操縦運動時の船体まわりの流場に関する研究

運動性能部 野中 晃二、原口 富博、二村 正、上野 道雄、藤原 敏文 推進性能部 牧野 雅彦、児玉 良明 元運動性能部 吉野 良枝

Research on Flow Field around a Ship in Manoeuvring Motion

by

Koji NONAKA, Tomihiro HARAGUCHI, Tadashi NIMURA, Michio UENO,Toshifumi FUJIWARA, Masahiko MAKINO, Yoshiaki KODAMA, Yoshie YOSHINO

ABSTRACT

An accurate method of estimating ship manoeuvrability needs to be developed to accurately evaluate and improve the manoeuvrability of ships. In order to estimate manoeuvrability by a mathematical model, the hydrodynamic forces acting on a ship in manoeuvring motion need to be estimated, for which information on the flow field around a ship is needed.

In this research, we investigated the flow field around a ship and developed a method of estimating the hydrodynamic forces.

We measured the flow field at the ship stern in detail, since this information is particularly important for manoeuvrability. We collected data on the characteristics of the flow field around a ship and developed a method to estimate hydrodynamic forces acting on a ship in manoeuvring motion.

We studied two methods of estimating hydrodynamic forces. One is a simple, practical method that can be used at the initial designe stage. We proposed an approximation method based on the slender body theory. The other is a precise method called CFD (Computational Fluid Dynamics) that can estimate flow field and hydrodynamic forces in detail. The CFD method is increasingly used in the study of ship resistance and propulsion. We used the CFD method to study oblique towing motion, and confirmed that the method can be used to estimate hydrodynamic forces acting on a ship in manoeuvring motion.

In addition to the above researches, we conducted free-running model tests of dry cargo ships to study the effect of loading conditions on manoeuvrability, and found that a change in draft affects the course stability.

The results of these studies will facilitate future research of ship manoeuvrability.

