スーパーキャビテーティング・プロペラの設計に関する研究

右近 良孝*

Research on Design and Application of Super-Cavitating Propellers

by

Yoshitaka UKON

Abstract

This paper describes extensive work on the design of supercavitating propellers. In this research, outstanding results were obtained.

- (1) An accurate non-linear prediction theory for hydrodynamic characteristics of two dimensional supercavitating hydrofoils has been developed, based on a higher-order vortex panel method. Reasonable agreement with existing experimental data was obtained by this theory.
- (2) An effective design theory for two-dimensional supercavitating hydrofoils was developed, extending the principle of the above-mentioned theory.
- (3) High performance supercavitating hydrofoils were developed. Experimental results showed that the lift/drag ratio was around twenty one at an angle of attack of 1.5 degrees and a cavitation number of 0.21.
- (4) A reliable theoretical design method for supercavitating propellers was developed. Several high performance supercavitating propellers were designed and examined experimentally in the SRI large cavitation tunnel.
- (5) A rigorous theory was developed for predicting the hydrodynamic characteristics of supercavitating propellers. The predicted results agreed with the experimental results to within a few percent.
- (6) The present theoretical design method was successfully applied to the propeller of a racing boat. In the full scale test, the racing boat with the designed propeller achieved a maximum speed of about 97km/h and was faster than that with a Rolla propeller.

^{*} 推進性能部 原稿受付 平成8年3月29日

審查済 平成8年9月11日

 $\mathbf{2}$

- 目次
1. はじめに
2. スーパーキャビテーティング・プロペラ
とは
3. スーパーキャビテーティング翼型の研究 4
3.1 はじめに 4
3.2 スーパーキャビテーティング翼型
の性能計算法 4
3.3 高性能スーパーキャビテーティング
翼型の開発
3.4 スーパーキャビテーティング
翼型設計法
3.5 スーパーキャビテーティング
翼型性能計測····································
4. $\chi - \chi - \tau + \tau = \tau - \tau + 2\gamma + 7 = \gamma = 10$
の設計法及び性能計算法の研究
$4.1 \ (100) (12)$
4.2 スーハーキャビテーティンク・フロペク の乳計社の開発
の設計法の開発····································
4.2.1 成行政司伝 12 4.9.9 新設計注(その1)
4.2.2 新設計法(その?)
4.2.4 新設計法(その3)
$4.3 \ \text{X} - n^2 - \frac{1}{2} + \frac{1}{$
の性能計算法の開発
4.4 スーパーキャビテーティング・プロペラ
の性能計測
4.5 まとめ
5. 設計法の適用例
5.1 50ノット高荷重超高速船プロペラ22
5.2 60ノット高荷重超高速船プロペラ23
5.3 競艇用プロペラ
6. まとめ
6.1 総合成果28
6.2 今後の課題······29
謝辞······29
参考文献

1. はじめに

本研究は平成4年~6年度の3年間にわたって船舶 技術研究所(以下、船研という)の指定研究として行 われた。本報告ではこの研究で得られた総合的成果に ついて平易に述べる。

この研究が開始される前の 1980 年代後半には、超 高速船に関心が大いに向けられ、テクノ・スーパーラ イナを始め、海外でも同様のプロジェクトが開始され た。この種の船艇のプロパルサとして、ウォータージェッ ト・ポンプが採用されたが、プロパルサの専門家の間 では、疑問の声があった。ポンプ・ダクト部の長い管 路での摩擦損失や水を高くに持ち上げ、船内に積載す ることに依るエネルギー損失に起因する劣悪な効率や 重量増加、ゴミ等の海上浮遊物の吸込みによるポンプ の停止、取水口及びインペラ翼並びにダクト内のキャ ビテーションによる騒音・振動及びエロージョンの発 生、波浪中での空気吸込みによるエンジンのオーバレ ブ(回転数の過上昇)などのウォータージェット・ポ ンプ固有の深刻な問題があることが知られていた。高 速艇においてウォータージェット・ポンプがプロパル サとして最近用いられるようになってきたのは、推進 効率の観点からではなく、諸外国では浅吃水船とせざ るを得ない場合に用いられており、この他操船上の要 求によるものと思われる。

