Uncertainty Analysis Method for Ship Performance Test

by

Ken-ichi KUME, Nobuyuki HIRATA, Jun HASEGAWA, Yoshiaki TSUKADA and Munehiko HINATSU

Abstract

Uncertainty analysis has been considerably demanded so as to estimate the reliability of the experiments. Thus, it is conducted in various fields of engineering for explicit description of confidence level. Recently, ITTC(International Towing Tank Conference) \(^1\) began to concentrate on the issues of towing tank test quality, and the uncertainty analysis has been applied to the tests. This paper concerns the uncertainty analysis applied to the ship model test program with basis of ANSI/ASME Performance Test Code. \(^2\) The items of model tests presented here are resistance test, self-propulsion test, wake measurement and pressure measurement on the hull surface, which are the fundamental test items in ship hydrodynamics. In order to precisely predict the engine power requirement and other values, we need to clarify the accuracy of tank tests. Further merit of the uncertainty analysis exists in that we can trace causes of errors through the process of analysis. This means that we can reduce dominant errors and can improve the quality of test results. In the following, the procedure of the uncertainty analysis used is presented and applied to towing tank tests. The results of the analysis are then discussed.
1. 緒 言
これまで、機械関係の分野ではデータの誤差評価は広く一般的に知られており、実際に解析結果の一部としてデータに伴われている。しかし、船舶分野における実験データに関しては、誤差評価はほとんど行わされておらず、ここ数年の間に何処かの報告1,3-7)がなされた程度であった。年々、計測器の性能は向上し、実験の精度もよくなっているが、船舶に関する実験は多岐にわたる、複雑な試験条件の下での誤差管理はどうしても避けることができない。船舶工学における一般的な試験を行う抵抗実験を例にとっても、数パーセントの誤差を考慮するため、この誤差は厳密できず、定量的に把握する必要がある。

ここでは、利用する実験データの信頼性を確認するための指針とすべく、抵抗実験および自航実験、圧力計測実験、伴流計測実験について不確かさ解析を試み、その方法の確立を目指した。茂里ら5)、西尾ら5)、笠原8)、鈴木ら7)は同一状態の試験を複数回行なう「繰り返し試験」での不確かさ解析について述べているが、本論では計測を一度しか行わない「単一試験」について考察した。本来の不確かさ解析は「繰り返し試験」を行わない、アンサンブル平均をとり、分散等の統計量を評価する必要があるが、ここでは通常、ルーチンワークとして行われている水槽試験を念頭に置き、一桁まで得られる時系列データから統計量を解析した。

不確かさ解析の効用の一つに、解析結果に含まれる不確かさの伝播経路をさかのぼることにより、その不確かさの主要な原因が何かを知ることができるということを挙げられる。これにより、その要因に対し適切な処置を施すことで、精度の向上が期待される。

今回、解析に用いた実験データは1997年11月に船舶技術研究所三鷹第二船舶試験水槽（400 m水槽）において行われた肥大船型に対する試験結果（抵抗、自航、船体表面圧力計測、伴流計測）である。この肥大船的主要目をTable1に示す。

Table1: Principle dimensions of ship model

<table>
<thead>
<tr>
<th></th>
<th>Longitudinal</th>
<th>7.489</th>
</tr>
</thead>
<tbody>
<tr>
<td>垂線長 Lpp(m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>水線長 Lmr(m)</td>
<td>7.650</td>
<td></td>
</tr>
<tr>
<td>船幅 W(m)</td>
<td>1.358</td>
<td></td>
</tr>
<tr>
<td>喧水 d(m)</td>
<td>0.452</td>
<td></td>
</tr>
<tr>
<td>浸水表面積(艤付) A(m^2)</td>
<td>14.374</td>
<td></td>
</tr>
</tbody>
</table>

2. 不確かさ解析概論
一般的な不確かさ解析法は、米国機械学会性能試験規約「計測の不確かさ」2)に示されている。ここでは簡単にその内容を説明することとして、詳細については原著を参照された。

2.1 測定値に含まれる誤差
測定結果には誤差が含まれ、それは測定値から真の値を差し引いた値として定義される。さらにこの全誤差δはFig.1のように、かつより誤差δと偶然誤差εに分けられる。かつより誤差は試験期間を通じて変化のない一定値をとり、偶然誤差は繰り返し測定するときに異なる値を示し、完全に一致することは期待できない。

ここで、かつより誤差の上限に対する推定値を正確度B、母集団から得られる標準偏差の推定値を精度Sと定義する。
2.1.1 かたより誤差

ある物理量を同一の手法および同一の環境下で繰り返し測定する場合、測定結果にはある一定の値を取るかたより誤差が含まれる。かたより誤差は正負どちらの値を取るか予想できないため、正確度 Bは$±B$と表わす。

2.1.2 偶然誤差

繰り返し計測を行なうことにより、毎回、異なった値の誤差が混入する。母集団が正規分布の場合は母平均をμ、標準偏差をsすると、$\mu ± 2s$の区間において、ばらつきを有する測定値の95％を含むことになる。この標準偏差を推定するための値を精密度であり、(1)式で表わされる。

$$ S_X = \frac{\sum_{j=1}^{N} (X_j - \bar{X})^2}{N - 1} $$ (1)

N: 計測回数 \bar{X}: 測定値 X_jの平均値

ただし船型試験においては、母集団に属する個々の測定値よりもそれらの平均値に注目しているため、ここでは、(2)式に示す平均値\bar{X}の精密度 S_Xを用いることにする。

$$ S_X = \frac{\sum_{j=1}^{N} (X_j - \bar{X})^2}{N(N - 1)} $$ (2)

2.1.3 総括正確度 総括精密度

測定値の正確度 Bおよび精密度 Sは各誤差要因に対する正確度 B_iと精密度 S_iについて二乗和の平方根で与えられる。これらをそれぞれ総括正確度、総括精密度と呼び、(3)、(4)式に示す。

$$ B = \sqrt{\sum_{i=1}^{M} B_i^2} $$ (3)

$$ S = \sqrt{\sum_{i=1}^{M} S_i^2} $$ (4)

M: 全誤差要因数

2.1.4 自由度およびシューデント値

測定値の不確定さを計算するには、シューデント値tが必要である。シューデント値tは統計学の用語であり、小さな標準本から標準偏差の「精度のよい推定値」が得られないため、新しく提案された変数である。この変数tと標準数Nの値にのみ関係するので、$\nu = (N - 1)$で与えられる自由度tの関数となる。あるk個の物理量の誤差要因それぞれについて、自由度をt_i ($i = 1, \cdots, M$)とすれば総括精密度 Sに対する自由度tは次式(Welch-Satterthwaitteの式)で与えられる。

$$ \nu = \frac{(\sum_{i=1}^{M} S_i^2)^2}{\sum_{i=1}^{M} \frac{S_i^4}{\nu_i}} $$ (5)

Table 2: Distribution of student-t ($P=0.025$)

<table>
<thead>
<tr>
<th>ν</th>
<th>t</th>
<th>ν</th>
<th>t</th>
<th>ν</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.706</td>
<td>13</td>
<td>2.160</td>
<td>25</td>
<td>2.060</td>
</tr>
<tr>
<td>2</td>
<td>4.303</td>
<td>14</td>
<td>2.145</td>
<td>26</td>
<td>2.056</td>
</tr>
<tr>
<td>3</td>
<td>3.182</td>
<td>15</td>
<td>2.131</td>
<td>27</td>
<td>2.052</td>
</tr>
<tr>
<td>4</td>
<td>2.776</td>
<td>16</td>
<td>2.120</td>
<td>28</td>
<td>2.048</td>
</tr>
<tr>
<td>5</td>
<td>2.571</td>
<td>17</td>
<td>2.110</td>
<td>29</td>
<td>2.045</td>
</tr>
<tr>
<td>6</td>
<td>2.447</td>
<td>18</td>
<td>2.101</td>
<td>30</td>
<td>2.042</td>
</tr>
<tr>
<td>7</td>
<td>2.365</td>
<td>19</td>
<td>2.093</td>
<td>31</td>
<td>2.042</td>
</tr>
<tr>
<td>8</td>
<td>2.306</td>
<td>20</td>
<td>2.086</td>
<td>40</td>
<td>2.021</td>
</tr>
<tr>
<td>9</td>
<td>2.282</td>
<td>21</td>
<td>2.080</td>
<td>60</td>
<td>2.000</td>
</tr>
<tr>
<td>10</td>
<td>2.228</td>
<td>22</td>
<td>2.074</td>
<td>120</td>
<td>1.980</td>
</tr>
<tr>
<td>11</td>
<td>2.201</td>
<td>23</td>
<td>2.069</td>
<td>120</td>
<td>1.980</td>
</tr>
<tr>
<td>12</td>
<td>2.179</td>
<td>24</td>
<td>2.064</td>
<td>∞</td>
<td>1.960</td>
</tr>
</tbody>
</table>
\[v_i = N_i - 1 \]

\[S_i: \] 各誤差要因の精度

\[M: \] 全誤差要因数

\[N_i: \] 標本数

このようにして求めた自由度を用いて、Table2からスチューデント値 \(t \) を求める。

Table2から分かるように、自由度 \(v \) が約30以上であればスチューデント値は近似的に2.0としてよい。さらに、すべての誤差要因が十分な標本数（約30以上）を持つのであれば、自由度 \(v \) の計算は必要なく、はじめから \(t = 2.0 \) として計算を進めていく。

2.1.5 検定の不確かさ区間

すべての誤差要因について正確度 \(B_i \)、精密度 \(S_i \) が把握され、それぞれが総括正確度 \(B \)、総括精密度 \(S \) という形で得られており、かつ総括精密度の自由度 \(v \) が（5）式により計算され、それに対するスチューデント値 \(t \) が得られていれば、検定値の不確かさ区間が計算できる。

不確かさとは、統計学における「信頼度」と呼ぶほど厳密な値ではない。なぜなら、たとえ誤差は実験者の判断や過去の経験などあいまいな部分を多く含むものであり、当然このかたより誤差を用いて求められた不確かさも厳密さを欠くものである。そこで、95％または99％信頼度と類似の「包括度」という値を用いる。「包括度」とは、「あるパラメータに対し推定される区間が真の値を含むと期待される区間」と定義され、「信頼度」とは異なる。

95％信頼度を持つ不確かさ区間 \(U_{RSS} \)、99％信頼度を持つ不確かさ区間 \(U_{ADD} \) は、それぞれ（6）、（7）式で計算できる。

\[U_{RSS} = \sqrt{B^2 + (t \cdot S)^2} \quad (6) \]

\[U_{ADD} = B + t \cdot S \quad (7) \]

スチューデント値 \(t \) は精度 \(S \) を計算する際に用いた自由度 \(v = N - 1 \) の関数であり、 \((t \cdot S) \) は偶然誤差の妥当な推定値といえる。

2.2 解析結果の不確かさ区間

多くの場合、解析結果は計測データをパラメータとする関数の形で表され、当然この解析結果にもかたより誤差、偶然誤差が混入している。これらの誤差は、パラメータの単位量の変化に対する結果の変化量を表わす「感度」を用いて計算することができる。測定パラメータを \(P_k (k = 1, \ldots, L) \) 、解析結果を \(r = f(P_1, P_2, \ldots, P_L) \) 、感度係数を \(\theta_k (k = 1, \ldots, L) \) とする。解析結果の絶対正確度および絶対精密度は（8）、（9）式で求められる。

\[B_r = \sqrt{\sum_{k=1}^{L} (\theta_k^2 \cdot B_k)^2} \quad (8) \]

\[S_r = \sqrt{\sum_{k=1}^{L} (\theta_k^2 \cdot S_k)^2} \quad (9) \]

\[\theta_k = \frac{\partial r}{\partial P_k} \]

\(B_r, S_r \): 解析結果 \(r \) の絶対正確度、絶対精密度

\(B_k, S_k \): 測定パラメータの総括正確度、総括精密度

\(k \): 全パラメータ数

ここで注意すべき点は、解析結果の不確かさを求めめる際に、各測定パラメータの「不確かさ」に感度係数を乗じて求めてはいけないことである。正確度と精密度は不確かさ解析の最終段階まで別々に扱われるべきであり、測定パラメータの総括正確度および総括精密度に感度係数を乗じて、結果の絶対正確度および絶対精密度を求める。その後、（6）、（7）式で用いて不確かさを求める手順を踏まなければならない。そして、このようにして得られる不確かさ区間は「真値がこの中に存在する確率が95％（あるいは99％）である」という意味を持つ。

