OCTARVIAプロジェクトの総括

副議長 太田垣 由夫

OCTARVIAの成果

3年間の研究開発を通して、世界中の船舶の性能を客観的に評価する ものさし(ライフサイクル主機燃費)となる3つのプログラム、7つの手順書を作成した

PJアウトプット

- ・設計段階で性能が評価・比較できる「実海域性能の推定手法」を構築した
- ・実海域での実船性能が評価・比較できる「実船モニタリング手法」のを構築した

PJアウトカム

- ・評価法等の開発を行い、国際標準化を念頭に、推定手法等の技術基準を定めた
- ・日本船舶の実海域における性能優位性が、客観的かつ透明性をもって評価可能に
- ・日本における実海域性能向上の研究を進展させた

趣意書と実施計画書 v.s. 現状

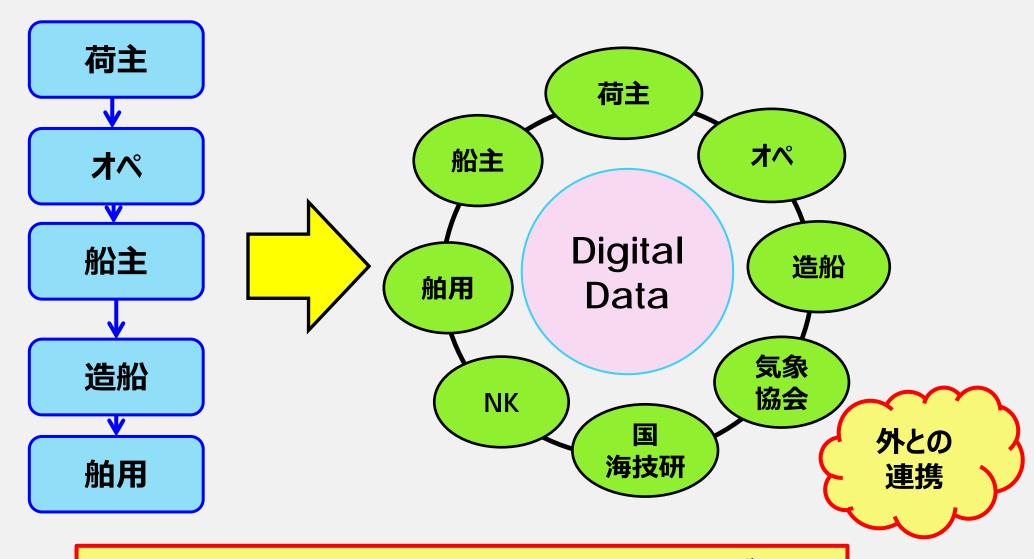
趣意書	 ● 戦略的アプローチのもと海事産業が力を結集・・・・船社、造船(重工、専業)、舶用を問わず力を合せる ● 国際競争力強化のため、海事クラスターが共同研究体制を構築する ● 環境対応に不可欠な実海域性能をテーマに国際競争における優位性を確保 	○ 海技研、NKほか25社が参加○ 海技研を軸に民間が参画▲ 国際優位性の提示は今一歩
実施計画書	● 世界の船の性能を客観評価できる「ものさし」	O 荒削りながら 「ものさし」を提示
	● 日本船舶の性能優位を示す	▲ 実船での優位性提示 が未了
	● 実海域性能の研究を促進し人材を育成	〇 その場を提供している
	【S1】モニタリング(計測標準化、客観的な評価・比較) 【S2】シミュレーション(性能試験、CFDの確立・標準化)	(実船計測は道半ば)
	【S3】性能評価(船主への提示)〜より高効率な海上輸送	(成果の実船適用が課題)
	→ <u>実船適用</u> → <u>国際標準化</u> → 地球環境負荷の低減	× 積み残した課題

技術課題の解決 → 実船適用 → 国際標準化

- まず残された技術課題を5W1Hで明確化すること

 ✓「実船試験検証」なら「いつ、誰が、どこで、何を、どうやって」まで書く
- 実船適用例を増やして国際標準化を推し進めるべき✓ 技術課題にも実船や産業界への適用が指摘されている
- 次期Pjtの目標を、「実船適用」と「国際標準化」に置いてはどうか

ライフサイクルを通した実船への適用 (DX)


- 船の開発、設計、建造から実船の運航、メンテ、マネジメントに至るまで、 船のライフサイクルでPjt成果を活用するシナリオを策定し、Pjtを進める ✓ S1、S2、S3の成果をつなぎ合わせ、
 - 海運、造船、メーカの枠を越えて船のライフサイクル性能を一元管理し、 高効率で地球環境負荷の少ない海上輸送に貢献する
- 海運、造船、メーカの連携を促し海事産業全体の効率向上を図る

ライフサイクルを通したPjt成果の使い道(性能一元管理)

	開発·設計·建造 船、機器	運航	<u>就航船</u> メンテ	マネジメント
S1	設計·建造情報 試運転成績	実 <mark>船計測の標準仕様</mark> モニタリングデータ解析法 FOCメータ (*5)	メンテ・状態の記録	各種評価·記録
S2	水槽・風洞試験法 船型性能モデル (メーカ情報組込) 個船性能シミュレーション モデル vs 試運転成績の同定	実船性能分析 (*1) シミュレーション vs 実船の同定 開発・設計へのF/B Weather Routing 最適積付検討 (*2)	経年劣化性能予測 減速船型改良 (*3)	航路別船隊性能予測(*4)
S3	新造船計画	個別船性能評価·比較 DCS、MRV報告	経年劣化性能評価 ドック要否判定	ライフサイクル主機燃費 減速運航性能評価 航路別船隊計画

- (*1) 平水中性能(初期、経年変化)と波風中性能を分離して分析。潮流影響も分離できないか。
- (*2) 船型性能モデルがあれば最適トリムの検討も可能ではないか。
- (*3) 減速運航では波風抵抗の割合が増加する。減速性能評価や船型改良検討が考えられる。
- (*4) 船社が手持ちの船隊をどの航路に振り向けるか、シミュレーションできる。
- (*5) 航走中に平水中性能と波風中性能をパワーカーブ上に表示する。経年変化や航海履歴も表示。

縦系列の海事産業から横の連携へ → 内から外へ

横の連携で海事産業全体の効率を上げる