原稿受付 平成9年2月4日 審查済 平成9年9月10日

目次

1.	緒言	<u> </u>	·····2
2.	斜舟	亢時流場の研究	·····2
	2.1	概要	•••••2
	2.2	供試模型船及び実験内容	•••••3
	2.3	斜航船体まわりの流場の特徴	5
	2.4	実験結果と考察	7
	2.5	流体力計測結果	15
	2.6	まとめ	17
	参考	文献	19
3.	操約	従流体力推定法の研究(その1.実用的推定法)…	19
	3.1	概要	19
	3.2	流体力の推定式	····21
	3.3	流場の推定式	$\cdots 24$
	3.4	計算方法	30
	3.5	計算結果と実験結果の比較	····32
	3.6	まとめ	••••42
		- 古 - 古	
	鈔号	又刪	40
4.	愛丐 操約	又融 従流体力推定法の研究(その2.高精度推定法)…	····44
4.	参写 操約 4.1	又献 従流体力推定法の研究(その2.高精度推定法)・・ 概要 	····43 ····44 ····44
4.	参考 操約 4.1 4.2	又献 従流体力推定法の研究(その2.高精度推定法)・・ 概要 定式化 ·····	····43 ····44 ····44
4.	参考 操約 4.1 4.2 4.3	又 縦流体力推定法の研究(その2.高精度推定法)・・ 概要 完式化 NS計算 	····43 ····44 ····44 ····44
4.	参考 操約 4.1 4.2 4.3 4.4	又 縦流体力推定法の研究(その2.高精度推定法)・・ 概要 定式化 NS計算 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	····44 ····44 ····44 ····44 ····51
4.	少 操 4.1 4.2 4.3 4.4 参考	Xm 従流体力推定法の研究(その2.高精度推定法)… 概要 定式化 NS計算 まとめ 文献	····43 ····44 ····44 ····44 ····51 ····51
4.		 X M M ボ ボ (その2.高精度推定法)・・ (その2.高精度推定法)・ (その2.高精度推定法)・ (その2.高精度推定法)・ (その2.高精度推定法)・ (その2.高精度推定法)・ (その2.高精度推定法)・ (その2.高精度推定法)・ (その2.高精度推定法)・ (その2.高精度推定法)・ (日本の2.高量により、 (日本の2.高量により、 (日本の2.高量により、 (日本の2.高量により、 (日本の2.高量により、 (日本の2.高量によ	····43 ····44 ····44 ····44 ····51 ····51
4. 5.		Xm 従流体力推定法の研究(その2.高精度推定法)… 概要 定式化 NS計算 まとめ 文献 資状態と操縦性能 概要	····43 ····44 ····44 ····44 ····51 ····51 ····51
4.	◆操 4.1 4.2 4.3 4.4 参 載1 5.1 5.2	 Xm Xm 	····43 ····44 ····44 ····51 ····51 ····51 ····51
4.	◆操 4.1 4.2 4.3 4.4 参 載 5.1 5.2 5.3	 Xm Xm Xm Xm Xm Xm Rg 定式化 NS計算 まとめ マ文献 マ文献 資状態と操縦性能 概要 実験方法 実験結果と考察 	····44 ····44 ····44 ····51 ····51 ····51 ····51 ····52
4.	◆操.1 4.2 4.3 4.4 参載1 5.2 5.3 5.4	 Xm <li< td=""><td>····44 ····44 ····44 ····51 ····51 ····51 ····51 ····52 ····66</td></li<>	····44 ····44 ····44 ····51 ····51 ····51 ····51 ····52 ····66
4.	◆操1 4.2 4.4 参 載1 5.2 5.3 参 5.2 5.3 4 考1 5.2 5.4 考1 5.2 5.3 4 考1 5.2 5.3 5.4 7 5.2 5.3 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	Xm 縦流体力推定法の研究(その2.高精度推定法)… 概要 定式化 NS計算 まとめ 文献 資状態と操縦性能 概要 実験方法 実験結果と考察 まとめ ·文献 ·文献	····44 ····44 ····44 ····51 ····51 ····51 ····51 ····51 ····52 ····66
4. 5.	 条 4.1 4.2 4.3 4.4参 5.1 5.3 5.4 考約 	Xm 縦流体力推定法の研究(その2.高精度推定法) 概要 定式化 NS計算 まとめ 文献 実験方法 実験結果と考察 まとめ 主とめ 	····44 ····44 ····44 ····51 ····51 ····51 ····51 ····52 ····66 ····66
4. 5.	 	 X X M M ボ <li< td=""><td>43 44 44 44 44 44 44 44 44 51 51 51 51 52 66 66 66 66 66 66 66 66 66 6</td></li<>	43 44 44 44 44 44 44 44 44 51 51 51 51 52 66 66 66 66 66 66 66 66 66 6
4. 5.	 	 Xm Xm 縦流体力推定法の研究(その2.高精度推定法)・ 概要 定式化 NS計算 まとめ 文献 資状態と操縦性能 概要 実験結果と考察 まとめ 文献 宝験結果と考察 まとめ 文献 研究成果 研究成果の活用方法と今後の課題 	43 44 44 44 44 44 44 51 51 51 52 66 666 666 666 667

1. 緒言

船舶の航行安全性の確保は、人命安全上、経済性上のみ ならず、タンカー事故等による海洋汚染、環境破壊を防ぐ ための海洋環境保護という面からも、社会的に強く要請さ れている。

海難事故の約半分ほどの割合を占め、かつ、重大事故に つながる危険性の高い衝突・座礁事故を少なくするには、 船舶の操縦性能の正確な把握と性能向上が重要であり、国 際海事機関(IMO)における船舶の操縦性基準設定の動 きも、この認識に立つものである。

船舶の操縦性能の正確な把握と性能向上のためには、操縦性能の精度良い推定技術の確立が必要となる。特に、設

計段階において操縦性能を推定し、操縦性基準を満足する 船型にしなければならないという、IMOの操縦性基準へ の対応の必要性からも、船舶の操縦性能の精度良い推定技 術の確立が世界的に強く要請されている。

船舶の操縦性能推定に必要な、船体に働く操縦流体力を 推定するには、操縦運動時の船体まわりの流場の把握が必 要となるが、精度良い流場モデルを構築出来るほど流場の 把握は進んでなく、操縦性能推定に必要な操縦流体力を理 論計算のみで推定できる段階にはなっていない。

船体に働く操縦流体力の推定においては、主船体に働く 流体力の推定と、主船体・プロペラ・舵の間の相互干渉力 の推定が重要な研究課題となっているが、本研究において は、主船体に働く操縦流体力に的を絞り、流場の把握およ び流体力推定の技術開発と精度向上のための基礎的研究を 進めた。

流場把握については、3隻のVLCCの模型船を用いて、 船体まわりの流場において、操縦性上重要な流場情報が最 も集積している船尾付近の流場を、斜航状態について計測 した。