3. 抵抗試験への応用

これまで述べたように、実測の測定値にはかたより誤差が含まれる。そしてこれらの誤差はそれぞれ独立に試験の最終結果へと伝播している。

抵抗試験の場合について述べると、解析対象となる項目を全抵抗係数 \(C_i \)、造波抵抗係数 \(C_w \)、形状影響係数 \(K \) とすれば、この解析に必要な測定データは全抵抗 \(R \)、水の密度 \(\rho \)、浸水面積 \(A \)、曳航速度 \(V \)、相当矩形平板の摩擦抵抗 \(C_f \) である。さらに、 \(R \) には、 \(\rho \) は水温 \(T \) に、 \(A \) は典型的な船長 \(L_w \)、幅 \(W \)、航速 \(d \) によって \(C_f \) はレイノルズ数 \(R_a \) により変化し、順に誤差が伝播していく。したがって、まず測定値そのものである \(V, L_w, W, d \) の正確度および精密度を求め、その後それぞれの誤差伝播過程を調べることにより \(R \)、 \(C_i \) の総括正確度、総括精度を求め、最後に \(C_t, C_w, K \) の絶対正確度、絶対精密度および不確かさ区間を求めめる手順を踏むこととする。

これより、三層第二船級船試験渦水槽で行われた肥大船の抵抗試験から得られたデータを使って、不確かさ解析法を具体的に説明するが、ここでは特に、この船の設計速度である \(F_w = 0.138 \) の場合について述べる。また、Table6に不確かさの計算表を示した。

(410)
3.1 測定値に含まれる誤差

各計測機器には共通精度、ヒステリシス特性、非直線性などの誤差要因があり、これらがまず誤差の伝播過程の上流部分になる。これらの誤差はかたより誤差に分類され、今回は仕様書に記載されている値を用いた。また、仕様書に記載されていないなどの理由で不明な場合は、実験者の判断による値を採用し、これをTable 3に示した。

次に、計測機器から出力された電気信号はA/D変換器を通るが、ここではアナログデータをデジタルデータに変換するため必ずデジタルエラー(雑散化誤差)が生じる。コンピュータを用いてデータ解析する以上避けがたい誤差である。また、計測値そのものも計測中に変動しており、その変動量を計測値の標準誤差として誤差の一部とする必要がある。これは偶然誤差とみなされる。

3.2 全抵抗係数C_tの不確かさ

\[C_t = \frac{R_t}{\frac{1}{2} \rho \cdot A \cdot V_0^2} = 4.504 \times 10^{-3} \quad (at \quad F_n = 0.138) \]

つまり、C_tには全抵抗R_t、水の密度ρ、浸没面積A、模型船の対水曳航速度V_0の誤差が伝播しているので、これら誤差要因の総括正確度および総括精度密度を求め、それらの二乗の平方根を求ることによりC_tの絶対正確度、絶対精度密度および不確かさを求める。

3.2.1 長さ

\[B_{re} = 1.000 \times 10^{-3} \quad (m) \]
\[B_{L_{ul}} = 1.000 \times 10^{-3} \quad (m) \]
\[B_W = 1.000 \times 10^{-3} \quad (m) \]
\[B_d = 1.000 \times 10^{-3} \quad (m) \]

3.2.2 水温

使用した温度計は最大目盛0.1Kであるため、読み取り時の正確度Bはその半分の0.05Kとする。また、目視による計測のバラツキを最大目盛の20%の0.02Kとする。

\[B_T = 5.000 \times 10^{-2} \quad (K) \]
\[S_T = 2.000 \times 10^{-2} \quad (K) \]

3.2.3 水の密度

温度Tと水の密度ρの関係式は次式で表わされる

\[\rho = \frac{\rho_4}{1 + \alpha[T - 4]} \quad (10) \]

ここで、

\[T = \text{水温} (\circC) \]
\[\alpha = 0.00043 \]
\[\rho_4 = \text{(水温4\circCでの水の密度)} \]
\[= 102.04 \quad (kgf \cdot m^2/m^4) \]

つまり密度は温度の関数であるため、温度の誤差が密度に伝播する。密度の温度に対する感度係数は

\[\theta_T^\rho = -\frac{\rho_4 \cdot \alpha}{(1 + \alpha[T - 4])^2} \]
\[= -4.337 \times 10^{-2} \quad (kgf \cdot m^2/m^4/K) \]

したがって、ρの正確度B(ρ)および精密度S(ρ)は次のように計算される。

\[B_\rho = \sqrt{(\theta_T^\rho \cdot B_T)^2} = 2.169 \times 10^{-3} \quad (kgf \cdot m^2/m^4) \]
\[S_\rho = \sqrt{(\theta_T^\rho \cdot S_T)^2} = 8.674 \times 10^{-4} \quad (kgf \cdot m^2/m^4) \]

3.2.4 浸水面積

浸水面積に関する誤差を求めるにはガース長さを計測し、実際に積分して面積を求める必要があるが、今回は遊覧船が用いた簡便な方法を採用した。つまり浸水面積Aの誤差はL_{ul}、W、dに影響され、それぞれに対する感度係数はそれぞれ次のように求められる。

\[\theta_L^A = A/L_{ul} = 1.879 \]
\[\theta_W^A = A/W = 10.58 \]
\[\theta_d^A = A/d = 31.80 \]

(411)
Table 3: Errors in apparatus

<table>
<thead>
<tr>
<th></th>
<th>公称精度</th>
<th>ヒステリシス特性</th>
<th>非直線性</th>
</tr>
</thead>
<tbody>
<tr>
<td>抵抗動力計</td>
<td>0.05kgf</td>
<td>0.03 % F.S.</td>
<td>0.02 % F.S.</td>
</tr>
<tr>
<td>ポテンショメータ</td>
<td>0.1 % F.S.</td>
<td>0.10 % F.S.</td>
<td></td>
</tr>
<tr>
<td>鳥車流速計</td>
<td>0.001m/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

船体寸法が持つ誤差は3.2.1節より

\[
B_{L_w} = 1.000 \times 10^{-3} \text{ (m)} \\
B_W = 1.000 \times 10^{-3} \text{ (m)} \\
B_d = 1.000 \times 10^{-3} \text{ (m)}
\]

よって、浸水面積Aの総括正確度B_aは次のように計算される。

\[
B_A = \sqrt{(\theta_{L_w} \cdot B_{L_w})^2 + (\theta_W \cdot B_W)^2 + (\theta_d \cdot B_d)^2} = 3.357 \times 10^{-2} \text{ (m²)}
\]

3.2.5 対水速度

翼車流速計を用いたときの誤差要因には、流速計の公称精度に基づいたかたより誤差、流速計の検定により得られた回帰直線に対する推定標準誤差（SEE:Standard Error of Estimate）、測定値のパラツキによる標準誤差（SE:Standard Error）などが考えられる。

翼車流速計 今回は翼車流速計の公称精度が不明であったため、経験的に0.001m/sとした。

\[
B_{V_{SE}} = 1.000 \times 10^{-3} \text{ (m/s)}
\]

翼車流速計の検定 翼車流速計を検定して得られた回帰曲線に対して、測定値のパラツキを表す推定標準誤差（SEE）は次式で求められる。

\[
SEE = \sqrt{\frac{\sum_{k=1}^{N} (y_k - y_{LS,k})^2}{N - C}} \tag{12}
\]

\[
y_k: 测定値 \quad N: 計測回数 \quad y_{LS,k}: k番目の測定に対応する回帰曲線上の値 \quad C: 回帰に含まれる定数の数 (直線近似のとき C = 2)
\]

この式を用いると、翼車流速計の検定による精度度S_{V_{SE}}は、

\[
S_{V_{SE}} = SEE = 1.683 \times 10^{-3} \text{ (m/s)}
\]

測定値の誤差 抵抗計測中に約10個の対水速度データが記録されているので、(2)式を用いて対水速度の標準誤差が求められる。これによって、測定値のパラツキによる精度度S_{V_w} Dispenserは、

\[
S_{V_w}^{dispenser} = 1.669 \times 10^{-3} \text{ (m/s)}
\]

対水速度の正確度と精度度 このように求められた各誤差要因の正確度および精度度より、対水速度の総括正確度B_{V_w}、総括精度度S_{V_w}が計算される。

\[
B_{V_w} = \sqrt{(B_{V_{SE}})^2} = 1.000 \times 10^{-3} \text{ (m/s)}
\]

\[
S_{V_w} = \sqrt{(SE)^2 + (S_{V_w}^{dispenser})^2} = 2.370 \times 10^{-3} \text{ (m/s)}
\]

3.2.6 フルド数

フルド数はV_wとL_wの関数であるため、これらの誤差が伝播する。フルド数のV_wとL_wに対する精度度係数θ_{F_n}はL_wに対する

\[
\theta_{F_w} = \frac{-V_w}{2L_w \sqrt{g \cdot L_w}} = -8.892 \times 10^{-3}
\]

\[
\theta_{F_{V_w}} = \frac{1}{\sqrt{g \cdot L_w}} = 1.154 \times 10^{-1}
\]

よってフルド数の総括正確度B_{F_n}および総括精度度S_{F_n}は次のように求められる。

\[
B_{F_n} = \sqrt{\theta_{F_n}^2 \cdot B_{V_w}} = 1.157 \times 10^{-4}
\]

\[
S_{F_n} = \sqrt{(\theta_{F_n}^2 \cdot S_{V_w})^2} = 2.735 \times 10^{-4}
\]

3.2.7 抵抗

抵抗の誤差要因として、力計の公称精度に基づくかたより誤差、動力計検定時の回帰直線に対する推
定標準誤差（SEE）、A/D 変換に伴う誤差（デジタルエラー、非直線性、ヒステリシス）、測定値のバラツキによる標準誤差、また、曳航速度の誤差に伴う偶然誤差を考慮した。

抵抗動力計 今回使用した抵抗動力計の公称精度は 0.1 % F.S. であり、これはかたより誤差に分類される。したがって、この動力計（50 kgf）の公称精度に基づく正確度は \(B_{R_t}^{sec} \) はない。

\[
B_{R_t}^{sec} = 0.001 \times 50 = 5.000 \times 10^{-2} \text{ (kgf)}
\]

抵抗動力計の検定結果 抵抗動力計の検定は実験日の最初と最後に行われているが、それにより得られた回帰直線はほとんど同一なので、今回は最初の検定の値を採用した。

(12) 式を用いると、動力計の検定による精密度 \(S_{R_t}^{SEE} \) は

\[
S_{R_t}^{SEE} = SEE = 3.254 \times 10^{-3} \text{ (kgf)}
\]

A/D 変換に伴う誤差 アナログ値をデジタル値に変換することにより生じる誤差は 1/2LSB（Least Significant Bit）であり、これはかたより誤差に分類される。

今回使用した A/D ボードは 12 ビット、コンピュータは 16 ビットの処理を行なっているため検定係数と LSB の関係は次のようになる。

\[
1 \text{ LSB} = (検定係数) \times 2^{4} = 0.00343268 \times 16 = 5.4923 \times 10^{-2} \text{ (kgf)}
\]

したがって、A/D 変換による正確度 \(B_{R_t}^{digit} \) は、

\[
B_{R_t}^{digit} = \frac{1}{2} \text{ LSB} = 0.5 \times 5.4923 \times 10^{-2} = 2.746 \times 10^{-2} \text{ (kgf)}
\]

抵抗動力計の非直線性による誤差 抵抗動力計の非直線性に対する公称誤差は 0.02 % F.S. であり、これによる精密度 \(S_{R_t}^{line} \) は、

\[
S_{R_t}^{line} = 50 \text{ (kgf)} \times 0.0002 = 1.000 \times 10^{-2} \text{ (kgf)}
\]

抵抗動力計のヒステリシスによる誤差 抵抗動力計のヒステリシスの公称値は 0.03 % F.S. であり、これによる精密度 \(S_{R_t}^{hys} \) は、

\[
S_{R_t}^{hys} = 50 \text{ (kgf)} \times 0.0003 = 1.500 \times 10^{-2} \text{ (kgf)}
\]

