にあまり大きな差異はなく、ハブポルテックスの場合と異なり比較的まとまっているといえる。

3) チップポルテックスキャビテーションは、NSMB の σ_i が一番高く、SRI, CTU および PARIS の σ_i がほぼ等しく中间にあり、KMW2 の σ_i が一番低い値を示している。

4) 半球状試験体については5水槽間の σ_i の値に

Table 3 Characteristics of cavitation test facilities

<table>
<thead>
<tr>
<th>Institute</th>
<th>Tunnel</th>
<th>Essential Features</th>
<th>Abbrev. of tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship Research Institute</td>
<td>SRI</td>
<td>Closed jet, 0.75 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>circular test section,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vmax = 20 m/s</td>
<td></td>
</tr>
<tr>
<td>Netherlands Ship Model Basin</td>
<td>NSMB</td>
<td>Closed jet, 0.9 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>square test section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with rounded corners,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vmax = 10 m/s</td>
<td></td>
</tr>
<tr>
<td>IAMMWA AB Marine Laboratory</td>
<td>KMW2</td>
<td>closed jet, 0.8 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>square test section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with rounded corners,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vmax = 15 m/s</td>
<td></td>
</tr>
<tr>
<td>Shanghai Jiao Tong University</td>
<td>CTU</td>
<td>closed jet, 0.6 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>circular test section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vmax = 15 m/s</td>
<td></td>
</tr>
<tr>
<td>Basin d'Essais des Carmes</td>
<td>PARIS</td>
<td>free surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4 m x 0.35 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rectangular test section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vmax = 12 m/s</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 9 Hub vortex cavitation inception for $\alpha/\alpha_s = 0.2$

Fig. 10 Suction side cavitation inception for $\alpha/\alpha_s = 0.2$

Fig. 11 Tip vortex cavitation inception for $\alpha/\alpha_s = 0.2$

Fig. 12 Cavitation inception on hemispherical headform for $\alpha/\alpha_s = 0.2$

大きな差異がみられる。NSMB の σ_i が一番高く、$\sigma_i \equiv -C_{p_{min}}$ の関係にあり、中間に SRI および PARIS では値があり、$\sigma_i \equiv -C_{ps}$ の関係がみられ（但し、PARIS の場合には $\alpha/\alpha_s = 0.6$ のデータは発表されていない）、CTU, KMW2 の順に低い値を示している。なお、キャビテーションの種類としては、NSMB が
パブルキャビテーション、SRI および CTU がシートキャビテーション、KMWB では \(a/a_s = 0.2 \) の場合にシートキャビテーション、\(a/a_s = 0.6 \) の場合はパブルキャビテーションが発生している。PARIS の場合は種類が報告されていない。このように水槽によって発生するキャビテーションの種類が異なる傾向は、第 12 回 ITTC のキャビテーション技術委員会の報告にともなっても述べられている。

以上の比較から、供試体のキャビテーション初生に関する一般的傾向として、

1) 3 次元翼については、NSMB の場合が一番早くキャビテーションが発生し、KMWB の場合がキャビテーション初生が一番遅く、SRI と CTU がその中間でほぼ等しい。

2) 半球状試験体については、5 水槽間で発生するキャビテーションの種類も異なり、かつ、初生キャビテーション数の値にも大きな差異がみられるが、キャビテーション初生に重要な影響をもつ気泡核分布の計測の必要性が痛感される。

6. 空気含有率の影響

SRI, CTU および NSMB の場合をとりあげて、キャビテーション初生にたいする空気含有率の影響を調べた結果を Fig. 13a, b に示す。

それぞれのキャビテーションについて、空気含有率の大きい場所に多かれ少なかれキャビテーション初生

Fig. 13 (a) Influence of air content

Fig. 13 (b) Influence of air content

が早くなる傾向がみられる。しかし、キャビテーションの初生は、気泡核の分布、個数によっても大きく影響される。したがって同じ空気含有率の場合でも、キャビテーション試験水槽の大きさ、空気含有率調整の方法によっても \(\sigma_t \) は異なることが十分考えられる。

7. おわりに

今回の、ITTC・キャビテーション技術委員会の比較試験計画に協力して、ITTC foil-headform combination のキャビテーション初生試験を実施して、他のキャビテーション試験水槽の試験結果と比較・検討を行い、以下の結論を得た。

1) ハブボルテックスおよびチップボルテックスキャビテーションについては、初生の判定に多少の問題があるので、初生キャビテーション数の値が 5 水槽間である程度のばらつきがみられる。

2) サクションサイドキャビテーションについては、初生の判定が比較的はっきりとできるため、初生キャビテーション数が 5 水槽間であまりばらつきがみられない。

3) 半球状試験体の初生キャビテーションについては、各試験水槽毎に発生するキャビテーションの種類も異なり、初生キャビテーション数の値も 5 水槽間に大きな差異がみられる。

4) 上記、1), 2) および 3) のいずれの場合にも、5 水槽間の初生キャビテーション数の値の大小関係に
試験水槽のキャビテーション特性に基づくものと考えられる。ある一定の傾向が認められる。これは主に、気泡核の分布に基づくものと考えられる。したがって、初生キャビテーション試験のさいには、気泡核分布計測を行うことが望まれる。

5) 船舶技術研究所の試験結果は、3次元翼については他の試験水槽の試験結果のばらつきの中間にある。また半球状試験体については \(\sigma_{\text{si}} \approx C_{\text{ps}} \) であり、常識的な値を示している。

参考文献

4) 児玉良明 他: キャビテーション初生に関する研究 (第2報), 造船学会論文集, 第146号 (1979), pp. 53～55

9) 右近良孝, 黒部雄雄: ITTC ヘッドフォームを用いたキャビテーション初生観測について, 第30回船研研究発表会講演集 (1977), pp. 21～24