これに対して、超高速船用のプロパルサとして、効率に関してスーパーキャビテーティング・プロペラ (SCP)が最も優れていることは学問上、良く知られ ていた [1, 2]。このため、米国を始めとする先進国、 特に米海軍において熱心に SCP の開発研究が行われ たが、その設計法が確立できず、充分な成果は挙げら れなかった。設計で狙った効率が得られないとか、効 率の良いプロペラが得られても、設計で要求するスラ スト(推力)を発生しない [3] ことなどから、各国 とも SCP の開発を断念した。例外的に、SSPA から 設計チャートが発表された [4]が、必ずしも高性能 とは言えないものであった。この様に高性能 SCP の 設計法がなかったため、SCP を超高速船に採用する には、相当の設計リスクを覚悟する必要があった。

船研では、効率の点において他のプロパルサより明 らかに格段に優れている SCP を設計するためのツー ルを開発し、具体的に SCP の設計法を開発する研究 プロジェクトを平成4年度から平成6年度の3年間に わたって船研の指定研として開始した。一方、船研は (出日本造船研究協会と共同研究(平成3年度~5年度) を結び、造船所・プロペラ・メーカー及び大学と協力 して、具体的に従来より大幅に効率の高い SCP の開 発研究を行った。

SCPの研究の進め方としては、本指定研に先立っ て、一般研「高速船プロパルサの性能予測の研究」に おいて行った調査研究の成果 [5] を活用した。先ず、 文献調査を行った結果、既存の SCP の設計法では思 う通りのスラストと効率が得られない。一般に、設計 スラストより 15%低いスラストしか得られないこと が明らかになった [5]。従来の SCP 設計法 [3] を用 いて模型プロペラを設計した結果、効率が低く、設計 点でスーパーキャビテーション(SC)状態とならない ことが分かった [6]。これは、従来用いられていた

```
SCPの設計に用いられる翼素の設計計算があまりにも
ズサンであることによる。このため、先ず、SC 状態
の翼素の性能計算法及びプログラム・コードを開発し
た[7,8]。これとともに、翼素の性能計測法も研究
した [9]。次に、SCPの設計法とそのプログラム・
コードを開発した [8, 10]。同時に、SCPの性能計算
法とプログラム・コードを開発し [11, 12]、設計精
度の向上を図り、最終的に設計された SCP について
のみ、模型を製作し、模型実験で所定の性能が得られ
ることを確認した。この模型実験においても計測精度
を確保するため、計測法について注意を払って行った
[13]。
    更に、設計法の厳密化を図る[14,15]とと
もに、模型プロペラの他にも、実際に用いられている
高速艇に SCP を適用し、その実用性及び有効性を確
かめるため、競艇用プロペラを設計し、競艇場におい
て性能確認を行い、従来のプロペラより格段に高性能
であることを証明した [16]。
```

この他、SCP の他にも、高速船艇用プロパルサに おいて、理解が充分でない現象や問題についても取り 組んだ [17~21]。

本報告では、以上に述べた研究成果について総合的 に取りまとめて述べる。

スーパーキャビテーション・ プロペラ (SCP) とは

ー般商船用プロペラは回転数が毎秒1~2回転程度 と遅いものの、プロペラ直径が大きいため、プロペラ 翼の端になるに従ってプロペラへの流入速度は大きく

船舶技術研究所報告 第33巻 第3号(平成8年)総合報告 3

なる。このため、翼の表面やまわりの圧力は低くなり、 ほぼ真空に近い圧力(蒸気圧)より低下すると、常温 でも蒸発現象が生じ、Fig.1に示す様に翼の表面が無 数の蒸気の泡や気泡が合体して膜状になったもの(キャ ビティという)で覆われる。この現象はキャビテーショ ン(Cavitation)と呼ばれる。キャビテーションが発 生すると、プロペラの効率や推力が低下したり、船体 の起振源となって、不快な振動・騒音が発生したり、 気泡がつぶれる時の衝撃圧で翼の表面が損傷したりす る。これらのどの問題についても、過去100年間の研 究で進展はあったものの、未だにそのメカニズムが充 分に解明されておらず、キャビテーションの引き起こ す問題を思いのままに制御できていない [22]。