測定値のバラツキによる誤差 計測において、抵抗には規則的と思われる振動が見られる。今回解析では、これらの振動を平均値に対する標準誤差としてみなし、(2) 式を用いて、計測された抵抗の精密度 \(S_{R_t}^{disper} \) を求めた。

\[
S_{R_t}^{disper} = SEE = 2.058 \times 10^{-1} \text{ (kgf)} \quad \text{（at } F_n = 0.138)\]

曳航速度の誤差による抵抗の誤差 抵抗に曳航速度の変化も影響を及ぼしているが、ここでは便宜上、速度の代わりにフールド数を用いた。

抵抗のフールド数に対する感度係数 \(\theta_{f_s}^{R_t} \) は、

\[
\theta_{f_s}^{R_t} = \frac{\partial R_t}{\partial F_n} = 61.74 \text{ (kgf)} \quad \text{（at } F_n = 0.138)\]

したがって、\(R_t \) の \(F_n \) に対する正確度 \(B_{R_t}^{f_s} \) と精密度 \(S_{R_t}^{f_s} \) は、

\[
B_{R_t}^{f_s} = \theta_{f_s}^{R_t} \cdot B_{f_s} = 7.143 \times 10^{-3} \text{ (kgf)}
\]

\[
S_{R_t}^{f_s} = \theta_{f_s}^{R_t} \cdot S_{f_s} = 1.689 \times 10^{-2} \text{ (kgf)}
\]

抵抗の正確度と精密度 これらより抵抗の総括正確度 \(B_{R_t} \) および総括精密度 \(S_{R_t} \) は次のように計算される。

\[
B_{R_t} = \sqrt{(B_{R_t}^{sec})^2 + (B_{R_t}^{digit})^2 + (B_{R_t}^{f_s})^2}
= 5.749 \times 10^{-2} \text{ (kgf)}
\]

\[
S_{R_t} = \left\{(S_{R_t}^{line})^2 + (S_{R_t}^{SEE})^2 + (S_{R_t}^{disper})^2 + (S_{R_t}^{hys})^2 \right\}^{1/2}
= 2.073 \times 10^{-1} \text{ (kgf)}
\]

3.2.8 全抵抗係数 \(C_t \) の不確かさ区間

以上により、\(R_t \) および \(A \) の \(V_w \) はそれぞれについての総括正確度および総括精密度を求められた。最後に \(C_t \) の絶対正確度 \(B_{C_t} \) および絶対精密度 \(S_{C_t} \) を求めると次のようにある。

\[
B_{C_t} = \left\{(\theta_{R_t}^{C_t} \cdot B_{R_t})^2 + (\theta_{p}^{C_t} \cdot B_p)^2 + (\theta_{v_w}^{C_t} \cdot B_{v_w})^2 \right\}^{1/2}
= 5.822 \times 10^{-5}
\]

\[
S_{C_t} = \sqrt{(\theta_{R_t}^{C_t} \cdot S_{R_t})^2 + (\theta_{p}^{C_t} \cdot S_p)^2 + (\theta_{v_w}^{C_t} \cdot S_{v_w})^2}
= 2.054 \times 10^{-4}
\]
ここで、
\[
\begin{align*}
\frac{\partial \theta_{Rt}}{\partial r} &= 9.872 \times 10^{-4} \\
\frac{\partial \theta_{r}}{\partial r} &= -4.440 \times 10^{-5} \\
\frac{\partial \theta_{A}}{\partial A} &= -3.134 \times 10^{-4} \\
\frac{\partial \theta_{\psi}}{\partial V_{\psi}} &= -7.642 \times 10^{-3}
\end{align*}
\]
これらより、\(C_t \)の不確かさ\(U_{Ct}^{RSS} \)を求めると、
\[
U_{Ct}^{RSS} = \sqrt{(B_{Ct})^2 + (t \cdot S_{Ct})^2} = 4.149 \times 10^{-4}
\]
また、このようにして得られる\(C_t \)の不確かさ範囲をFig.3に示す。

3.3 形状影響係数\(K \)の不確かさ

\(K \)は\(F_n = 0.09 \)における\(C_t, C_{F0} \)を用いて、次式により計算される。
\[
K = \frac{C_t}{C_{F0}} - 1 = 4.254 \times 10^{-1} \quad (at \ F_n = 0.09)
\]
つまり、\(K \)には\(C_t, C_{F0} \)の誤差が伝播しており、\(K \)の絶対正確度\(B_K \)および絶対精度\(S_K \)は次式で求められる。
\[
\begin{align*}
B_K &= \sqrt{\left(\frac{\partial K}{\partial C_t} \cdot B_{C_t}\right)^2 + \left(\frac{\partial K}{\partial C_{F0}} \cdot B_{C_{F0}}\right)^2} \\
S_K &= \sqrt{\left(\frac{\partial K}{\partial C_t} \cdot S_{C_t}\right)^2 + \left(\frac{\partial K}{\partial C_{F0}} \cdot S_{C_{F0}}\right)^2} \\
&= 4.087 \times 10^{-2} \quad (at \ F_n = 0.09)
\end{align*}
\]
ここで、
\[
\begin{align*}
B_{C_t} &= 1.324 \times 10^{-4} \\
B_{C_{F0}} &= 2.097 \times 10^{-6} \\
S_{C_t} &= 1.912 \times 10^{-4} \\
S_{C_{F0}} &= 3.711 \times 10^{-6} \\
\frac{\partial K}{\partial C_t} &= 1 \\
\frac{\partial K}{\partial C_{F0}} &= 3.087 \times 10^2 \\
\frac{\partial K}{\partial C_{F0}} &= -1.425
\end{align*}
\]
これらより、\(K \)の不確かさ\(U_{K}^{RSS} \)を求めると次のようになる。
\[
U_{K}^{RSS} = \sqrt{(B_K)^2 + (t \cdot S_K)^2} = 1.249 \times 10^{-1} \quad (at \ F_n = 0.09)
\]

3.4 造波抵抗係数\(C_w \)の不確かさ

\(C_w \)は\(F_n = 0.09 \)において求めた\(K \)を用いて、次式により計算される。
\[
C_w = \frac{C_t - (1 + K) \cdot C_{F0}}{1.979 \times 10^{-4}} \quad (at \ F_n = 0.138)
\]
つまり、\(C_w \)には\(C_t, K, C_{F0} \)からの誤差が伝播しており、\(C_w \)の絶対正確度\(B_{Cw} \)および絶対精度\(S_{Cw} \)は次式で求められる。
\[
\begin{align*}
B_{Cw} &= \left\{ \left(\frac{\partial C_{C_t}}{\partial C_t} \cdot B_{C_t}\right)^2 + \left(\frac{\partial C_{F0}}{\partial C_{F0}} \cdot B_{C_{F0}}\right)^2 \right\}^{1/2} \\
S_{Cw} &= \left\{ \left(\frac{\partial C_{C_t}}{\partial C_t} \cdot S_{C_t}\right)^2 + \left(\frac{\partial C_{F0}}{\partial C_{F0}} \cdot S_{C_{F0}}\right)^2 \right\}^{1/2} \\
&= 1.366 \times 10^{-4}
\end{align*}
\]
\[
\begin{align*}
B_{Cw} &= \left\{ \left(\frac{\partial C_{C_t}}{\partial C_t} \cdot B_{C_t}\right)^2 + \left(\frac{\partial C_{F0}}{\partial C_{F0}} \cdot B_{C_{F0}}\right)^2 \right\}^{1/2} \\
S_{Cw} &= \left\{ \left(\frac{\partial C_{C_t}}{\partial C_t} \cdot S_{C_t}\right)^2 + \left(\frac{\partial C_{F0}}{\partial C_{F0}} \cdot S_{C_{F0}}\right)^2 \right\}^{1/2} \\
&= 2.720 \times 10^{-4}
\end{align*}
\]
ここで、
\[
\begin{align*}
B_{C_t} &= 5.822 \times 10^{-5} \\
B_{C_{F0}} &= 4.087 \times 10^{-2} \\
B_{C_{F0}} &= 1.556 \times 10^{-6} \\
S_{C_t} &= 2.054 \times 10^{-4} \\
S_{C_{F0}} &= 5.902 \times 10^{-2} \\
S_{C_{F0}} &= 2.329 \times 10^{-6} \\
\frac{\partial C_{C_t}}{\partial C_t} &= 1.000 \\
\frac{\partial C_{C_t}}{\partial C_{F0}} &= -C_{F0} \\
\frac{\partial C_{C_t}}{\partial C_{F0}} &= -3.021 \times 10^{-3} \\
\frac{\partial C_{C_t}}{\partial C_{F0}} &= -1.491
\end{align*}
\]
これらより、\(C_w \)の不確かさ\(U_{Cw}^{RSS} \)を求めると次のようになる。
\[
U_{Cw}^{RSS} = \sqrt{\left(\frac{B_{Cw}}{C_w}\right)^2 + \left(t \cdot S_{Cw}\right)^2} = 5.609 \times 10^{-4}
\]
また、このようにして得られる\(C_w \)の不確かさ範囲をFig.4に示す。

3.5 船体沈下量の不確かさ

前後ガイドの上下方向変位をそれぞれ\(dF \)および\(dA \)、また、F.P.とA.P.位置での上下方向変位を\(\Delta dF \)および\(\Delta dA \)とすれば、船体沈下量を表す\(\Delta F/L_{pp} \)、
Fig. 2: Location of F.P., A.P and both guides

$\frac{\Delta dF}{Lpp}$ は次式により計算される。ただし、x_1 および x_2、x_3 については Fig. 2 に示す部分の長さである。

\[
\frac{\Delta dF}{Lpp} = \frac{dF + \frac{x_1}{s_2} \cdot (dF - dA)}{Lpp} \times 100 = 1.804 \times 10^{-1} \text{ (％Lpp) (at } F_n = 0.138)\\
\frac{\Delta dA}{Lpp} = \frac{dA - \frac{x_2}{s_3} \cdot (dF - dA)}{Lpp} \times 100 = 1.984 \times 10^{-3} \text{ (％Lpp) (at } F_n = 0.138)\\
\]

したがって、$\Delta dF/Lpp$ および $\Delta dA/Lpp$ については x_1、x_2、x_3、Lpp、dF、dA の変数が含まれている。

$\Delta dF/Lpp \cdot \Delta dA/Lpp$ のルート平均値 B_{dF}、B_{dA} および相対精度 S_{dF}、S_{dA} は次のよう求められる。

\[
B_{dF} = 4.831 \times 10^{-3}\\
S_{dF} = 1.973 \times 10^{-3}\\
B_{dA} = 1.000 \times 10^{-3} (m)\\
S_{dA} = 1.238 \times 10^{-4} (m)\\
\]

$\frac{\rho_{dF}}{\rho_{dA}} = \frac{\partial(\Delta dF/Lpp)}{\partial(F_n)} = 13.87$\\
$\frac{\rho_{dF}}{\rho_{dA}} = \frac{\partial(\Delta dF/Lpp)}{\partial(dF)} = -5.153 \times 10^{-1}$

これより、船体沈下量の不確かさ $U_{dF}^{RSS}、U_{dA}^{RSS}$ を求めるため次のようになる。

\[
U_{dF}^{RSS} = (B_{dF})^2 + (t \cdot S_{dF})^2 = 6.238 \times 10^{-3} \text{ (％Lpp) }\\
U_{dA}^{RSS} = (B_{dA})^2 + (t \cdot S_{dA})^2 = 6.327 \times 10^{-3} \text{ (％Lpp) }\\
\]

また、このようにして得られる船体沈下量の不確かさ区間を Fig.5 に示す。
3.6 船体平均沈下量の不確かさ

船体平均沈下量は次式で求められる。

\[
(SINKAGE) = \frac{1}{2}(\Delta dF/L_{pp} + \Delta dA/L_{pp})
= 9.119 \times 10^{-2} \text{ (％L}_{pp})
\]
(at \(F_n = 0.138 \))

これより、船体平均沈下量には\(\Delta dF/L_{pp} , \Delta dA/L_{pp} \)からの誤差が伝播していることが分かる。
したがって、船体平均沈下量の絶対正確度\(B_{sink} \)および絶対精密度\(S_{sink} \)は次式で求められる。

\[
B_{sink} = \sqrt{\left(\theta_{\Delta \Gamma} \cdot B_{dis} \right)^2 + \left(\theta_{\Delta \Gamma} \cdot A_{dis} \right)^2}
= 3.530 \times 10^{-3}
\]
\[
S_{sink} = \sqrt{\left(\theta_{\Delta \Gamma} \cdot S_{dis} \right)^2 + \left(\theta_{\Delta \Gamma} \cdot A_{dis} \right)^2}
= 1.349 \times 10^{-3}
\]

