20

本計算による計算結果と計測値の比較を Fig. 37~

Fig. 40 SRIJ-II SCP の圧力分布に関する設計値 と計算値の比較

39 に示す。Fig. 37 での比較では、スラストとトルク の計算値がわずかに小さいが、効率は比較的良く一致 する。スラストとトルクに関する計算値が低くなる原 因は、キャビティに覆われている部分の圧力の計算値 が Fig. 40 に示す様に蒸気圧よりわずかに高くなる傾 向による。よって、この領域の圧力を蒸気圧であると して性能計算すると、スラストが 0.6%大きく、トル クが 1.5%小さく、効率が 2.3%大きくなり、理論と 実験とは更に良く一致する。

Fig. 38 のキャビティ長さの比較において、SRIJ-II プロペラの場合は SRIJ-I プロペラの場合と比べて一 致は良くなっているが、この計算では後流渦の変形を 考慮していないので、翼端側の渦の密度が後流中で変 化せず、実験で見られる翼端渦をシミュレーションで きない。

Fig. 39 に示す後流渦の変形を考慮した場合の計算 では、翼端側でも計算と実験とは定性的にも一致し、 翼端渦が形成される。設計点でのキャビテーション・ パターンのシミュレーションを Fig. 41 に、ほぼ同一 の方向から撮った写真を Fig.33 に示す。後流渦の変 形を考慮しているので、翼端側及び翼根側で渦が互い に集まって、より太い渦になって、翼端渦が形成され る。翼端渦の節の周期ばかりでなく、長さも計算と実 験とは一致している。

Fig. 41 SRIJ-II SCP $0 + r \forall r - v = v \cdot r \varphi - v$

他の SCP (SRIJ-III, SRIJ-IV, SSPA, Newton-Rader プロペラ) について計算を行った結果、Table 3に示す様に数%の精度でスラストとトルクを予測で きることを確かめており、信頼性のある計算法が開発 されたと言える。

本計算法が充分な精度があることから、設計で得ら れた SCP について性能予測をすることによって、実 験での設計評価の回数を減らすことができ、開発効率 を上げ,設計精度向上に専心することができることに なる。

4.4 スーパーキャビテーティング・プロペラの性能 計測

設計された SCP の性能が設計の意図通りに設計さ れているかを調べる方法は、実機試験で確かめるのが 最も良いが、船の姿勢や潮流、波、風、うねりなどの 自然現象により複雑な影響を受けるため、合否の単純 な判断はできても、結果の因果関係を明確にすること は、殆ど不可能と言える。一方、模型実験は状況が目 に見え、かつ、スラスト、トルク、流速、プロペラ回 転数、気泡核の多い少ないなどの情報が得やすいため、 因果関係の推定が比較的容易である。

SCP は従来のプロペラと異なり、非常に低圧で試 験を行うことから、計測精度の確保に注意を払う必要 がある。このため、SCP の性能計測では第1計測部 船舶技術研究所報告 第33巻 第3号(平成8年)総合報告 21

において2つの動力計(主動力計;K&R J26 と斜流 動力計;K&R H38)を用い、同じプロペラで計測を した。また、プロペラ回転数や空気含有率を変化させ、 それらの計測結果に及ぼす影響を調べたり、これらの 量を変化させても同等の結果が得られることを確かめ た。また、ノン・キャビテーション状態については、 曳航水槽でのプロペラ単独性能試験結果と比較するこ とにより、キャビテーション水槽の動力計の検定をし た。

また、SCP の性能計測に際しては、先ず、ダミー・ ボスを動力計に取り付け、圧力、流速をパラメータと して変化させ、ダミー・ボスの発生するスラスト及び トルクを計測した。ダミー・ボスによる計測は本計測 に先立って行った。次に、プロペラを動力計に取り付 け、試験状態でスラスト、トルクを計測し、予めダミー・ ボスで計測した値を差し引きし、補正した。

以上の様な手続きを踏んで計測を行い、精度の確保 につとめた。詳細は文献 [13] に記述した。

4.5 まとめ

本研究では、新しい信頼性のある SCP の理論設計 法を開発し、ここではその開発経過について述べた。 既存理論設計法の長所を取り入れ、揚力面補正や SC 翼型に関する従来の理論的誤りを正し、より高精度な 手法を取り入れることによって、設計法を作り上げた。