キャビテーションの状態を説明するための幾つかの 分類法があるが、キャビティの長さが翼の長さより長 くなると、スーパーキャビテーションと呼ばれ、短い と、部分キャビテーション又はサブキャビテーション と呼ばれる。これをプロペラの要素である翼型で対比 させ、Fig.2に示す。

船を高速で航走させようとすると、通常、比較的小 さい直径のプロペラを毎秒20~30回転の高速で回転 させるため、プロペラ翼面の全部がキャビティに覆わ れ、SC状態となったりする。エアロフォイル型の翼 素からなる一般商船用プロペラをこの様な状況で使用 すると、推力が出ず、あたかも空回りしたかのごとく になり、目的の船速が出ない。また、Fig.2に示す様 に、SC状態となるエアロフォイル型であるため、キャ ビティも含め翼素としての抗力が大きくなるので、プ

Fig.1 在来型高速艇用プロペラに発生したキャビテーションの写真

4

ロペラの効率が大幅に劣悪化する。

一方、スーパーキャビテーティング(SC)翼型は この様なキャビテーション状態となることを前提にし て設計されるので、適切に翼型を設計すると、エアロ フォイル翼型にキャビテーションが発生していない時 や部分キャビテーション状態となっている時と同等の 性能を発揮させることができる。翼型の背面形状はキャ ビティの内に入るので、任意となり、正面形状のみし か設計の自由度がないが、最適な正面形状はキャビテー ション流理論(Cavity Flow Theory,空洞理論)[23, 24]を用いることによって得られる。この様な翼素ま わりの流れ場をプロペラで実現すれば、効率の優れた プロペラを設計できることになる。これが、スーパー キャビテーティング・プロペラ(SCP)の原理であ る。

よって、SCP の設計法を確立するためには、SCP そのものの設計法はもとより、SC 翼型の設計法も重 要となる。更に、設計した SCP が所要の性能を発揮 するかの確認は模型試験や実機試験で行う。しかし、 模型プロペラは非常に高価であるので、性能を予め評 価できる SCP の性能計算法もツールとして必要とな る。本研究ではこれらの理論とプログラム・コードの 開発を行った。

3. SC 翼型の研究

3.1 はじめに

SCP は前述の様に通常型のプロペラと異なる概念 で設計されるので、プロペラの翼断面形状はその流体 力学的状況に対応して最適化された形状となる必要が ある。この翼断面を切り取った翼型について、性能計 算、設計及び性能計測が精度良くできないと良い SCPを設計することはできない。よって、SCPその ものの研究の前段階として SC 翼型の研究を行った。

3.2 SC 翼型の性能計算法

キャビテーション状態の翼型性能計算法は古くから 提案されており、花岡 [23] 及び西山の理論 [24] は 有名であり、現在でもキャビテーションが発生したプ ロペラの性能計算やキャビテーションの発生範囲の推 定 [25~27] に使われている。これらの計算法は線型 理論と呼ばれるものであり、翼の前縁端が、カミソリ の刃の様に鋭くとがっており、その点からキャビテー ションが発生することを前提としている。一方、実機 では実用上の観点から前縁端にある程度の厚みをつけ る必要があること、また、設計条件によっては、粘性 影響でキャビテーションが必ずしも前縁から発生しな いことがあり、この様な場合に線型理論を適用するこ とに無理がある。このことから、非線型理論による SC 翼型性能計算法を開発することとした。