ここで、

\[
B_{dis} = 4.831 \times 10^{-3}
\]
\[
B_{dis} = 5.145 \times 10^{-3}
\]
\[
S_{dis} = 1.973 \times 10^{-3}
\]
\[
S_{dis} = 1.841 \times 10^{-3}
\]
\[
\theta_{\Delta \Gamma} \cdot \frac{\partial (SINKAGE)}{\partial (\Delta dF/L_{pp})} = 5.000 \times 10^{-1}
\]
\[
\theta_{\Delta \Gamma} \cdot \frac{\partial (SINKAGE)}{\partial (\Delta dA/L_{pp})} = 5.000 \times 10^{-1}
\]

これらより、船体平均沈下量の不確かさ\(U_{sink} \)を求めると次のようになる。

\[
U_{sink} = \sqrt{B_{sink}^2 + (t \cdot S_{sink})^2}
= 4.443 \times 10^{-3} \text{ (％L}_{pp})
\]

また、このようにして得られた船体平均沈下量の不確かさ区間をFig.6に示す。

3.7 トリムの不確かさ

トリム\(\Delta T \)は次式で計算される。

\[
\Delta T = \frac{\Delta dF}{L_{pp}} - \frac{\Delta dA}{L_{pp}}
= 1.784 \times 10^{-1} \text{ (％L}_{pp}) \quad \text{(at } F_n = 0.138)\)

トリムには\(\Delta dF/L_{pp} \)と\(\Delta dA/L_{pp} \)の誤差が伝播しており、トリムの絶対正確度\(B_{\Delta T} \)および絶対精密度\(S_{\Delta T} \)は次式で求められる。

\[
B_{\Delta T} = \sqrt{\left(\theta_{\Delta \Gamma} \cdot B_{dis} \right)^2 + \left(\theta_{\Delta \Gamma} \cdot A_{dis} \right)^2}
= 7.058 \times 10^{-3}
\]
\[
S_{\Delta T} = \sqrt{\left(\theta_{\Delta \Gamma} \cdot S_{dis} \right)^2 + \left(\theta_{\Delta \Gamma} \cdot A_{dis} \right)^2}
= 2.699 \times 10^{-3}
\]

ここで、

\[
B_{dis} = 4.831 \times 10^{-3}
\]
\[
B_{dis} = 5.145 \times 10^{-3}
\]
\[
S_{dis} = 1.973 \times 10^{-3}
\]
\[
S_{dis} = 1.841 \times 10^{-3}
\]
\[
\theta_{\Delta \Gamma} \cdot \frac{\partial (\Delta T)}{\partial (\Delta dF/L_{pp})} = 1.000
\]
\[
\theta_{\Delta \Gamma} \cdot \frac{\partial (\Delta T)}{\partial (\Delta dA/L_{pp})} = -1.000
\]

これらより、トリムの不確かさ\(U_{\Delta T} \)を求めると次のようになる。

\[
U_{\Delta T} = \sqrt{B_{\Delta T}^2 + (t \cdot S_{\Delta T})^2}
= 8.886 \times 10^{-3} \text{ (％L}_{pp})
\]

また、このようにして得られたトリムの不確かさ区間をFig.6に示す。

4. 汽艇試験への応用

1997年11月6日に三廻第二汽艇試験水槽にて行われた肥大船の汽艇試験（舵付き、\(F_n = 0.138 \)、Model Point）で得られたデータを使って具体的に説明する。ここで用いられた模型船は抵抗試験で使用したものと同一であり、主要目をTable1に示し、不確かさの計算表をTable7に示した。

4.1 計測精度

汽艇試験において用いた計測機器の公称精度、ヒステリシス特性、非直線性の値をTable4に示す。データは計測機器の仕様書に記載してある値、または実験者が経験に基づき判断した値を用いた。

4.2 推力減少係数\(1 - t \)の不確かさ

推力減少係数は次式で表される。

\[
(1 - t) = \frac{r_t \cdot \rho \cdot V_m \cdot \frac{1}{v_m} \cdot \left(\frac{V_m}{V_a} - FD \right)}{T_m}
= 8.179 \times 10^{-1} \quad \text{(at } F_n = 0.138)\)
Table4: Errors in apparatus

<table>
<thead>
<tr>
<th></th>
<th>公称精度</th>
<th>ヒステリシス特性</th>
<th>非直接性</th>
</tr>
</thead>
<tbody>
<tr>
<td>抵抗動力計</td>
<td>0.02 kgf</td>
<td>0.03 % F.S.</td>
<td>0.02 % F.S.</td>
</tr>
<tr>
<td>自航動力計 (スラスト)</td>
<td>0.10 % F.S.</td>
<td>0.20 % F.S.</td>
<td>0.2 % F.S.</td>
</tr>
<tr>
<td>自航動力計 (トルク)</td>
<td>0.10 % F.S.</td>
<td>0.20 % F.S.</td>
<td>0.2 % F.S.</td>
</tr>
<tr>
<td>翼車流速計</td>
<td>0.001 m/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

まず、1−tの要素である全抵抗係数 \(r_f \)，水の密度 \(p \)，
模型船の排水容積 \(\nabla m \)，対水曳航速度 \(V_w \)，自航試験時の曳引力 \(F_D \)，模型プロペラのスラスト \(T_m \) の総括
正確度および総括精度を求めるため、次に1−tの絶対正確度、絶対精度および不確かさを計算する。

4.2.1 水の密度

水の密度 \(p \) については、3.2.3節と同様に計算を行う。
実験時の水温 \(T \) は17.6℃であるため、(11)式を用いる \(\theta_T^p \) は次のように計算される。

\[
\theta_T^p = -4.337 \times 10^{-2}
\]

したがって、

\[
B_p = \sqrt{\left(\theta_T^p \cdot B_T\right)^2} = 2.169 \times 10^{-3} \text{ (kgf \cdot s}^2/\text{m}^4)\]

\[
S_p = \sqrt{\left(\theta_T^p \cdot S_T\right)^2} = 8.674 \times 10^{-4} \text{ (kgf \cdot s}^2/\text{m}^4)\]

4.2.2 排水量

模型船の排水量 \(\nabla m \) については、模型船寸法 \((L_{u1}, W, d) \) の誤差が伝播している。これら誤差要因に対応する正確度 \(B \) および排水量 \(\nabla m \) の \(L_{u1}, W, d \) 対する偏差係数 \(\theta_{L_{u1}}\nabla m, \theta_{W}\nabla m, \theta_d\nabla m \) は次の通りであること。

\[
B_{L_{u1}} = 1.000 \times 10^{-3} \text{ (m)}
\]

\[
B_W = 1.000 \times 10^{-3} \text{ (m)}
\]

\[
B_d = 1.000 \times 10^{-3} \text{ (m)}
\]

\[
\theta_{L_{u1}}\nabla m = \nabla m/L_{u1}
\]

\[
= 4.813 \times 10^{-1} \text{ (m}^2)\]

\[
\theta_{W}\nabla m = \nabla m/W
\]

\[
= 2.711 \text{ (m}^2)\]

\[
\theta_d\nabla m = \nabla m/d
\]

\[
= 8.146 \text{ (m}^2)\]

したがって、模型船の排水量 \(\nabla m \) の絶対正確度 \(B_{\nabla m} \) は、

\[
B_{\nabla m} = \{\left(\theta_{L_{u1}}\nabla m \cdot B_{L_{u1}}\right)^2 + \left(\theta_{W}\nabla m \cdot B_W\right)^2
+ \left(\theta_d\nabla m \cdot B_d\right)^2\}^{1/2}
= 8.599 \times 10^{-3} \text{ (m}^3)\]

4.2.3 対水速度

3.2.5節と同様に計算を行うと、

\[
B_{V_{oc}} = 1.000 \times 10^{-3} \text{ (m/s)}
\]

\[
S_{V_{oc}} = SE
\]

\[
= 1.683 \times 10^{-3} \text{ (m/s)}
\]

\[
S_{\text{disp}r} = SE
\]

\[
= 2.481 \times 10^{-3} \text{ (m/s)}
\]

したがって、

\[
B_{V_{oc}} = \sqrt{(B_{V_{oc}}^p)^2}
= 1.000 \times 10^{-3} \text{ (m/s)}
\]

\[
S_{V_{oc}} = \sqrt{(S_{V_{oc}}^p)^2 + (S_{\text{disp}r}^p)^2}
= 2.998 \times 10^{-3} \text{ (m/s)}
\]

4.2.4 抵抗試験で得られた全抵抗係数

\(r \) の正確度 \(B_{r} \) および密度 \(S_r \) は、3.2.8節の浸水面積 \(A \) を \(\nabla m \) に置き換えることで計算できる。

\[
B_{r_1} = 1.707 \times 10^{-4}
\]

\[
S_{r_1} = 6.137 \times 10^{-4}
\]

4.2.5 自航試験時の曳引力

プロペラ荷重を数回変更して自航点を得る自航試験では、抵抗動力計により曳引力 \(F_D \) を計測している。

\(F_D \) の正確度および密度には3.2.7節で述べている抵抗動力計の誤差が伝播しているため、それぞれ
れについて要素正確度と要素精度を示すと次のようになる。

\[
\begin{align*}
B_{FD}^{acc} &= 50.0 \text{ (kgf)} \times 0.10 \text{ % F.S.} \\
&= 5.000 \times 10^{-2} \text{ (kgf)} \\
B_{FD}^{digit} &= \frac{1}{2} \text{ LSB} \\
&= 2.746 \times 10^{-2} \text{ (kgf)} \\
S_{FD}^{hys} &= 50.0 \text{ (kgf)} \times 0.30 \text{ % F.S.} \\
&= 1.500 \times 10^{-2} \text{ (kgf)} \\
S_{FD}^{line} &= 50.0 \text{ (kgf)} \times 0.20 \text{ % F.S.} \\
&= 1.000 \times 10^{-2} \text{ (kgf)} \\
S_{FD}^{SEE} &= \text{ SEE} \\
&= 3.254 \times 10^{-3} \text{ (kgf)} \\
S_{FD}^{disper} &= \text{ SEE} \\
&= 4.340 \times 10^{-2} \text{ (kgf)} \\
B_{FD} &= \sqrt{(B_{FD}^{acc})^2 + (B_{FD}^{digit})^2} \\
&= 5.704 \times 10^{-2} \text{ (m/s)} \\
S_{FD} &= \sqrt{(S_{FD}^{hys})^2 + (S_{FD}^{line})^2 + (S_{FD}^{SEE})^2 + (S_{FD}^{disper})^2} \\
&= 4.711 \times 10^{-2} \text{ (m/s)} \\
\end{align*}
\]

4.2.6 模型プロペラのスラスト

模型船のスラスト \(T_m \) については、航跡分離診断の精度および \(A/D \) 変換によるデジタルエラー、ヒステリシス特性、非直線性、また検定結果の推定標準誤差 (SEE)、スラスト計測データのパラメタによる標準誤差が伝播している。これら誤差要因に対応する正確度 \(B \) および精度 \(S \) は次の通りである。

\[
\begin{align*}
B_{T_m}^{acc} &= 12.0 \text{ (kgf)} \times 0.10 \text{ % F.S.} \\
&= 1.200 \times 10^{-2} \text{ (kgf)} \\
B_{T_m}^{digit} &= \frac{1}{2} \text{ LSB} \\
&= 2.832 \times 10^{-2} \text{ (kgf)} \\
S_{T_m}^{hys} &= 12.0 \text{ (kgf)} \times 0.20 \text{ % F.S.} \\
&= 2.400 \times 10^{-2} \text{ (kgf)} \\
S_{T_m}^{line} &= 12.0 \text{ (kgf)} \times 0.20 \text{ % F.S.} \\
&= 2.400 \times 10^{-2} \text{ (kgf)} \\
S_{T_m}^{SEE} &= \text{ SEE} \\
&= 3.211 \times 10^{-4} \text{ (kgf)} \\
S_{T_m}^{disper} &= \text{ SEE} \\
&= -2.829 \times 10^{-2} \text{ (kgf)} \\
B_{T_m} &= \sqrt{(B_{T_m}^{acc})^2 + (B_{T_m}^{digit})^2} \\
&= 3.076 \times 10^{-2} \text{ (kgf)} \\
S_{T_m} &= \sqrt{(S_{T_m}^{hys})^2 + (S_{T_m}^{line})^2 + (S_{T_m}^{SEE})^2 + (S_{T_m}^{disper})^2} \\
&= 4.419 \times 10^{-2} \text{ (kgf)} \\
\end{align*}
\]