										<u>, </u>
名称		N-A	DTMB	SSPA	SRIJ-I	SRIJ-II	SRIJ-A	SRIJ-III	SRNJ	SRIJ-IV
M.P.No.		339	341	345	354	356	365	366	367	369
设针法		N-Rチャート	DTMB法	SSPA 7 ≁ ─ ト	SC楊力線	SC揚力線	SC揚力面	SC 腸力面	SC揚力面	SC摄力面
設計値	前進率	1.34	0.775	1.10	1.10	1.10	1.10	1.10	1.10	1.10
	スラスト係数	0.235	0.0928	0.159	0.160	0.160	0.217	0.156	0.164	0.163
	トルク係数	0.0710	0.0162	0.0430	0.0354	0.0360	0.0545	0.0364	0.0373	0.0393
	効率	0.690	0.705	0.647	0.786	0.772	0.696	0.750	0.771	0.726
計測値	前進率	1.34	0.775	1.10	1.10	1.10	1.10	1.10	1.10	1.10
	スラスト係数	0.270	0.125	0.170	0.183	0.165	0.203	0.150	0.160	0.169
	トルク係数	0.0790	0.0225	0.0468	0.0474	0.0420	0.0516	0.0356	0.0378	0.0427
	効率	0.728	0.670	0.636	0.676	0.707	0.688	0.738	0.741	0.695
	荷重度	0.334					0.465	0.334		
計測値	前進寧	1.41	0.870	1.15	1.17	1.12	1.013	1.05	1.10	1.13
	スラスト係数	0.259	0.099	0.173	0.180	0.166	0.188	0.146	0.160	0.168
	トルク係数	0.0780	0.0198	0.0477	0.0475	0.0412	0.0470	0.0345	0.0379	0.0435
	动車	0.744	0.695	0.664	0.703	0.718	0.645	0.709	0.741	0.695
解析值	前進率	1.34	0.775	1.10	1.10	1.10	1.10	1.10	1.10	1.10
	スラスト係数	0.271	0.092	0.172	0.192	0.162	0.217	0.148	0.164	0.172
	トルク係数	0.0780	0.0163	0.0450	0.0484	0.0391	0.545	0.0347	0.0373	0.0410
	効率	0.740	0.692	0.669	0.692	0.726	0.696	0.747	0.771	0.734

Table 3 SCPの設計条件と予測値、計測値の比較

揚力面補正法も既存の考え方から大幅に進んだ概念で 構成されている。この設計法により、従来より格段に 高効率で要求スラストや強度を満足する SCP が設計 できるようになった。

また、SCP の性能予測計算法は設計において重要 な役割を果たす。設計結果の確認や、オフデザインで の性能把握に極めて有効であり、設計効率を高めるの に役立った。本研究で開発された SCP 性能計算法は 実験と数%の誤差で良く合うことから、SCP の設計 には不可欠なツールである。

SCP の設計結果を確認するのに模型実験が最も手 軽で信頼性があり、また、設計で齟齬があった時など に、情報が得やすいので原因究明を行うのに有効であ る。SCP 独特の実験を考慮して計測を行い、実験精 度の向上を果たすことができた。

以上の3つの研究が総合的に機能して初めて設計法 が設計法として意味を成すことを忘れてはならない。

5. 設計法の適用例

5.1 50 ノット高荷重超高速船プロペラ

第4章で設計例も含めて SCP の理論設計法につい て述べたが、設計法が SRIJ-II プロペラの設計で、ほ ぼ高効率 SCP の設計の目途がつき、更なる効率と設 計精度の向上を目指した。4.2.4 で述べた最終的設計 法を用い、最適性能を得るため、設計の観点を変化さ せて設計した例について述べる。

(1) SRIJ-III プロペラ; MP No.366

このプロペラは、SRIJ-Iや-II プロペラと異なり、 強度の許す範囲で、翼弦長を小さくした。各半径位置 での揚力係数を大きくし、キャンバーを大きくして揚 抗比を上げることによって、効率向上を狙ったプロペ ラである。また、効率の向上の観点からアスペクト比