本研究では、非線型理論のうちでも、最も進んだ高 次渦パネル法(Higher Order Vortex Panel Method) に基づく SC 翼型性能計算法を採用することとした。 この方法は翼型の表面を多数のパネルで表現し、各パ ネルでの渦の強さを一定にしたり、一次式や二次式な どで変化させて、翼の性能等を計算する方法であり、 航空工学でかなり前から用いられている。SC翼型の 計算で高次渦パネル法を用いるのは、翼前縁近傍では SC翼型はエアロフォイル翼型より格段に薄いためで ある。非線型理論で良く用いられる渦の強さ一定のゼ

Fig.2 翼型とキャビテーション

ロ次渦パネル法では「リーク現象」のため、計算精度 が悪くなり、キャビテーションの計算が困難となるた めである [27]。本研究では、計算量と精度の妥協と して、一次渦パネル法 (LVPM;Linear Vortex Panel Method) に基づく計算法とした [7]。また、キャビ ティの数学的特異性を考慮し、計算効率を上げるため、 翼正面やキャビティ後端は一次渦パネル、キャビティ 表面はゼロ次渦パネル、キャビティ前端及び翼正面後 縁端は特異渦パネルを用いた。

キャビテーションは層流剥離点から発生すること [25~27] が良く知られており、本計算法でもこの点

 Fig. 3
 Waid 翼型キャビテーション特性に関する

 理論と実験の比較

を考慮している。キャビティの形状は逐次近似計算に よって、境界条件を満たす様に行われる。翼に加わる 力は各パネルに働く圧力を積分して求める。粘性影響 は層流境界層理論を用いて計算している。

本計算法により、SC 翼型のはしりとして有名な Tulin 2 項翼について計算し、カリフォルニア工科大 学 CIT で Waid によって行われた実験 [28] と比較し た。この結果を Fig. 3 (a) と(b)に示す。揚力及び抗力 とも、大迎角の 6° や 4° で計算値と計測値は比較的良 く一致するが、2°の低迎角では一致が良くない。

キャビティ長さに関して、本計算法と計算結果を比 較したものを Fig.4 に示す。計算によるキャビティ 長さは計測値より大きく(縦軸がキャビティ長さの逆 数となっていることに注意)、本計算法はキャビティ の長さを長目に予測する。この原因として採用したキャ ビティ後端モデルが閉塞型 [23~25] によるものと考 えられ、今後の課題と考えられる。

本計算法は定量的には完璧に実験値と一致しないも のの、定性的には実験結果と良く一致する。一方、 SC 翼型の実験は後述の様に、特に抗力に関して精度 の良い計測が難しいことから、本計算法は今後の理論 的検討や設計に耐えられるものと判断した。

3.3 高性能 SC 翼型の開発

SC 翼型として、前述の Tulin 2 項翼型が有名であ り、SCP の翼断面として採用されてきた [3, 4]。し かしながら、この断面は翼前縁近傍で翼厚が非常に薄 いため強度不足となるので、背面の翼厚を増して使用 されたため、理論で予測された性能が発揮できなくなっ

 Fig. 4 Waid 翼型のキャビティ長さの理論と

 実験の比較

6

ていた。そこで、先ず、Johnsonの線型理論^[29]で 性能の良い、即ち、揚抗比の高い翼型を検討し [5]、 Johnson5項翼型を基本形状とすることにした。Johnson 翼型とは、キャビティの長さを無限大とした時に、 正面形状が理論で与えられる特殊な多項式により表現 され、揚抗比が最大となる翼型である。項数の増加と ともに揚抗比は増加するが、5項以上としても、大幅 に揚抗比は増加しない [5] ので、5項翼とした。線 型理論で得られる背面形状では強度不足であるので、 翼厚を若干増した翼型 (Johnson Five Terms M.W. No.34)とした。Fig.5に示す。実験を行った結果、 設計迎角である 2.07°で、理論値の揚抗比 32.3 には達 せず、計測で得られた揚抗比は迎角5°で10程度であっ た。