4.2.7 \(1-t \) の不確かさ間関

以上により、\(r_t \) および \(\rho \)、\(\nu_m \)、\(V_w \)、\(FD \)、\(T_m \) についての正確度、精度が得られた。したがって、\(1-t \) の絶対正確度 \(B_{1-t} \) および絶対精度 \(S_{1-t} \) は次式で計算される。

\[
\begin{align*}
B_{1-t} &= \{ (\theta_{1-t}^{1} \cdot B_{\rho})^2 + (\theta_{1-t}^{1} \cdot B_{\nu_m})^2 + (\theta_{1-t}^{1} \cdot B_{V_w})^2 \\
&\quad + (\theta_{1-t}^{1} \cdot B_{FD})^2 + (\theta_{1-t}^{1} \cdot B_{T_m})^2 \}^{1/2} \\
&= 1.555 \times 10^{-2} \\
S_{1-t} &= \{ (\theta_{1-t}^{1} \cdot S_{\rho})^2 + (\theta_{1-t}^{1} \cdot S_{\nu_m})^2 + (\theta_{1-t}^{1} \cdot S_{V_w})^2 \\
&\quad + (\theta_{1-t}^{1} \cdot S_{FD})^2 \}^{1/2} \\
&= 3.951 \times 10^{-2} \\
\end{align*}
\]

ここで、

\[
\begin{align*}
\theta_{1-t}^{r_t} &= \frac{\partial (1-t)}{\partial r_t} = \frac{\rho \cdot \nu_m^{2/3} \cdot V_w^2}{T_m} \\
&= 61.57 \\
\theta_{1-t}^{\rho} &= \frac{\partial (1-t)}{\partial \rho} = \frac{r_t \cdot \nu_m^{2/3} \cdot V_w^2}{T_m} \\
&= 8.144 \times 10^{-3} \\
\theta_{1-t}^{\nu_m} &= \frac{\partial (1-t)}{\partial \nu_m} = \frac{2 r_t \cdot \rho \cdot \nu_m^{1/3} \cdot V_w}{T_m} \\
&= 1.496 \times 10^{-1} \\
\theta_{1-t}^{V_w} &= \frac{\partial (1-t)}{\partial V_w} = \frac{2 r_t \cdot \rho \cdot \nu_m^{2/3} \cdot V_w}{T_m} \\
&= 1.394 \\
\theta_{1-t}^{FD} &= \frac{\partial (1-t)}{\partial (FD)} = \frac{1}{T_m} \\
&= -1.812 \times 10^{-1} \\
\theta_{1-t}^{T_m} &= \frac{\partial (1-t)}{\partial T_m} = \frac{-r_t \cdot \rho \cdot \nu_m^{2/3} \cdot V_w^2}{T_m^2} \\
&= -2.829 \times 10^{-2} \\
\end{align*}
\]

(418)
これからより、$1 - t$の不確かな区間にU_{1-t}^{RSS}を求めるとき次のようにある。

\[
U_{1-t}^{RSS} = \sqrt{(B_{1-t})^2 + (t \cdot S_{1-t})^2} = 8.054 \times 10^{-2}
\]

また、このようにして得られる$1 - t$の不確かな区間をFig.7に示す。

4.3 有効伴流係数$1 - w$の不確かな

有効伴流係数の平均値は次式で計算される。

\[
(1 - w) = \frac{J \cdot n \cdot D}{V_w} = 4.796 \times 10^{-1} \quad \text{(at } F_n = 0.138)\]

まず、$1 - w$の要素である模型プロペラの回転数nと直径Dおよびプロペラ前進係数J、模型船対水速度V_wの正確度、精密性を求めるために$1 - w$の絶対正確度B_1、絶対精密度S_1および不確かな区間U_1を計算する。

4.3.1 模型プロペラの回転数

今回の実験では模型プロペラの平均回転数のみを記録したため、実験中にどのくらいの幅で回転数が変動していたかを知ることができない。したがって、実験者の判断でプロペラ回転数の標準偏差を0.1(rps)とし、また、プロペラ駆動に用いた電動モータ等に不明な点が多いため、回転数制御系の公称精度による正確度は0.000(rps)とした。

\[
B_n = 0.000 \quad \text{(rps)}, \quad S_n = 1.000 \times 10^{-1} \quad \text{(rps)}
\]

4.3.2 模型プロペラの直径

模型プロペラの直径Dについては詳細なデータが存在しないため、実験者の判断において製作精度を0.0001(m)とした。

\[
B_D = 1.000 \times 10^{-4} \quad \text{(m)}
\]

4.3.3 模型プロペラの前進係数

模型プロペラの前進係数Jは、プロペラ単独性能試験(POT)により得られた$J - K_T$のデータに対し4次の多項式近似をした曲線を用いて求められている。

したがって、Jには模型プロペラのスラスト係数K_Tの誤差が伝播するためJの絶対正確度および絶対精密度を計算するにはK_Tの絶対正確度B_{K_T}および絶対精密度S_{K_T}が必要になる。

スラスト係数の正確度、精密性 スラスト係数K_Tは次式で計算される。

\[
K_T = \frac{T_m}{\rho \cdot n^2 \cdot D^4}
\]

したがって、K_TにはK_Tの要素であるスラストT_m、水の密度ρ、プロペラ回転数n、プロペラ直径Dの誤差が伝播している。

T_m、ρ、n、Dの正確度、精密度はそれぞれ4.2節、4.3節において求められているが、改めて記すと次のようになる。

\[
B_{T_m} = 3.076 \times 10^{-2} \quad \text{(kgf)}, \quad B_{\rho} = 2.169 \times 10^{-3} \quad \text{(kgf} \cdot \text{sec}^2/m^4), \quad B_n = 0.000 \quad \text{(rps)}, \quad B_D = 1.000 \times 10^{-4} \quad \text{(m)}
\]

\[
S_{T_m} = 4.419 \times 10^{-2} \quad \text{(kgf)}, \quad S_{\rho} = 8.674 \times 10^{-4} \quad \text{(kgf} \cdot \text{sec}^2/m^4), \quad S_n = 1.000 \times 10^{-1} \quad \text{(rps)}
\]

また、K_TのT_m、ρ、n、Dに対する誤差係数をそれぞれk_{Tm}^α、k_{ρ}^α、k_n^α、k_D^αとすると、K_Tの絶対正確度B_{K_T}、絶対精密度S_{K_T}は次のように求められる。

\[
B_{K_T} = \left[(k_{Tm}^\alpha \cdot B_{T_m})^2 + (k_{\rho}^\alpha \cdot B_{\rho})^2 + (k_n^\alpha \cdot B_n)^2 + (k_D^\alpha \cdot B_D)^2 \right]^{1/2}
\]

\[
S_{K_T} = \left[(k_{Tm}^\alpha \cdot S_{T_m})^2 + (k_{\rho}^\alpha \cdot S_{\rho})^2 + (k_n^\alpha \cdot S_n)^2 \right]^{1/2}
\]

ここで、

\[
k_{Tm}^\alpha = \frac{\partial (K_T)}{\partial T_m} = \frac{1}{\rho \cdot n^2 \cdot D^4}
\]

\[
k_{\rho}^\alpha = \frac{\partial (K_T)}{\partial \rho} = \frac{-T_m}{\rho^2 \cdot n^2 \cdot D^4} = -2.214 \times 10^{-3}
\]

\[
k_n^\alpha = \frac{\partial (K_T)}{\partial n} = \frac{-2T_m}{\rho \cdot n^2 \cdot D^5} = -4.416 \times 10^{-2}
\]

\[
k_D^\alpha = \frac{\partial (K_T)}{\partial D} = \frac{-4T_m}{\rho \cdot n^2 \cdot D^5} = -4.083
\]

前進係数の正確度、精密性 J および K_Tに対する誤差係数を$k_{K_T}^\alpha$とすれば、前進係数Jの絶対正確度B_Jおよび

(419)
び絶対精密度 \(S_J \) を次のように求められる。

\[B_J = \theta_K^T \cdot B_K \]
\[S_J = \theta_K^T \cdot S_K \]

ここで、
\[\theta_K^T = \frac{\partial J}{\partial K_T} \]
\[\frac{\partial J}{\partial K_T} = -2.557 \quad \text{(at } F_n = 0.138) \]

\(\frac{\partial J}{\partial K_T} \) には \(J - K_T \) 曲線（4次の多項式近似）の \(K_T \) による微分値を用いた。

4.3.4 模型船の対水速度

模型船の対水速度 \(V_w \) については 4.2.3節で既に計算されている。

\[B_{V_w} = 1.000 \times 10^{-3} \text{ (m/sec)} \]
\[S_{V_w} = 2.998 \times 10^{-3} \text{ (m/sec)} \]

4.3.5 \(1 - w \) の不確かさ区間

以上により、\(n \) および、\(D, J, V_w \) についての正確度および精密度が得られた。したがって、\(1 - w \) の絶対正確度と絶対精密度は次式で計算される。

\[B_{1-w} = \left\{ \left(\theta_{n}^{1-w} \cdot B_n \right)^2 + \left(\theta_{D}^{1-w} \cdot B_D \right)^2 + \left(\theta_{J}^{1-w} \cdot B_J \right)^2 + \left(\theta_{V_w}^{1-w} \cdot B_{V_w} \right)^2 \right\}^{1/2} \]
\[= 6.370 \times 10^{-3} \]
\[S_{1-w} = \left\{ \left(\theta_{n}^{1-w} \cdot S_n \right)^2 + \left(\theta_{D}^{1-w} \cdot S_D \right)^2 + \left(\theta_{J}^{1-w} \cdot S_J \right)^2 + \left(\theta_{V_w}^{1-w} \cdot S_{V_w} \right)^2 \right\}^{1/2} \]
\[= 2.352 \times 10^{-2} \]

ここで、
\[\theta_{n}^{1-w} = \frac{\partial (1 - w)}{\partial n} = \frac{J \cdot D}{V_w} \]
\[= 4.716 \times 10^{-2} \]
\[\theta_{D}^{1-w} = \frac{\partial (1 - w)}{\partial D} = \frac{J \cdot n}{V_w} \]
\[= 2.180 \]
\[\theta_{J}^{1-w} = \frac{\partial (1 - w)}{\partial J} = \frac{n \cdot D}{V_w} \]
\[= 1.888 \]
\[\theta_{V_w}^{1-w} = \frac{\partial (1 - w)}{\partial V_w} = -J \cdot n \cdot D \]
\[= -4.047 \times 10^{-1} \]

これより \(1 - w \) の不確かさ \(U_{1-w}^{RSS} \) を求めると、

\[U_{1-w}^{RSS} = \sqrt{\left(B_{1-w} \right)^2 + \left(t \cdot S_{1-w} \right)^2} \]
\[= 4.747 \times 10^{-2} \]

また、このようにして得られる \(1 - w \) の不確かさ区間を Fig.7 に示す。

4.4 プロペラ単独効率 \(\eta_o \) の不確かさ

プロペラ単独効率 \(\eta_o \) の平均値は次式で計算される。

\[\eta_o = \frac{J \cdot K_T}{2 \pi \cdot K_Q} \]
\[= 3.632 \times 10^{-1} \text{ (at } F_n = 0.138) \]

したがって、\(\eta_o \) には \(K_T \) およびプロペラ単独性能曲線に得られる \(J, K_Q \) の誤差が伝播している。\(\eta_o \) の絶対正確度 \(B_{\eta_o} \) および絶対精密度 \(S_{\eta_o} \) を求めると、\(K_T \) の絶対正確度 \(B_{K_T} \) および絶対精密度 \(S_{K_T} \) は次のように計算される。

\[B_{K_T} = \sqrt{\left(\theta_{K_T}^{K_T} \cdot B_{J} \right)^2 + \left(\theta_{K_Q}^{K_T} \cdot B_{K_Q} \right)^2} \]
\[= 9.732 \times 10^{-5} \]
\[S_{K_T} = \sqrt{\left(\theta_{K_T}^{K_T} \cdot S_J \right)^2 + \left(\theta_{K_Q}^{K_T} \cdot S_{K_Q} \right)^2} \]
\[= 3.525 \times 10^{-4} \]