Fig. 42 SRIJ-III SCPの形状

を大きくすることも有効である。

この設計では、揚抗比を上げるために、翼根部を除 く各半径位置において初期設計で得られた翼断面形状 について、2次元SC翼理論で後縁でのキャビティ厚 みを計算し、SCPでもその厚みとなるようにピッチ を増減させ、SCP性能予測法で最終ピッチを決定し ている。この設計では、初期設計プログラム中の理論 チャートや揚力線理論等のもつ誤差を是正することに なる。設計の最終段階でも、SCP性能予測計算で所 要スラストが発生することを確認した。この計算によ ると、カスケード効果によると考えられる補正分はピッ チ比で 0.05 程度であった。

Fig. 42 に示す SCP の模型を製作し、キャビテーショ ン試験を行い、Fig. 43 に示す性能計測結果を得た。 設計前進率のJ=1.1 では、設計予測値よりスラスト は4%小さく、効率は73.8%と、約2%低くなった が、ほぼ狙いどうりの SCP が設計できた。実験でス ラストが低くなるのは、Fig. 44 の写真に示す様に、 模型実験では背面すべてが SC で覆われなかったため である。

(2) SRIJ-IV プロペラ; MP No.365

SRIJ-II プロペラは比較的高効率となり、設計スラ ストを発生したが、翼強度が実機レベルに対応しない ので、実機レベルの翼強度を満たすように設計した。 この設計では、翼根部で SC 翼型を用いることは性能 ばかりでなく強度上も不利となるので、前章の設計で

Fig. 43 SRIJ-III SCP のキャビテーション性能曲線

Fig. 44 SRIJ-III SCP のキャビテーション・パターンの写真

述べた様に、翼根部ではエアロフォイル翼型(NACA 16系)を用いるハイブリッド型SCPとした。SC翼型 を0.6Rより翼端側で用い、中間の領域は滑らかにフェ アリングして翼断面形状を決めた。得られたSCPを Fig. 45 に示す。SCP性能に関する実験結果をFig. 46 に示す。設計点である前進率では、スラストが4%大 きく、効率は69.5%で、設計予測より効率が約4% 低くなった。キャビテーションパターンをFig. 47 に 示す。強度条件を確認するため、有限要素法で流体力 による翼応力を計算した結果、8.99kg/miとなり、設 計目標値の8.33kg/miより若干大きくなったが、こ の種の高荷重プロペラにおいても、70%近くの高いプ

Fig. 45 SRIJ-IV SCPの形状

ロペラ効率が得られることを示すことができた。

5.2 60 ノット高荷重超高速船プロペラ 前節の SCP より、更に超高速な船への SCP の適用 を試みた。設計条件は、船速が 60 ノット、一軸あた りのスラストが 200 トンであり、前進率 J=1.1 で、 スラスト係数 C₁=0.465、キャビテーション数 σ_V=

Fig. 46 SRIJ-IV SCP のキャビテーション性能曲線

Fig. 47 SRIJ-IV SCP のキャビテーション・パターンの写真

0.3 と、かなり高荷重、低キャビテーション数用の SCPを設計することになった。設計荷重が大きいた め、翼展開面積比は0.825 とかなり大きくなった。 Fig. 48 に示す SCP 模型を製作し、キャビテーション 水槽で性能計測を行い、Fig. 49 に示す性能曲線を得 た。設計予測と比べて、効率は約 69%で約 1%低く なっただけであったが、スラストの計測値は約 6%小 さくなった。本設計では、開発途中であった性能予測 計算において計算に用いた格子数が少なく、後流渦面 が短く設定したため、性能を精度良く計算ができなかっ たことが原因であった。特に、翼根部において、キャ ビティが設計意図より厚くなったために、スラストが

Fig.48 SRIJ-A SCPの形状

低下したものと分析できる。また、その後開発した SRIJ-IV プロペラと同様にハイブリッド型 SCP を用 いる設計手法をとることにより、大幅な効率向上と設 計スラストの確保が可能である。

5.3 競艇用プロペラ

以上述べた SCP は 50 ノット及び 60 ノットの超高

Fig. 49 SRIJ-A SCP のキャビテーション性能曲線

速船用高荷重プロペラであり、設計条件が仮想的なも のであり、且つ、設計の確認は模型プロペラによる実 験と性能計算法で行った。このため、実機に適用して、 実用時においても本設計法の有効性を調べるため、そ