この翼型を実用的に改良するため、正面形状は線型

理論で与えられるものとし、前述の一次渦パネル法を 用い、設計迎角でいかなるキャビテーション数 σvで も翼背面がキャビティを突き破らない様な背面形状を 計算して求めた。得られた翼型 (SRJN-I, M.W. No. 36) を Fig. 5 に示す。この翼型は迎角 2°、キャビテー ション数が 0.18 で、15 程度の揚抗比を与えることを 実験で確かめた。これを Fig.6 に示す。

更に、翼型性能を向上させるため、線型理論で与え られる Johnson 5 項翼型の正面での圧力分布を満たす 様な正面形状を一次渦パネル法で求めた。この際、 Fig.7に示す様に正圧のピークを85%から90%翼弦 長位置に設定し、翼正面前半部の圧力を下げ、着力点 を翼後縁側に寄せた。背面形状も一次渦パネル法で求 めたが、翼強度上の余裕を考慮して、低迎角でもキャ ビテーションが発生し易くしたりする等の工夫を行っ た [8]。Fig.5 に示すこの翼型 (SRJN-II; M.W. No. 38) は、Fig.8に示す様に迎角1.5°の時、キャビテー ション数 0.23 で 21、0.12 で 18 程度の揚抗比を与えた。 これらの値は理論予測値に近い値であり、設計の意図 が着実に反映された翼型にほぼなった [8]。この翼型 を、後述の様に、本研究で設計する SCP の基本翼断 面とした。

3.4 SC 翼型設計法

SC 翼型性能計算法である一次渦パネル法は翼面形 状を与えて、2次元翼面上の圧力分布を解くとともに キャビテーション発生域については、圧力分布が既知 として、キャビティの形状を逐次近似によって変形さ せ、境界条件を満たす様に求めている。ここで、発想

を変えて、翼面自身をも変形可能なものとすると、翼 面、特に、翼正面側での圧力分布を与えると、逐次近 似により翼形状を求めることができる。よって、正面 側の最適圧力分布を与えることができれば SC 翼型が 設計できることになる。前述の SRIJ-II 翼型はこの考 え方によって設計されている。最適性能をもつ翼型の 圧力分布が与えられれば、最適性能翼型が設計できる [7, 8, 9]。この手法は SC 翼型以外についても応用で きる手法で、今後も応用可能なアイディアの一つであ る。

Fig.7 設計圧力分布

Fig. 8 SRJN-II 翼型の揚抗比

船舶技術研究所報告 第33巻 第3号(平成8年)総合報告 7

3.5 SC 翼型性能計測

翼型性能計算法の精度確認及び設計結果の評価をす る上で、性能計測は重要な役割を果たす。また、実験 は計算と比べて、時間と費用がかかるため、最近は理 解が得られず、行いにくくなってきている。この様な 状況から、逆に、実験データは大変に貴重なものとなっ てきている。実験は理論の検証、モデル化などに使わ れることから、すべての基準となるので、計測精度の 確保については万全の注意を払う必要がある。

船研の大型キャビテーション水槽は、建設当時の考 えでは基本的にプロペラの性能計測を第一として設計 された。このため、第一計測部は直径 750mm の円筒 形状であり、翼型性能計測、特に2次元翼型の試験が 極めて行いにくい計測部の形状なっている。2次元 SC 翼型の試験を行うため、Fig.9 に示す様に、計測 部に各種の治具を設計、取り付けることにより、実験 可能とした。翼型に加わる力は防水型三分力計(日章 電機製;容量;揚力、抗力200kgf)で計測した[9]。 また、翼型まわりの流場を計測するために、レーザ・ ドップラ流速計(LDV)を用いた。この LDV を用い て、翼型の後流を計測することにより、抗力が求める ことができ、三分力計による抗力計測との対応を調べ ることができる。本研究では、10個の2次元SC翼型 の他、4個の3次元SC 翼型について計測を行った。 これらの翼型のうち、主なものについての要目を Table 1 に示す。