ここで、
\[\theta_{J}^{K_T} = \frac{\partial K_T}{\partial J} \]
\[= -2.892 \times 10^{-2} \quad \text{(at } F_n = 0.138) \]

\(\frac{\partial K_T}{\partial J} \) には \(K_T - J \) 曲線（4次の多項式近似）の \(J \) による微分値を用いた。

4.4.2 \(\eta_o \) の不確かさ区間

これにより得られた \(J, K_T, K_Q \) の正確度および精度を用いて、\(\eta_o \) の絶対正確度と絶対精密度を計算すると、次のように求められる。

\[B_{\eta_o} = \sqrt{\left(\theta_{\eta_o}^{\eta_o} \cdot B_{J} \right)^2 + \left(\theta_{\eta_o}^{\eta_o} \cdot B_{K_T} \right)^2 + \left(\theta_{\eta_o}^{\eta_o} \cdot B_{K_Q} \right)^2} \]
\[= 1.413 \times 10^{-3} \]
\[S_{\eta_o} = \sqrt{\left(\theta_{\eta_o}^{\eta_o} \cdot S_J \right)^2 + \left(\theta_{\eta_o}^{\eta_o} \cdot S_{K_T} \right)^2 + \left(\theta_{\eta_o}^{\eta_o} \cdot S_{K_Q} \right)^2} \]
\[= 1.973 \times 10^{-2} \]
ここで、

\[
\theta_{ij}^* = \frac{\partial \eta_0}{\partial J} = \frac{K_T}{2 \pi \cdot K_Q} = 1.429 \quad (at \ F_n = 0.138)
\]

\[
\theta_{K_T}^{\eta_0} = \frac{\partial \eta_0}{\partial K_T} = \frac{J}{2 \pi \cdot K_Q} = 1.617 \quad (at \ F_n = 0.138)
\]

\[
\theta_{K_Q}^{\eta_0} = \frac{\partial \eta_0}{\partial K_Q} = -\frac{J}{2 \pi \cdot K_t^2} = -14.52 \quad (at \ F_n = 0.138)
\]

この \(B_{\eta_0} \), \(S_{\eta_0} \) を用いて \(\eta_0 \) の不確かさ区間を求める

\[
U_{\eta_0}^{RSS} = \sqrt{(B_{\eta_0})^2 + (t \cdot S_{\eta_0})^2} = 3.949 \times 10^{-2}
\]

また、このようにして得られる \(\eta_0 \) の不確かさ区間を Fig.8に示す。

4.5 プロペラ効率比 \(\eta_R \) の不確かさ

プロペラ効率比 \(\eta_R \) の平均値は次式で計算される。

\[
\eta_R = \frac{T_m \cdot J \cdot D}{2 \pi \cdot Q_m \cdot \eta_0} = 9.913 \times 10^{-1} \quad (at \ F_n = 0.138)
\]

したがって、誤差要因はスラスト \(T_m \), および前進係数 \(J \), プロペラ直径 \(D \), トルク \(Q_m \), プロペラ単独効率 \(\eta_0 \) である。\(Q_m \) 以外の誤差要因の正確度および精密さは前節までにすべて求められているため、まず \(Q_m \) の正確度 \(B_{Q_m} \) および精密さ \(S_{Q_m} \) を求める。

4.5.1 模型プロペラのトルク

模型プロペラのトルク \(Q_m \) には、自航動力計の公称精度およびヒステリシス、非直線性、A/D 変換に伴うデジタルエラー、検定曲線の SEE、測定値の標準誤差が伝播している。これら誤差要因に対する正確度 \(B \) および精密さ \(S \) は次の通りである。

\[
B_{Q_m}^{acc} = 0.5 (kgf) \times 0.001 \%
\]
\[
S_{Q_m}^{sys} = 0.5 (kgf) \times 0.002 \%
\]
\[
S_{Q_m}^{line} = 0.5 (kgf \cdot m) \times 0.002 \%
\]
\[
B_{Q_m}^{digit} = \frac{1}{2} LSB
\]
\[
S_{Q_m}^{disp} = 9.717 \times 10^{-4} (kgf \cdot m)
\]

\[
S_{Q_m}^{acc} = 8.475 \times 10^{-6} (kgf \cdot m)
\]
\[
S_{Q_m}^{sys} = 5.563 \times 10^{-4} (kgf \cdot m)
\]

したがって、トルクの総括正確度 \(B_{Q_m} \) および総括精密度 \(S_{Q_m} \) は、次のようや計算される。

\[
B_{Q_m} = \sqrt{(B_{Q_m}^{acc})^2 + (B_{Q_m}^{digit})^2} = 1.093 \times 10^{-3} (kgf \cdot m)
\]

\[
S_{Q_m} = \sqrt{(S_{Q_m}^{sys})^2 + (S_{Q_m}^{line})^2 + (S_{Q_m}^{acc})^2 + (S_{Q_m}^{disp})^2} = 1.520 \times 10^{-3} (kgf \cdot m)
\]

4.5.2 \(\eta_R \) の不確かさ区間

以上により、\(\eta_R \) の正確度と精密さを計算するために必要な値が得られた。\(\eta_R \) の絶対正確度 \(B_{\eta_R} \) および絶対精密さ \(S_{\eta_R} \) は次のように求められる。

\[
B_{\eta_R} = \{ (\theta_{\eta_R}^{\eta_0} \cdot B_{\eta_0})^2 + (\theta_{\eta_R}^{\eta_0} \cdot B_{\eta_0})^2 + (\theta_{\eta_R}^{\eta_0} \cdot B_D)^2 + (\theta_{\eta_R}^{\eta_0} \cdot B_{\eta_0})^2 + (\theta_{\eta_R}^{\eta_0} \cdot B_{\eta_0})^2 \}^{1/2}
\]
\[
= 1.632 \times 10^{-2}
\]

\[
S_{\eta_R} = \{ (\theta_{\eta_R}^{\eta_0} \cdot S_{\eta_0})^2 + (\theta_{\eta_R}^{\eta_0} \cdot S_D)^2 + (\theta_{\eta_R}^{\eta_0} \cdot S_{\eta_0})^2 + (\theta_{\eta_R}^{\eta_0} \cdot S_{\eta_0})^2 \}^{1/2}
\]
\[
= 5.000 \times 10^{-2}
\]

この \(B_{\eta_R} \), \(S_{\eta_R} \) を用いて \(\eta_R \) の不確かさ区間 \(U_{\eta_R}^{RSS} \) を求めると次のようや計算される。

\[
U_{\eta_R}^{RSS} = \sqrt{(B_{\eta_R})^2 + (t \cdot S_{\eta_R})^2} = 1.013 \times 10^{-1}
\]

また、このようにして得られる \(\eta_R \) の不確かさ区間を Fig.8に示す。

5. 圧力計測試験への応用

5.1 船体表面圧力の不確かさ

1997年11月11日に三鷹第二船体試験水槽で行われ
た船体表面圧力計測試験（航航状態、\(F_n = 0.138 \), 舵付
き）において得られたデータに対し、不確かさ解析
を行なった。圧力の計測点はS.S.2より後方の両舷、
合計約140点である。船体表面圧力 \(P \) の雑差要因に
は、圧力計の公称精度に基づくかたより雑差、圧力
計検定結果の推定標準雑差（SEE）、A/D 変換に伴う

(421)
Table 5: Errors in pressure gauge

<table>
<thead>
<tr>
<th>フルスケール</th>
<th>公称精度</th>
<th>ヒステリシス特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000mmAq</td>
<td>0.680mmAq</td>
<td>0.02% F.S.</td>
</tr>
</tbody>
</table>

圧力 (デジタルエラー、ヒステリシス)、測定值のパラツキによる標準誤差、水の密度の誤差、また、速度の誤差に伴う偶然誤差などがある。
今回の圧力計測試験で用いた圧力計の仕様を Table 5 に示す。
また、最終的な解析結果である圧力係数 C_p は圧力 P を $\frac{1}{2} \rho V_w^2$ で無次元化したものであり、この処理によって ρ、V_w の誤差が混入する。ここでは C_p の要因 (ρ、V_w、P) の正確度と精度を求めた後、C_p の絶対正確度 B_{C_p} および絶対精度 S_{C_p} および不確さ区間 $U_{C_p}^{RSS}$ を求めるという手順を踏む。
圧力計測は6チャンネルのスキャニバブルを24回切り替えることにより計144点計測できるシステムを用いているが、ここでは Channel-1 (以下、Ch-1) の1回目の計測値について C_p の不確かさ計算法を説明し、計算を Table 5 に示した。また、この点における C_p の平均値は $C_p = 2.379 \times 10^{-1}$ である。

5.1.3 圧力計
圧力の計測値に含まれる誤差要因として圧力計公称精度、圧力計のヒステリシス、A/D 変換時のデジタルエラー、検定時の推定標準誤差 (SEE) が考えられる。公称精度、ヒステリシスのデータは圧力計の仕様の値を用いており、Table 5 に示した。Ch-1 の圧力計 (圧力計 1) の総合正確度 B_{gauge} と総括精度 S_{gauge} を求める方法のようになる。

<table>
<thead>
<tr>
<th>公称精度</th>
<th>仕様書の値から次のように決定される。</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{gauge}^{acc}</td>
<td>6.843×10^{-1} (mmAq)</td>
</tr>
</tbody>
</table>

ヒステリシス 使用した圧力計はフルスケール 3000mmAqであるため、仕様書の値を用いると次のように計算される。

<table>
<thead>
<tr>
<th>S_{gauge}^{sys}</th>
<th>$0.02%$ F.S. $= 0.02 \times 3000mmAq$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= 0.60$ (mmAq)</td>
<td></td>
</tr>
</tbody>
</table>

デジタルエラー A/D 変換による正確度 B_{gauge}^{digit} は、

<table>
<thead>
<tr>
<th>B_{gauge}^{digit}</th>
<th>$1 \times LSB$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= 0.5 \times 0.009608 \times 16$</td>
<td></td>
</tr>
<tr>
<td>$= 7.686 \times 10^{-2}$ (mmAq)</td>
<td></td>
</tr>
</tbody>
</table>

ただし、1 LSB = (検定係数) × 2^4

検定時推定標準誤差 検定データと (12) 式を用いて推定標準誤差 (SEE) を求めると次のように計算される。

| S_{gauge}^{SEE} | $SEE = 1.706 \times 10^{-1}$ (mmAq) |

圧力計の正確度、精度以上のような値を用いると、圧力計に起因する総括正確度 B_{gauge} および総括精度 S_{gauge} は次のようにになる。

<table>
<thead>
<tr>
<th>B_{gauge}</th>
<th>$\sqrt{(B_{gauge}^{acc})^2 + (B_{gauge}^{digit})^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= 6.886 \times 10^{-1}$ (mmAq) (at Ch-1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S_{gauge}</th>
<th>$\sqrt{(S_{gauge}^{sys})^2 + (S_{gauge}^{SEE})^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= 6.238 \times 10^{-1}$ (mmAq) (at Ch-1)</td>
<td></td>
</tr>
</tbody>
</table>

5.1.1 水の密度
3.2.3 節で述べているように、水の密度 ρ は温度 T に依存する。実験時の水温は 17.0℃であるため、$\theta(T)$ は (11) 式により次のように計算される。

$$\theta' = -4.339 \times 10^{-2} (kgf \cdot s^2/m^4/K)$$

したがって、

<table>
<thead>
<tr>
<th>B_{ρ}</th>
<th>$\theta' \cdot BT$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= 2.170 \times 10^{-3}$ (kgf \cdot s^2/m^4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S_{ρ}</th>
<th>$\theta' \cdot ST$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= 8.678 \times 10^{-4}$ (kgf \cdot s^2/m^4)</td>
<td></td>
</tr>
</tbody>
</table>

5.1.2 対水速度
3.2.5 節と同様に計算を行うと、

| $B_{V_w}^{acc}$ | 1.000×10^{-3} (m/s) |
| $S_{V_w}^{SEE}$ | SEE |
| $= 1.683 \times 10^{-3}$ (m/s) |

| $S_{V_w}^{dispers}$ | SE |
| $= 1.392 \times 10^{-3}$ (m/s) |

したがって、

<table>
<thead>
<tr>
<th>B_{V_w}</th>
<th>$\sqrt{(B_{V_w}^{acc})^2}$</th>
</tr>
</thead>
</table>