	Cond.I	Cond.II		
		Acc.	Full	
BHP [PS]	64	67	67	
Prop. Rev. Rate [rpm]	7,000	7,000	7,000	
[km/h]	100.0	74.1	92.6	
[kt]	54.0	40.0	50.0	
Wake Ratio 1-w _s	0.95	0.95	0.95	
Advance Speed [m/s]	27.8	19.6	24.4	
Cav. Number	0.30	0.47	0.30	
[175mmø]		0.957	1.197	
[165mm¢]	1.371			
Torque [kg-m]	6.55	6.86	6.86	
[175mmø]		0.0294	0.0294	
κ _Q [165mmφ]	0.0376			
[175mmø]		Max.	0.111	
[165mmφ]	0.138			
Thrust [kg]	g] 145 Max. 144		144.5	

Table 4 競艇用プロペラの設計条件

船舶技術研究所報告 第33巻 第3号(平成8年)総合報告 25

の対象として競艇用プロペラを取り上げた。

競艇で用いられている競走用モーターボートについ て、現用ボートをプロトタイプとして、新型エンジン を搭載し、大型化及び高速化(最高速力100km/h) を目指した新型艇の開発を(は)全国モーターボート競争 会連合会(全モ連)が行った。新艇用プロペラの設計 の依頼が船研にあり、競艇用プロペラを2ケ、SCP で設計した。全モ連の研究委員会の長年の研究により 作成した設計チャートにより設計した SC-1 プロペラ をターゲットプロペラとして、本研究で最終的に開発 した SCP 設計法により、2つの SCP を設計した。 (1) SC-2 プロペラ

設計条件をSC-1プロペラと同じとし、Table 4に

Fig. 50 SC-2 SCPの形状

SC-1	SC-2	SC-3	Record	Rolla					
377	378	388	-	1					
165	165	175	166	165					
1.65 (Const.)	1.697 (Variable)	1.454 (Variable)	1.731	1.749					
0.400	0.616	0.475	0.407	-					
0.1606	0.1606	0.1514	0.1386	-					
10	10	10	-	-					
58	43	32	-	-					
3	3	3	2	3					
Mod. Tulin	SRJN-II	SRJN-II NACA16	Crescent with Cup	-					
Left	Left	Left	Left	Left					
ALBC3	ALBC3	ALBC3	-	-					
	SC-1 377 165 1.65 (Const.) 0.400 0.1606 10 58 3 Mod. Tulin Left ALBC3	SC-1 SC-2 377 378 165 165 1.65 1.697 (Const.) (Variable) 0.400 0.616 0.1606 0.1606 10 10 58 43 3 3 Mod. Tulin SRJN-II Left Left ALBC3 ALBC3	SC-1 SC-2 SC-3 377 378 388 165 165 175 1.65 1.697 1.454 (Const.) (Variable) (Variable) 0.400 0.616 0.475 0.1606 0.1606 0.1514 10 10 10 58 43 32 3 3 3 Mod. Tulin SRJN-II NACA16 Left Left Left ALBC3 ALBC3 ALBC3	SC-1 SC-2 SC-3 Record 377 378 388 - 165 165 175 166 1.65 1.697 1.454 1.731 (Const.) (Variable) (Variable) 1.731 0.400 0.616 0.475 0.407 0.1606 0.1606 0.1514 0.1386 10 10 10 - 58 43 32 - 3 3 3 2 Mod. Tulin SRJN-II SRJN-II Crescent with Cup Left Left Left Left ALBC3 ALBC3 ALBC3 ALBC3					

Table 5 競艇用プロペラの主要目

示す Cond.I として設計した。時速 100km の最高速巡 航時のプロペラ回転数を 7,000rpm、馬力を 64ps とし た。伴流係数 1-ws を0.95 と仮定した。キャビテーショ ン数 σ_v は 0.3 となる。設計スラストは不明であるの で、目標プロペラ効率を 0.8 とすると、スラスト係数 Kr は 0.138、スラスト は 145kg となる。翼強度条件 としては、最大許容応力を 25kg/milとした。

このプロペラの主要目を Table 5 に示す。翼新面形 状は翼根部を含めて SRIJ-II 翼型を採用した。 Fig. 50 に示す設計された SC-2 プロペラを船外機に取り付け、 桐生の競艇場で性能確認試験を行った。試験はプロペ ラ回転数を4,000rpm、6,000rpm、そしてフル・スロッ トルの3 状態に変化させて航走させ、艇速と周回時間 を計測した。また、300m 離れた2 つのブイの間を1 周する周回航走での所要時間を計測した。プロペラ性

