1. はじめに

破壊事故などにより損傷した部材の破面観察から破壊の形態や破壊の原因を推定するフラクトグラフィの手法は破壊事故解析に際して一般的に行われている。損傷部材のフラクトグラフィの手法は主に走査型電子顕微鏡（SEM）による破面写真の観察により破壊機構、破壊様式に特徴的な模様を読み取って解析を行うものであり、専門的な知識と多くの経験が必要とする。このため、現在、フラクトグラフィの専門家を含めた大容量データ伝送能力を有するネットワークを構成し遠隔地からも高精度のSEM写真を基に破壊原因の推定を可能とするシステムの開発プロジェクトが進められている。

一方、最近ではSEMに加え走査型原子間力顕微鏡（AFM）や走査型レーザ顕微鏡を用いて破面形状の3次元形状を解析する手法が行われており、従来のフラクトグラフィの手法の主観的な要素を改善するものとして期待されている。

本報告で対象とする疲労損傷は実験において最も発生する頻度が高い形態であると言われており、特に高サイクル領域の疲労破壊では破壊進行過程の顕著な特徴が少ないことからその破壊形態を解明することは困難なことが多い。本報告では船舶の動力伝達軸などにしばしば発生する疲労破壊損傷の原因究明を破面解析から進めることを目的に、推進軸材料であるSF440A鋼について低サイクル領域から高サイクル領域までの回転曲げ疲労試験を実施し、得られた疲労破面についてSEM及びレーザ顕微鏡で観察すると共に、表面の3次元形状を計測し、破面の3次元的特長について検討した結果について報告する。

2. 実験方法

回転曲げ疲労試験に使用した材料は表1の化学成分と表2の機械的性質を有するSF440A鋼であり、船舶の推進軸用材料として一般的に用いられている。疲労試験に使用した試験片形状は図1に示すように試験片直径10mm、平行部が50mmの平滑試験片である。使用した試験機は小野式回転曲げ疲労試験機であり、破断繰返し数（N）が10^4～10^6サイクルの低サイクル疲労破壊領域では試験機回転数43rpm、破断繰返し数（N）が10^6～10^8サイクルとなる高サイクル疲労破壊領域では試験回転数1410 rpmとした。使用した試験機の荷重形式は一定荷重の2振り荷重であるため、疲労き裂発生後は破面同士の接触が繰返されることを考えられる。

繰返し応力振幅で整理したS-N線図を図2に示す。同図より供試材の疲労限は240MPa前後と考えられる。疲労試験により得られた破断面についてSEMにより観察すると共に、共焦点方式の走査型レーザ顕微鏡により破面の観察と表面形状の計測を行った。使用したレーザ顕微鏡は焦点深度の大きい光学顕微鏡としての機能を持つと共に破面深さ方向の凹凸寸法を256階調の濃淡画像として測定することができる。しかし、疲労破面のように凹凸の

表1 供試材の化学成分

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>0.31</td>
<td>0.55</td>
<td>0.015</td>
<td>0.02</td>
<td>0.10</td>
<td>0.17</td>
<td>0.20</td>
</tr>
</tbody>
</table>

表2 供試材の機械的性質

<table>
<thead>
<tr>
<th>σs</th>
<th>σr</th>
<th>Elongation</th>
<th>Hardness (Hv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>505 MPa</td>
<td>320 MPa</td>
<td>32.2 %</td>
<td>153</td>
</tr>
</tbody>
</table>

図1 疲労試験片形状
激しい面の測定データには実際には考えられない鈍いピークの輝度データなどのノイズが含まれるの。

このため、移動平均、最大値フィルタ、最小値フィルタ、メディアンフィルタ、線形平滑化フィルタなどを用いてノイズの除去を行った。

３．結果および考察

3.1疲労損傷破面の特徴

図3に回転曲げ疲労試験により得られた高サイクル領域での破断試験片（σ = 245MPa、
N=3.6787×10^6）の破面マクロ写真を示す。損傷破面は軸方向に直角な面となり、最終破断部分の破面
の起点部の反対方向とならず、試験片の回転方向に対し反対側にズレるスルーティング（Slueing）の
現象も見られるなど低応力高サイクル回転曲げ疲労損傷による破面の典型的な形態を示している。図4
は、（a）低サイクル領域および（b）高サイクル領域における疲労破壊起点部のSEM写真を示す。高サイ
クル疲労破面では起点部より放射状にすじ状の模様が伸びており、図5に示すようにこのすじ状の
模様に沿って幅が10〜20μmのバッチ状の領域が形成されている。き裂の進展とともに相対する破面
同士が繰返し接触することにより形成されたものと考えられる。図4（a）の低サイクル領域の疲労破
面では破面同士の接触により形成されたバッチ状の
領域がより大きく（約50μm）なり、観察される
領域が破壊起点部を中心として試験片回転方向の破
面領域となっている。形成されたバッチ状の領域に
は、図6に示すようにき裂進展方向に直角に並んだ
タイヤトラックがしばしば観察される。タイヤト
ラックの方向からねじりによるものであることを示
している。