(422)
5.1.4 船体表面圧力および静圧

船体表面圧力 \(P_1 \) および静圧 \(P_2 \) の測定値パラツキによる標準誤差を偶然誤差にし、それぞれ \(S_{P_1}, S_{P_2} \) とすると、(2) 式より次のように求められる。

\[
S_{P_1} = 9.473 \times 10^{-2} \text{ (mm.Aq)} \\
S_{P_2} = 9.435 \times 10^{-2} \text{ (mm.Aq)}
\]

5.1.5 圧力係数 \(C_p \) の不確かさ区間

以上により、圧力計および \(P_1, P_2, \rho, V_w \) それぞれについての正確度、精密度が求められた。したがって、\(C_p \) の絶対正確度および絶対精密度は次式で計算できる。

\[
B_{C_p} = \left((\theta_{C_p}^{\text{gauge}} \cdot B_{\text{gauge}})^2 + (\theta_{C_p}^{\text{gauss}} \cdot B_{\rho})^2
+ (\theta_{C_p}^{\text{gauss}} \cdot B_{V_w})^2 \right)^{1/2}
\]

\[
S_{C_p} = \left((\theta_{C_p}^{\text{gauge}} \cdot S_{\text{gauge}})^2 + (\theta_{C_p}^{\text{gauss}} \cdot S_{\rho})^2
+ (\theta_{C_p}^{\text{gauss}} \cdot S_{V_w})^2 \right)^{1/2}
\]

ここでは、

\[
\theta_{C_p}^{\text{gauge}} = \frac{\partial C_p}{\partial P_1} = \frac{0.001 \cdot \rho}{1.12 \cdot V_w^2}
\]

\[
\theta_{C_p}^{\text{gauss}} = \frac{\partial C_p}{\partial P_2} = \frac{0.001 \cdot \rho}{1.12 \cdot V_w^2}
\]

\[
\theta_{C_p}^{\text{gauss}} = \frac{\partial C_p}{\partial \rho} = -1.11 \times 10^{-2}
\]

\[
\theta_{C_p}^{\text{gauss}} = \frac{\partial C_p}{\partial V_w} = \frac{4(P_1 - P_2)}{\rho V_w^3}
\]

\[
\theta_{C_p}^{\text{gauss}} = -4.037 \times 10^{-1}
\]

これより \(C_p \) の不確かさ区間 \(U_{C_p}^{\text{RSS}} \) を求めるとき、

\[
U_{C_p}^{\text{RSS}} = \sqrt{(B_{C_p})^2 + (t \cdot S_{C_p})^2}
\]

\[
= 2.053 \times 10^{-2} \text{ (at Ch = 1.1st)}
\]

6. 伴流計測試験への応用

ここでは、船尾伴流を計測するために次のような手順を踏んでいる。

1. 5孔ピット管 (以下、5孔管) と圧力計を用いて各計測点の圧力を計測
2. これに圧力計の検定係数を乗じることにより水頭を求め
3. さらに5孔管の検定係数を乗じることにより流速を求める

したがって、船尾伴流の誤差要因には、圧力計の公称精度に基づくより誤差、圧力計検定時の推定標準誤差 (SEE)、A/D 変換に伴う誤差 (デジタルエラー、ヒステリシス)、測定値のイタツキによる標準誤差、また、曳引速度の差異に伴う偶然誤差などがある。

今回伴流計測試験で用いた圧力計の仕様を Table6に示す。

上記の要因による誤差は、計測の際まず5孔管の各管の圧力 \(H_T, H_B, H_C, H_S, H_P \) に流入し、さらにそれが伴流計測面内に流速成分 \(V_{x}, V_{y}, V_{z} \) にまで伝播する。ここでは、これら誤差の伝播過程を明らかに伴流 \(V_{x}, V_{y}, V_{z} \) の不確かさ区間計算式を求める。

6.1 球形5孔ピット管の計算式および誤差の伝播

5孔管の球形ヘッドの子午線上に配列された3孔 \(T, C, B \) について適用される計算式を記せば次のようになる

\[
F_V = \frac{H_T - H_B}{2 \cdot H_C - H_T - H_B}
\]

\[
\beta_V = a_0 + a_1 \cdot F_V + a_2 \cdot F_V^2 + a_3 \cdot F_V^3
\]

\[
V_V = \sqrt{\frac{2 \cdot (H_C - H_B)}{b_0 + b_1 \cdot \beta_V + b_2 \cdot \beta_V^2 + b_3 \cdot \beta_V^3}}
\]

ここで、\(a_0, a_1, a_2, a_3 \) および \(b_0, b_1, b_2, b_3, b_4 \) はピット管の検定曲線 (多項式近似) の係数を表す。

計測した \(H_T, H_B, H_C \) を (14) 式に代入すると \(F_V \) が求められ、この \(F_V \) を (15) 式に代入すると、5孔管への垂直方向の流入角 \(\beta_V \) が計算できる。また、この \(\beta_V \) を (16) 式に代入すれば、垂直方向の流入速度 \(V_V \) を得ることができ、すなわち、\(H_T, H_B, H_C \) に含まれる誤差もこのように伝播していく。

6.2 伴流速度の不確かさ

\(F_V \) の \(H_T, H_B, H_C \) に対する感度係数 \(\theta_{F_V}^{H_T}, \theta_{F_V}^{H_B}, \theta_{F_V}^{H_C} \) は次式で表わされる。

(423)
ただし、
\[\theta_{\nu}^{\nu} = \frac{\partial V_{\nu}}{\partial \beta_{\nu}} \]
\[= -\sqrt{(b_{0} + b_{1} \cdot \beta_{\nu} + b_{2} \cdot \beta_{\nu}^{2} + b_{3} \cdot \beta_{\nu}^{3})^{1.5}} \]

同様の手順で、球形ヘッドの赤道に配置された3孔（S,C,P）からも \(B_{Vw}, S_{Vw} \)が計算され、これらを用いてさらにX、Y、Z方向の流速 \(V_{x}, V_{y}, V_{z} \)の相対正確度 \(B \)，絶対精度 \(S \)が求められる。

\[B_{Vx} = \sqrt{\left(\frac{1}{2} B_{Vx} \right)^{2} + \left(\frac{1}{2} B_{Vw} \right)^{2}} \]
\[S_{Vx} = \sqrt{\left(\frac{1}{2} S_{Vx} \right)^{2} + \left(\frac{1}{2} S_{Vw} \right)^{2}} \]
\[B_{Vy} = B_{V} \cdot \sin(\beta_{H}) / V_{w} \]
\[S_{Vy} = S_{V} \cdot \sin(\beta_{H}) / V_{w} \]
\[B_{Vz} = B_{V} \cdot \sin(\beta_{H}) / V_{w} \]
\[S_{Vz} = S_{V} \cdot \sin(\beta_{H}) / V_{w} \]

ここで、
\[V_{Vx} = V_{V} \cdot \cos(\beta_{H}) / V_{w} \]
\[V_{Vx} = V_{H} \cdot \cos(\beta_{H}) / V_{w} \]

以上により求められた \(B_{Vx}, B_{Vy}, B_{Vz}, S_{Vx}, S_{Vy}, S_{Vz} \)より、 \(V_{x}, V_{y}, V_{z} \)の不確から区間 \(U_{Vx}^{RSS}, U_{Vy}^{RSS}, U_{Vz}^{RSS} \)は次式で表される。

\[U_{Vx}^{RSS} = \sqrt{(B_{Vx})^{2} + (t \cdot S_{Vx})^{2}} \]
\[U_{Vy}^{RSS} = \sqrt{(B_{Vy})^{2} + (t \cdot S_{Vy})^{2}} \]
\[U_{Vz}^{RSS} = \sqrt{(B_{Vz})^{2} + (t \cdot S_{Vz})^{2}} \]

また、このようにして得られる係数分布（プロペラ位置）の不確かさ区間をFig.10に示す。

7. 考察

抵抗試験、自航試験、船体表面圧力計測試験、伴流計測試験について、具体的な手順を示しながら不確かさ解析を行なったが、いずれも単一試験であるということと、測定値の10Hz以下の変動成分はすべて有義であるという仮定の下に解析を行なっていることにより、得られた不確かさ区間は大きな幅を有している。しかし、その不確かさの原因を明らかにすることが本解析の一つの目的であるため、各試験の主要な誤差要因について考察してみる。
7.1 抵抗試験
これまで述べてきた \(F_{I} = 0.138 \) の場合には、全抵抗係数 \(C_{T} \) の誤差は全抵抗 \(R_{I} \) から伝播してきた誤差が 99%以上を占めており、この \(R_{I} \) の誤差では測定値のバラツキによる標準誤差が大部分である。つまり、曳引車や抵抗動力計などの振動により抵抗が変動するが、主な原因は標準伝播誤差であり、他の誤差要因はその存在が無視できるほどである。ただし、今回の抵抗測定においては有意な部分変動を仮定的に 10Hz 以下と仮定しており、本来除去されるべきノイズがデータに混入している可能性がある。今後の課題になる周波数について検討し、\(C_{T} \) の不確かさ区間を改善していかなければならない。

船体沈下量の不確かさでは、ポテンショメータの公称精度が約 40%の割合を占めており、次いでポテンショメータの非直線性、A/D 変換によるデジタルエラーがそれぞれ約 90%である。なお、\(dF, dA \) の測定値バラツキによる標準誤差の影響は、ここでは 90%の精度となっている。船体沈下量に関しては計測機器の高度精度が不確かさ区間減少の鍵となり得るものがあった。

トリムと船体平均沈下量については、荷体沈下量と同様誤差要因が同じ割合で影響している。

7.2 自航試験
推力減少係数 \(1 - \eta \) における主要な誤差要因は \(C_{T} \) と \(FD \) である。どちらの場合も抵抗が変動することにより標準伝播誤差が主な原因であり、抵抗計測系の精度向上が \(1 - \eta \) の不確かさ減少に効果的である。

有効伝播係数 \(1 - \omega \) とはプロペラ前進係数 \(J \) の精密度が重要な要因であり、全体の約 90%を占めてい る。ただし \(J \) は \(K_{T} \) と \(J - K_{T} \) の曲線を用いて計算されるため、結局 \(K_{T} \) の精度される影響である。この \(K_{T} \) の精度を小さくするには \(T_{m} \) に含まれる誤差を低く抑えることが有効であり、自航動力計の精度向上が必要となる。また、ブラケット回転数の変動による誤差を \(K_{T} \) に大きな影響を及ぼすために、回転数を正確に把握しておく必要がある。

プロペラ単独効率 \(\eta_{p} \) 、プロペラ効率 \(\eta_{P} \) についても \(J \) が不確かさ区間の約 80%から 90%を占めており、\(T_{m} \) の誤差が重要な誤差要因である。

これらのことから、自航試験においては自航動力計とプロペラ回転数計測の精度向上と、生データの高周波成分の除去が不確かさ区間を小さくする上で重要である。

7.3 压力計測定試験
船体表面圧力には、圧力計のヒステリシス特性により誤差が最も多く混入しており、次いで圧力計の不確定度、圧力計の検定に伴う推定標準誤差 SEE である。つまり解析結果の精度を良くするには圧力計の精度向上が有効であるが、検定の正しい圧力計を使用すると計測値にノイズが出しやすく、かえって精度を低下させることにもなりかねない。さらに、導管内部に気泡が発生した場合に行う「水道」作業において、圧力計を安定圧力以上の力が加わり破壊する可能性もある。したがって、圧力計を選定する際にはこれらのことに注意しなければ、なるべく検定の高いものを使えばならない。

7.4 伴流計測試験
伴流計測では、5kN 以上に流入した流体の圧力は半径方向圧力計で計測するが、この圧力計測データのバラツキが大きな誤差要因である。このことは、曳航状態よりも自航状態のデータのほうが一層顕著であり、プロペラ作動による流体の乱れが原因と考えられる。これらは、生データに（プロペラ回転数 \(\omega \) に）以上の周波数成分を除去することにより改善できるものと思われるが、ある程度長い計測時間として平均するか、さらに有意な周波数をフィルタでかけなければ、伴流の不確かさ区間を小さくすることはできない。また、圧力計測試験と同様、高精度な圧力計を使用するには限界があり、最適な圧力計を選定するには様々な要素を考慮しなければならない。