能計測において、比較のために主要目を Table 5 に示 す SC-1 プロペラと好事家用プロペラであるレコード・ プロペラを用いた。性能計測結果を Fig.51 (a)と Fig.5 2 (a)に示す。SC-2 プロペラを他のプロペラと比較する と、4,000rpm ではレコード・プロペラと、フル・ス ロットルではSC-1 プロペラと同等であった。周回時 間は SC-1 プロペラよりかかったが、レコードプロペ ラと同等であった。

このプロペラと SC-1 プロペラについて、キャビテー ション水槽で性能計測を行った。計測結果を Fig.53 と 54 に示す。設計点 (J=1.371)では、SC-2 プロペ ラは効率が 72%で、SC-1 プロペラの 70%より高く、 SC-2 プロペラは設計値よりスラスト、トルクとも大 きく、"重たいプロペラ"となった。

以上に述べた実艇試験及び水槽試験から、SC-2プロペラが設計の意図と異なった性能となった原因は、 設計条件、とりわけ設計前進速度が不適切であったと

の結論にいたった。 (2) SC-3 プロペラ

設計条件を Table 4 に示す Cond.II へと変更した。 先ず、プロペラ前進速度を低くした。最適直径を検討 し、直径を165mm から175mm へと大きくした。次 に、0.4R より翼根側の翼断面を SC 翼型から NACA 16 系のエアロフォイル型とした。翼強度条件を SC-1 プロペラと同等の断面係数となるように緩め、可能な 限り薄い翼型とした。また、翼端側の SC 翼断面は翼 弦長を強度上可能な限り短くして揚抗比を最適化し、 効率の向上を計った。また、競艇用プロペラは最高巡 航時ばかりでなく、加速時の性能もこの設計では考慮 した。Table 4の Cond.II の Acc に対応し、プロペラ 回転数 7,000rpm で 38 ノットで最も大きなスラスト

Fig. 53 SC-1 SCP のキャビテーション性能曲線

Fig. 54 SC-2 SCP のキャビテーション性能曲線

が発生する様にした。

設計されたプロペラを Fig. 55 に示す。競艇場での 実艇計測では、SC-3 プロペラの他、SC-1、SC-2 及び 市販プロペラとして世界的に高性能で有名な Rolla プ ロペラを供試した。実艇計測の結果を Fig.51(b)と Fig.52(b)に示す。艇速に関しては、SC-3 プロペラは どのエンジン回転数においても、他のプロペラより格 段に速かった。周回計測は2回行われたが、艇の重さ が異なるので直接比較できない。しかし、艇の重さの 影響はプロペラに拘わらず一定であるので、相対比較 は可能である。1回目の周回計測では、SC-3 プロペ ラは Rolla プロペラより、1.4 秒も速く、1 周で 30m 近い差がつくことになる。2 回目の周回計測でも、周 回時間の相対関係は全く変わらない。

Fig. 55 SC-3 SCP の形状

Fig. 56 SC-3 SCP のキャビテーション性能曲線

キャビテーション水槽での計測結果を Fig. 56 に示 す。設計点での効率は 75%で、SC-1、SC-2 プロペラ よりも良いが、スラスト、トルク係数とも設計予測値 より高くなる傾向は変わらなかった。

6.まとめ

6.1 総合成果

本指定研を行い、以下のような画期的成果を得ることができた。

(1) 高精度 SC 翼型性能計算法を開発した。

Fig. 57 SCP の効率比較

 (2) 性能計算法を拡張した SC 翼型設計法を開発した。
 (3) SCP の翼断面として用いることができる高性能 SC 翼型を開発した。

(4) 信頼性のある SCP の理論設計法を開発した。この設計法により、所要スラストを発揮し、従来のSCPより格段に高効率な SCPを開発できることを示した。
(5) SCP の理論性能計算法を開発した。本計算法は模型実験とは数%の精度で一致し、SCP の設計時の性能予測に使用できる。