図3 回転曲げ疲労破面（高サイクル領域）

(a) 低サイクル領域 （b）高サイクル領域

図4 破壊起点部のSEM写真

図5 破面接触により生じたすじ状模様
（高サイクル疲労破面，起点部より0.5mm）

図6 破面接触部のタイヤトラック
（低サイクル疲労破面，起点部より0.3mm）
疲労損傷破面の大きな特徴の一つであるストライエーション模様は高サイクル疲労破面では観察されないと言われている。図7は高サイクル疲労破面において、破断起点部より2.0mm位置で認められたストライエーション状模様を示す。しかし、破断起点部近傍では、破面同士の接触によるバッチ状の領域がほとんどでありストライエーションは観察されない。

3.2損傷破面の3次元的形状

図8に高サイクル疲労破面の凹凸をレーザ顕微鏡で測定し破断起点部からの距離と表面の凹凸を表面粗さ（中心線平均粗さR_a）で求めた結果を示す。
測定は破壊起点部からき裂進展方向に直角に150μm×100μmの領域を約0.5μm間隔で200ライン計測し求めたものである。表面の凹凸は破壊発生起点部近傍では大きいが、起点部から0.6mm〜0.8mmの位置で減少し、さらに離れるに従い凹凸が増大する傾向が認められる。起点近傍で破面同士の接触による破面の変形により、また、起点部より離れた領域ではき裂先端の応力拡大係数範囲△K値が大きくとなりき裂進展速度の増大により破面の凹凸の粗さが大きくなることが考えられる。

図9は比較的低倍率の対物レンズを使用して破壊発生起点部近傍の600μm×450μmの領域をレーザ顕微鏡で測定し、得られたデータをもとに破面の凹凸をき裂の進展方向に対して直角方向のラインプロファイルにより3次元的に示したものである。

破面の3次元表示結果によると、SEM写真で観察された破断起点部から放射状にひびわれ状の模様は必ずしも表面の凹凸として連続したものではないと考えられるが、断面の形状から100μm前後の周期を持ち、高さ30μm程度の凹凸からなる破面が形成されていることが推定される。

図10〜11は高サイクル疲労損傷破面について破断起点部からそれぞれ0.2mm、1.0mm、4.5mmの位置における160μm×150μmの領域の凹凸を測定し、き裂進展方向に直角な方向のラインプロファイルで3次元表示したものである。破壊起点部から0.2mmの起点部近傍では破面同士の繰返し接触により形成されたと考えられるき裂進展方向に伸びる大きな凹凸が見られるが、起点部から1.0mmの領域では破面の凹凸は小さく、比較的滑らかである。
図10 高サイクル疲労損傷破面形状
（破断起点部より0.2mm）

図11 高サイクル疲労損傷破面形状
（破断起点部より1.0mm）

図12 高サイクル疲労損傷破面形状
（破断起点部より4.5mm）

らかな形状を示しており、破面接触の影響は少ないと考えられる。一方、図12に示すように破壊起点部より4.5mmの領域では比較的大きな不規則な凹凸が見られ、き裂の進展速度の増大により形成されたものと考えられる。

4. まとめ

船舶の推進軸材であるSF440A鋼について低サイクル領域から高サイクル領域までの回転曲げ疲労試験を実施し、得られた疲労損傷破面をSEMで観察すると共に、レーザ顕微鏡により破面の凹凸を計測し以下の結果を得た。

（1）高サイクル領域の破面では、破壊起点部より放射状にすじ状の模様に沿って破面同士の接触により形成されたと考えられるパッチ状領域が観察される。

（2）低サイクル領域では、より大きなパッチ領域が破壊起点部より回転方向側の領域に観察され、パッチ状領域にはしばしばタイヤトラック模様が観察される。

（3）高サイクル疲労損傷破面の凹凸は、破壊起点部近傍では大きく、起点部から0.6mm～0.8mmの領域で減少するが、さらに離れるに従い大きくなる傾向を示す。

（4）レーザ顕微鏡による破面の凹凸の計測結果から疲労損傷破面の3次元形状の表示を行うことが可能となった。

参考文献

（1）江原隆一郎，”破損解析におけるフライテグラフィの役割”，日本機械学会材料力学部門春のシンポジウム論文集（2001－3）

（2）石井明，”レーザ顕微鏡による凹凸の形状計測”，日本材料学会関東支部材料講習会資料（平成9年10月）

（3）高井元弘，”回転曲げ疲労破面の3次元形状の評価“，日本機械学会東北支部講演会論文集（2000－3）