本研究で行った翼型試験のうち、重要な幾つかの例 について述べる。

(1) Waid 翼型

この翼型は理論翼型である Tulin 2 項翼型の翼厚を 実用上の観点から増したもので、第一計測部における

Fig.9 SC 翼型試験部

SC 翼型翼力計測法の精度確認に用いられた。先ず、 キャビテーションが発生していない(NC)状態につ いて、翼型の揚力、抗力の計測を行った。船研での計 測データを東京大学(UT)とCITでの計測結果[28] と比較した結果、東大と船研の計測値は揚力、抗力と も一致するが、CITでの計測値は両者について低い計 測値となった。翼型の製作精度の違いとも思われるが、 不明である。

キャビテーションが発生した状態の揚力及び抗力と も、船研の計測値は東大や CIT の計測値により大き くなった。揚力については、東大の計測値の違いは静 圧の計測位置の違いによるもので、これを補正すると 両者は近づく。一方、抗力の不一致については、船研 の計測装置の一部であるセンタープレートからキャビ テーションが発生したためでないかと推測され、計測 部の改造を行った。Johnson 5 項翼型 [29] について も計測値に同様の傾向がみられた。

(2) SRJN-I 翼型

Johnson 5 項翼型計測の結果、性能に関して不満が 残ったので、前述の様に一次渦パネル法によって背面 形状の設計を行った [9]。設計された翼型は SRJN-I 翼型と呼ばれ、改造された計測部で翼力計測を行っ た。NC 状態では、揚力に関して、東大の計測値と一 致したが、抗力の計測値が若干大きくなる傾向は変わ らなかった。キャビテーション状態では、揚力に関し ては Fig. 10 に示す様に迎角 1.5°での両機関の計測は 大略一致する。理論計算とは、船研の計測値が特に良 く一致する。一方、抗力に関しては、Fig. 11 に示す 様に船研の計測値は東大のそれより大きく、計算値と 東大の計測値は一致する。また、迎角 4°の時も同様 な傾向があり、船研の抗力の計測値は、Fig. 12 に示 す様にキャビテーション数の低下とともに、2つのピー

M.W.No.	29	30	31	32	34	36	38	40	41	42
Name	Step	Delta	A	Waid	Johnson 5 Term	SRJN-I	SRJN-II	Wedge	В	С
2D or 3D	2D	зD	ЗD	2D	2D	2D	2D	2D	3D	зD
Chord Length c_0 [m]	0.150	0.180	-	0.150	0.150	0.15	0.15	0.150	-	-
Chord Distribution	Const	Linear Tapered	Tapered	Const.	Const.	Const.	Const.	Const.	Tapered	Tapered
Mean Chord Length cm [m]	0.150	-	0.0765	0.150	0.150	0.150	0.150	0.150	0.0785	0.0785
Semi-Span Length [m]	0.149	0.045	0.2470	0.149	0.149	0.149	0.149	0.149	0.2236	0.2236
Aspect Ratio	2	1.0	7.30	2	2	2	2	2	6.24	6.24
Wing Section	Newton-Rader	Fiat	-	Tulin 2 Term	Johnson 5 Term	Mod. Johnson 5 Term	Mod. Johnson 5 Term	Wedge (10deg)	-	-
Material	Anodized AI 52S	Anodized AI 52S	SUS304	SUS303	SUS303	SUS303	SUS303	Anodized AI 52S	SUS304	SUS304