(6) 本 SCP 設計法の有効性を模型プロペラばかりで なく、競艇用プロペラという実用プロペラでの試験に より、明らかにした。

本研究で設計した SCP のうち、50 ノット級の超高 速船用 SCP の効率をスラスト係数 Cr に関して比較し たものを Fig. 57 に示す。SRIJ-II プロペラが設計点で 一番性能が良いが、SRIJ-III プロペラがスラスト係数 の広い範囲で性能が良い。Newton-Rader プロペラは スラスト係数の大きい領域で効率が良いが、激しい振 動を起こすので実用的なプロペラと言えない。

一方、本研究において、船研で設計した SCP の効率を他のプロパルサの効率と比較するため、Eamesの文献中[2]の船速に対する各種プロパルサの効率比較の図にプロットした。これを Fig. 58 に示す。但し、推進器効率比は 0.95 と仮定されている。50 ノット及び60 ノット SCP とも効率向上が著しい。

以上の2つの図から分かるように、本研究で開発した SCP 設計法や性能予測理論により設計された SCP

Fig.58 各種プロパルサの効率比較

船舶技術研究所報告 第33巻 第3号(平成8年)総合報告 29

は、従来の SCP より大幅に効率向上が達成されている。

6.2 今後の課題

3年間の精力的な研究にも拘わらず、スーパーキャ ビテーティング・プロペラの設計に関する研究におい て、幾つかの課題が残った。以下に述べる課題を解決 することにより、更により良い超高速船用プロペラが 開発できると考える。

(1) 超減圧下での SC 翼型の抗力の計測法の改良を行う必要がある。また、超減圧下でのキャビテーションの発生パターンの変化のメカニズムを調べることも重要である。

(2) 最高効率点近傍での性能計算精度の向上を行う必要がある。キャビテーションと粘性の相互干渉が顕著となるので、注意を払う必要がある。

(3) 本研究では、シャフト・レーキのない場合を主に 研究対象とした。しかしながら、この種の高速艇はシャ フト・レーキを付けて使用されることが多いので、非 定常 SCP 性能計算法を開発し、振動・エロージョン 対策の研究をする必要がある。

謝辞

本指定研究「SC プロペラの設計に関する研究」を 企画及び実施するに当たって、御指導と御支援をいた だいた北川弘光前所長(元推進性能部長、現北海道大 学教授)及び山口眞裕前推進性能部長に感謝いたしま す。

本研究の一部は(20)日本造船研究協会との共同研究 「スーパーキャビテーティング・プロペラの研究」 (SR 214 研究部会;部会長:加藤洋治東京大学教授、 正幹事:白木東 NKK船舶海洋本部技術部次長)の一 部として行われた。関係者に謝意を表します。

理論計算と実験の両面で活躍した工藤達郎主任研究 官及び実験精度に注意を払い献身的な努力をしていた だいた黒部雄三、松田登、鈴木茂(退官)ならびに岡 本三千朗主任研究官に感謝いたします。図面作成をし ていただいた藤沢純一研究官及び竹内マリ殿に感謝い たします。

参考文献

- Tachmindji, A.J., Morgan, W.B.: The Design and Estimated Performance of a Series of Supercavitating Propellers, Proc. of 2nd Symp. on Naval Hydrodynamics, Washington DC (Aug. 1958), pp.489-532
- Eames, M.C.: Advances in Naval Architecture for Future Surface Warships, Trans. of RI-NA, Vol. 123 (1981), pp.93-118