8. 結 言
本論では不確かさ解析を水槽試験に適用し、船用船に対する抵抗試験および自航試験、船体表面圧力計測試験、伴流計測試験について一例を示した。
いずれの試験においても、誤差要因の一つとして処理した計測データの変動が大きかったため、これ以外の要因による不確かさ区間への影響が相対的に小さくなってしまい、これを改善は困難であった。データ計測時にはローパスフィルターを用いて高周波成分を除去するが、その問題を解決するための最も簡便な方法と思われるが、有意な周波数域を含むエラーを除いてしまうと、問題となる周波数帯は慎重に決定しなければならない。
今回は、繰り返し試験を行なう時間的経済的制約や、計測データの有意な変動成分について十分な見解を得ていないなどの理由で、単一試験の不確かさ解析を行なうとすると、TTIC で採用されている「繰り返し試験」における不確かさ区間の推定については今後検討する予定である。
また、今回解析対象外とした誤差要因以外にもデータの種類、計測系全体の特性、A/D ボードのヒステリシス特性、減衰フィルタの影響、対応解析の状態等さまざまな
要因が考えられる。今後、詳細な誤差評価を行うためには、これらを考慮していく必要がある。

参考文献

2) 日本機械学会訳: 計測の不確かさ、米国機械学会性能試験規約、丸善(1987)
3) 茂里一鈴他: 不確かさ解析とその抵抗試験への応用、第18回JSPC(1989)
4) 姫野洋司他: 抵抗試験における不確かさ解析の応用、関西造船協会誌第214号(1990), p.39〜47
5) 西尾茂他: 不確かさ解析の抵抗・自航試験への応用、関西造船協会誌第216号(1991), p.51〜64
6) 笠原良和: 推進性能試験法、推進性能研究委員会第5回シンポジウム(1993), p.122〜132
7) 鈴木敏夫他: 抵抗試験の不確かさ解析、試験水槽委員会第2回委員会総会資料(1999)
8) 山崎真昭他: 水槽試験の精度、水槽試験委員会第一部会シンポジウム「船型開発と水槽試験」(1983), p.69〜97
9) P.G・ホーエル著: 初等統計学(第4版)、培風館(1981)
10) 西山哲男著: 流体力学(I)、日刊工業新聞社
Fig. 3: Uncertainty of total resistance coefficient C_t

Fig. 4: Uncertainty of wave making resistance coefficient C_w

Fig. 5: Uncertainty of dipping

Fig. 6: Uncertainty of mean sinkage and trim

Fig. 7: Uncertainty of $1-t$ and $1-w$

Fig. 8: Uncertainty of η_o and η_R
Fig. 9: Uncertainty of pressure coefficient C_p

Fig. 10: Uncertainty of wake distribution (yz-plane)
Table 6: Calculation sheet for resistance test

<table>
<thead>
<tr>
<th>Parameter (mean value)</th>
<th>Error Source</th>
<th>Neq(20% précision%)</th>
<th>Error</th>
<th>Error components</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(+)</td>
<td>(-)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p (kg x m/s^2)</td>
<td></td>
<td></td>
<td>0.000±2</td>
<td>0.000±2</td>
<td>-4.337±2</td>
</tr>
<tr>
<td>L (m)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>W (m)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>d (m)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>Vv (m/s)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>Vvl (m/s)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>Fy (kg)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>Fr (kg)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>dF (m)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>dA (m)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>dK (kg)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
<tr>
<td>dP (kg)</td>
<td></td>
<td></td>
<td>0.000±0</td>
<td>0.000±0</td>
<td>0.000±0</td>
</tr>
</tbody>
</table>

(次項へつづく)

(429)
| 調べてみた数 (百) | \(\Delta \beta \) | \(\Delta \alpha \) | \(\beta \) | \(\alpha \) | \(\delta \) | \(\gamma \) | \(\epsilon \) | \(\zeta \) | \(\eta \) | \(\theta \) | \(\iota \) | \(\kappa \) | \(\lambda \) | \(\mu \) | \(\nu \) | \(\xi \) | \(\omicron \) | \(\pi \) | \(\rho \) | \(\sigma \) | \(\tau \) | \(\upsilon \) | \(\phi \) | \(\chi \) | \(\psi \) | \(\omega \) |
|----------------|
| \(\alpha \) | \(\beta \) | \(\gamma \) | \(\delta \) | \(\epsilon \) | \(\zeta \) | \(\eta \) | \(\theta \) | \(\iota \) | \(\kappa \) | \(\lambda \) | \(\mu \) | \(\nu \) | \(\xi \) | \(\omicron \) | \(\pi \) | \(\rho \) | \(\sigma \) | \(\tau \) | \(\upsilon \) | \(\phi \) | \(\chi \) | \(\psi \) | \(\omega \) |
| 1.794E+03 | 1.841E+03 | 5.145E-03 | 1.91E+00 | 4.831E-03 | 1.00E+00 |
| 1.69E+00 | 7.50E+00 | 2.00E-02 | -2.28E+00 | -2.28E+00 | 1.76E+00 | -2.50E-02 | -2.50E-02 | 1.76E+00 |

(前項からのつづき)
Table 7: Calculation sheet for self-propulsion test

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Error Source</th>
<th>1997-11-06</th>
<th>Error components/uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_n(true) = 0.138$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T(u^2/m^2) = 1.433$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L_w (m) = 0.000$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W (m) = 0.000$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d (m) = 0.000$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_m (m/s) = 0.000$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_w (m/s) = 0.000$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_f (m/s) = 0.000$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D (m) = 0.000$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- MP: 1997-11-06
- Error components/uncertainty:
 - Bias (+)
 - Bias (-)
 - Uncertainty
| 公式値 | 計算値
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.37E-02</td>
<td>-3.09E-02</td>
</tr>
<tr>
<td>2.45E-02</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>1.81E-02</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>2.10E-02</td>
<td>-1.61E-02</td>
</tr>
</tbody>
</table>

1.25E-03	-1.25E-03
1.79E-03	9.62E-03
9.62E-03	9.62E-03
7.11E-04	7.11E-04
2.42E-02	2.42E-02
3.94E-02	3.94E-02
7.93E-03	7.93E-03
4.75E-02	4.75E-02
1.97E-02	1.97E-02
1.04E-01	1.04E-01
3.03E-02	3.03E-02
5.03E-02	5.03E-02
1.01E-01	1.01E-01
3.79E-02	3.79E-02
7.09E-06	7.09E-06
4.16E-03	4.16E-03
6.53E-03	6.53E-03
2.30E-02	2.30E-02
4.79E-02	4.79E-02

3.96E-03	-3.96E-03
1.21E-02	0.00E+00
4.71E-02	4.71E-02
4.04E-02	4.04E-02
6.37E-03	6.37E-03
2.30E-03	2.30E-03

3.96E-03	-3.96E-03
1.21E-02	0.00E+00
4.71E-02	4.71E-02
4.04E-02	4.04E-02
6.37E-03	6.37E-03
2.30E-03	2.30E-03

3.96E-03	-3.96E-03
1.21E-02	0.00E+00
4.71E-02	4.71E-02
4.04E-02	4.04E-02
6.37E-03	6.37E-03
2.30E-03	2.30E-03

3.96E-03	-3.96E-03
1.21E-02	0.00E+00
4.71E-02	4.71E-02
4.04E-02	4.04E-02
6.37E-03	6.37E-03
2.30E-03	2.30E-03

3.96E-03	-3.96E-03
1.21E-02	0.00E+00
4.71E-02	4.71E-02
4.04E-02	4.04E-02
6.37E-03	6.37E-03
2.30E-03	2.30E-03

3.96E-03	-3.96E-03
1.21E-02	0.00E+00
4.71E-02	4.71E-02
4.04E-02	4.04E-02
6.37E-03	6.37E-03
2.30E-03	2.30E-03

3.96E-03	-3.96E-03
1.21E-02	0.00E+00
4.71E-02	4.71E-02
4.04E-02	4.04E-02
6.37E-03	6.37E-03
2.30E-03	2.30E-03

3.96E-03	-3.96E-03
1.21E-02	0.00E+00
4.71E-02	4.71E-02
4.04E-02	4.04E-02
6.37E-03	6.37E-03
2.30E-03	2.30E-03

<p>| 3.96E-03 | -3.96E-03 |
| 1.21E-02 | 0.00E+00 |
| 4.71E-02 | 4.71E-02 |
| 4.04E-02 | 4.04E-02 |
| 6.37E-03 | 6.37E-03 |
| 2.30E-03 | 2.30E-03 |</p>
<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Error Source</th>
<th>bias(S)/precision(S)</th>
<th>Error</th>
<th>Sensitivity</th>
<th>Bias(-)/Bias(+)</th>
<th>precision</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>p (kg·sec⁻²/m²)</td>
<td>B 17.00°C</td>
<td>5.000E-02</td>
<td>-4.39E-02</td>
<td>-2.17E-03</td>
<td>2.17E-03</td>
<td>8.68E-04</td>
<td>2.77E-03</td>
</tr>
<tr>
<td>V (m/s)</td>
<td>B 0.1787</td>
<td>1.000E-03</td>
<td>-1.00E-03</td>
<td>1.16E-04</td>
<td>2.54E-04</td>
<td>2.53E-04</td>
<td></td>
</tr>
<tr>
<td>F (N)</td>
<td>B L(0)</td>
<td>1.000E-03</td>
<td>-9.181E-03</td>
<td>1.16E-04</td>
<td>-1.16E-04</td>
<td>2.53E-04</td>
<td></td>
</tr>
<tr>
<td>F (N)</td>
<td>B V(0)</td>
<td>1.000E-03</td>
<td>-9.181E-03</td>
<td>1.16E-04</td>
<td>-1.16E-04</td>
<td>2.53E-04</td>
<td></td>
</tr>
<tr>
<td>压力計(1mm)</td>
<td>A/D変換/LSB</td>
<td>8.643E-01</td>
<td>-6.84E-02</td>
<td>6.84E-01</td>
<td>-6.84E-01</td>
<td>6.84E-01</td>
<td></td>
</tr>
<tr>
<td>压力計(3mm)</td>
<td>A/D変換/LSB</td>
<td>8.64E-01</td>
<td>-6.84E-02</td>
<td>6.84E-01</td>
<td>-6.84E-01</td>
<td>6.84E-01</td>
<td></td>
</tr>
<tr>
<td>压力計(4mm)</td>
<td>A/D変換/LSB</td>
<td>7.26E-01</td>
<td>-6.26E-02</td>
<td>6.26E-01</td>
<td>-6.26E-01</td>
<td>6.26E-01</td>
<td></td>
</tr>
<tr>
<td>压力計(5mm)</td>
<td>A/D変換/LSB</td>
<td>8.64E-01</td>
<td>-6.84E-02</td>
<td>6.84E-01</td>
<td>-6.84E-01</td>
<td>6.84E-01</td>
<td></td>
</tr>
<tr>
<td>压力計(6mm)</td>
<td>A/D変換/LSB</td>
<td>8.64E-01</td>
<td>-6.84E-02</td>
<td>6.84E-01</td>
<td>-6.84E-01</td>
<td>6.84E-01</td>
<td></td>
</tr>
<tr>
<td>压力計(7mm)</td>
<td>A/D変換/LSB</td>
<td>9.54E-02</td>
<td>-8.54E-03</td>
<td>6.54E-03</td>
<td>-6.54E-03</td>
<td>6.54E-03</td>
<td></td>
</tr>
<tr>
<td>C_{p}</td>
<td></td>
<td>8.68E-01</td>
<td>8.68E-01</td>
<td>9.71E-01</td>
<td>8.68E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{p}</td>
<td></td>
<td>6.23E-01</td>
<td>6.23E-01</td>
<td>4.14E-01</td>
<td>6.23E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ (kg·sec⁻²/m²)</td>
<td></td>
<td>5.000E-02</td>
<td>-4.39E-02</td>
<td>-2.17E-03</td>
<td>2.17E-03</td>
<td>8.68E-04</td>
<td>2.77E-03</td>
</tr>
<tr>
<td>ν</td>
<td></td>
<td>1.000E-03</td>
<td>-1.00E-03</td>
<td>1.16E-04</td>
<td>-1.16E-04</td>
<td>2.54E-04</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td></td>
<td>1.000E-03</td>
<td>-9.181E-03</td>
<td>1.16E-04</td>
<td>-1.16E-04</td>
<td>2.53E-04</td>
<td></td>
</tr>
</tbody>
</table>

Table 8: Calculation sheet for surface pressure measurement