Table 1 供試翼型の主要目

クが生じ、これらのピークの出現後、単調に減少する。 この傾向は、東大での計測にも見られるが、東大のデー タは理論との矛盾をおこすほど極端ではない。

船研の翼力計測法の精度を調べるため、LDV を用 いて後流計測を行い、抗力を求めた。Fig.12 に示す 様に、抗力計測値と完全に一致することから、翼力計 測等の計測に問題があるのではなく、流場がその様な 計測値を与える状況となっていることが明らかにされ た。更に、この模型についてはキャビティのモデリン グのためにキャビティ表面近傍の流速分布を計測し、 境界層の発達の様子を調べたり、キャビティの不安定 現象のメカニズム解明の努力がなされた。その一例 [17] として、LDV によるキャビティ表面近傍の流場 の計測結果を Fig.13 に示す。縦軸は翼の上下面方向 の空間座標を示し、乙座標は翼弦長で無次元化されて いる。キャビティ表面の外側に境界層が存在し、その 外端での流速はキャビテーション流理論の仮定と一致 することを確認した。

(3) SRJN-II 翼型

前述(3.3節)の様に、低迎角でもSC状態となり、 より高い揚抗比が得られる様により厳密に設計した翼 型(SRJN-II)[9]について、翼三分力計測を行った。 NC状態では、船研で計測された揚抗比は理論より30 ~40%低くなる傾向は同じであった。Fig.8に示すキャ ビテーション状態での計測の結果、船研での揚力の計 測値は理論計算と良く一致するが、抗力は大きくなり、 揚抗比に関しては、理論や東大の計測値より小さくな る。これらの計測では、側壁の境界層の影響の補正な

Fig. 12 LDV による抗力計測(迎角4度)

Fig. 14 楔型翼型

どをしていないことから、低キャビテーション数での 計測においては今後,データ解析法を改良する必要が あるものと思われる。

(4) 楔型翼型

SC 翼型に発生するキャビテーションのモデル化の ための知見を得るため、Fig. 14 に示す翼型後縁に圧 力孔を設けた楔型翼型 [30] についても計測を行った [31]。翼型以外にも、ディスク側面にも圧力孔を設け、 前述の翼型の抗力計測において現れた異常現象の原因 を検討した。Fig. 15 に示す様にやはり、この翼型に おいても、船研での計測では抗力に 2 つのピークが現 れた反面、Parkin の実験 [30] ではその様な異常現 象は見られない。

(5) ステップ付翼型

SC 翼型について理論計算をする時、キャビティ内 は一定の蒸気圧になっているとして計算する。キャビ

Fig. 15 楔型翼型の揚力と抗力の計測値

ティ内の圧力計測は多く行われているが、計測の難し さから、今一つ明確でない。特に、キャビティ表面が 変動する場合や白濁した様相のキャビティとその内部 圧力の関係について調べるため、Fig.16に示すニュー トン・レーダ翼型の前縁から20%の背面を削ぎ落と したステップ付き翼型を製作した。ステップの後方の 40%、60%、80%翼弦位置に圧力計を貼り付けて計測 を行った[20]。キャビティ内の前縁側では、迎角に かかわらず、蒸気圧よりわずかに高い圧力になるが、 後縁側のキャビティ変動域ではキャビティ内の圧力が 蒸気よりかなり高く、一様な圧力となっていないこと などが分かった。

(6) デルタ翼

Fig. 17 に示すデルタ翼は強い前縁剥離渦が発生し、 Fig. 18 に示す様な渦の構造をもつことが風洞での豊 富な計測データで分かっている [32]。そこで、この 翼型について渦の構造とキャビテーション発生のメカ ニズムやキャビティ内の流れ構造について調べてみた [19]。この実験ではキャビティ内のリエントレント (出戻り)・ジェットの可視化を行うことができ、今後 の研究のベースとして有益なデータが得られた。また、 翼端渦キャビテーション (Tip Vortex Cavitation) の初生時に、大きな騒音が生じることから、キャビテー ション騒音の研究のための有効な手段となると考えら れ、今後の研究に活用できることが分かった。

(7) 3次元水中翼

高速船用水中翼の性能向上は重要な課題であるが、 水中翼はストラットやウォータージェット・ポンプの

Fig.17 デルタ翼の形状

Fig. 16 ステップ付翼型の形状