- Venning, E. & Haberman, W.L.:Supercavitating Propeller Performance, Trans. of SNA-ME, Vol.70 (1962), pp.354-417
- Rutgersson, O.:Supercavitating Propeller Performance. Influence of Propeller Geometry and Interaction between Propeller, Rudder and Hull, Publication of SSPA, Nr. 82 (1979)
- 5. 工藤達郎、右近良孝:第5章 高速船用プロペラ の理論とその応用、次世代船開発のための推進工 学シンポジウム、日本造船学会(1991)、pp.127-166
- 8. 黒部雄三他:スーパー・キャビテーティング・プロペラの模型試験について、第58回秋季船舶技術研究所発表会講演集(1991)、pp.71-74
- 工藤達郎、右近良孝:一次渦パネル法による SC 翼型の性能計算、西部造船会会報、第86号(1993)、 pp.37-46
- Ukon, Y., Kudo, T., Kurobe, Y., Hoshino, T.: Design and Evaluation of New Supercavitating Propellers, Proc. of Second International Symposium on Cavitation, Cav'94 (1994)
- 工藤達郎他:一次渦パネル法により設計された SC 翼型の性能計測、第62 回秋季船舶技術研究所 発表会講演集(1993)、pp.68-73
- 右近良孝、工藤達郎、黒部雄三、星野徹二:スーパーキャビテーティング・プロペラの設計、日本 造船学会論文集、第174号(1993)、pp.101-111
- 工藤達郎:渦格子法によるスーパーキャビテーティング・プロペラの性能計算、日本造船学会論文集、 第174 号 (1993)、pp.113-120
- Kudo, T., Ukon, Y.:Calculation of Supercavitating Propeller Performance Using Vortex Lattice Method, Proc. of Second International Symposium on Cavitation, Cav'94 (1994)
- 松田登、黒部雄三、右近良孝、工藤達郎、岡本三 千朗:スーパーキャビテーティング・プロペラの 性能計測、船研報告、第31巻、第5号(1994)、 pp.1-61
- 工藤達郎、右近良孝、黒部雄三:渦格子法による スーパーキャビテーティング・プロペラの設計、 日本造船学会論文集、第175号(1994)、pp.47-56
- Ukon, Y., Kudo, T., Kurobe, Y., Matsuda, N., Kato, H.:Design of High Performance Supercavitating Propellers Based on a Vortex Lattice Method, PROPCav'95 (1995)
- 16. 右近良孝、工藤達郎、黒部雄三、松田登、加藤洋 治、佐々木民雄: 競艇用プロペラへのスーパーキャ ビテーティング・プロペラの応用、日本造船学会

30

論文集、第178号 (1995)、pp.51-60

- 右近良孝:新しいプロパルサの実現に向けた研究の現状、第62回秋季船舶技術研究所発表会講演 集(1993)、pp.52-63
- 右近良孝:フロパルサと舵の研究-運航性能の観 点から-、第64回秋季船舶技術研究所研究発表 会講演集(1994)、pp.173-178
- 工藤達郎他:デルタ翼に発生するキャビテーション、第60回秋季船舶技術研究所発表会講演集 (1992)、pp.159-164
- 黒部雄三他:ステップ付二次元翼の実験、第62
 回秋季船舶技術研究所発表会講演集(1993)、
 pp.74-77
- 21. 松田登他:斜流 SCP のキャビテーション、第64
 回秋季船舶技術研究所発表会講演集(1994)、 pp.183-186
- 右近良孝:推進性能の研究動向-プロパルサに関する研究-、日本造船学会誌、Vol.788(1995)
- Hanaoka, T.: Linearized Theory of Cavity Flow Past a Hydrofoil of Arbitrary Shape, Papers of Ship Research Institute. No. 21 (June 1967)
- 西山哲男:特異点法による超空洞翼の流れ場の基礎式とその解法、日本機械学会論文集(第2部)、 Vol.35、No.277 (Sep. 1969)、pp.1859-1902
- 25. 右近良孝:プロペラ・キャビテーション発生範囲

の推定法、船研報告、Vol.16, No.6 (1979)、pp. 83-104

- Ukon, Y:Partial Cavitation of Two- and Three-Dimensional Hydrofoils, and Marine Propellers, Proc. of 10th IAHR Symp., Tokyo (1980), pp.195-206
- 27. 右近良孝:第4章 プロペラ・キャビテーションの予測、第3回舶用プロペラに関するシンポジウム、(1987年7月)、pp.135-182
- Waid,R.L. & Lindberg, Z.M.:Experimental and Theoretical Investigations of a Supercavitating Hydrofoil, California Inst. of Tech. Report, No.47-8 (April, 1957)
- 29. Johnson, V.E. Jr.: Theoretical and Experimental Investigation of Supercavitating Hydrofoils Operating near the Free Water Surface, NASA Report TR R-93 (1961)
- Parikn, B.R.:Experiments on Circular-Arc and Flat-Plate Hydrofoils in Noncavitating and Full Cavity Flows, J. of Ship Research, Vol.1, No.4 (1958), pp.34-57
- 右近良孝他: 楔型水中翼のキャビテーション特性、 SPD Report, No.94-001-1 (1994)
- Hummel,D.:Documentation of Separated Flow for Computational Fluid Dynamics Validation, AGARD, CP-437 (1988)