操縦流体力の推定については、上述の流場資料等を参考 に、取り扱いの比較的容易な渦層をもつ非粘性流体の仮定 のもとに、操縦流体力推定のための流場モデルおよび計算 手法の開発を進めるとともに、抵抗・推進分野で実用化が 進みつつある数値流体力学の、操縦流体力推定への適用に ついて検討を行った。

なお、実際の操縦性能推定の段階で問題となっている、 載貨状態と操縦性能の関係についての資料を得るため、2 隻の乾貨物船について、載貨状態の違いによる操縦性能の 変化を調べるための自由航走模型試験を行った。

本報告においては、斜航時流場、操縦流体力についての 実用的推定法と高精度推定法、及び、載貨状態と操縦性能 に分けて、本研究の内容と成果を報告する。

2. 斜航時流場の研究

2.1 概要

船体に働く流体力の推定には、船体まわりの流場の把握 が必要になるが、操縦流体力の推定においては、横力発生 の主要因となる剥離渦流を含む船尾付近の流場の把握が特 に重要となる。主要目は同じでも、船尾形状の違いにより 大きく操縦性能が変化する例も報告されており、IMO操 縦性暫定基準の施行とあいまって、フレームライン等の詳 細な船体形状の影響も考慮出来る精度良い操縦流体力推定 法の開発が急務となっている。そのためにも、操縦運動し ている船体まわりの流場の正しい把握が要求されている。

今回、操縦流体力推定法の開発に資する事を目的に、主 要目がほぼ同じで船尾形状のみが異なる3隻のVLCC船型 について、斜航時の船尾流場の5孔ピトー管による計測、 タフト法による船尾流場の観察、および船体に働く流体力 計測を行い、斜航時の流場の特徴の把握、船尾形状と船尾 流場、流体力との関係の把握を試みた。

流場計測では、二つの渦グループに代表される斜航時流 場の特徴は、定性的には船型による大きな差は見られない ものの、伴流分布、渦度分布の集中度、範囲、強さ等に船 型により明確な差が現れた。流体力計測においても、横力、 回頭モーメントそのものには大きな差はないものの、操縦 性能に大きく影響する圧力中心に船型による明確な差が現 れた。

本研究により得られた知見は、今後の操縦流体力推定法 の開発に有効な資料となると考え、ここに報告する。

なお、Ship - A、B両船型については、大森他[1][2] により、斜航状態と定常旋回状態での船体表面圧力分布計 測及び流場と流体力の推定計算が、又、牧野他[3]によ り、斜航状態での流場と流体力の推定計算が報告されてい る。

2.2 供試模型船及び実験内容

2.2.1 供試模型船および実験状態

実験に使用した模型船の要目をTable2.1に、船体形状を Fig.2.1に示す。Ship - A、C、Bの3船型は主要目がほぼ同 じで、S.S.4より後方の船尾形状が異なっている。Ship - A は、船尾部断面形状がV型と称されるもので、喫水線での 船体幅が広く、船底幅が狭い船型である。逆に、Ship - B はU型と称されるもので、喫水線での船体幅が狭く、船底 幅が広い船型である。Ship - Cはその中間型である。実験 はすべて舵、プロペラなしの船体単独について行った。

行った実験は、斜航船体の5孔ピトー管による船尾流場 計測、タフトによる船尾流場の可視化実験、斜航船体に働 く流体力計測の3種類で、その実験内容をTable2.2に示す。 可視化実験は、表面タフト法による船体後半部の表面流の 可視化と、タフトグリッド法による船尾流場の可視化を行 った。実験方法の詳細については後述する。

2.2.2 5孔管による流場計測の方法

流場計測は直径12mmの球形5孔ピトー管を用い、 Fig.2.2に示すように、模型船の進行方向に垂直な断面を 上下左右20mmの間隔で計測を行った。水圧は半導体圧力 計により計測し、サンプリング周波数10HzでA/D変換し て、5秒間の平均値を計算機に取り込んだ。計測断面は A.P.断面での計測を主体とした。Table2.2に示すように、 Ship - A, Bについては、船尾付近での船体に沿った流場の 変化を見るためS.S.1断面とA.P.断面で流場を計測したが、 S.S.1断面では装置の都合上船体近くの流場は計測できな かった。Ship - Cについては、船体後方での流場の変化を 見るため、A.P.断面とS.S. - 2断面において流場計測を行っ た。水槽使用期間の制限のため一部計測できなかった状態

Table 2.1 Principal Prticulars of Ship Models

	Ship-A	Ship-C	Ship-B
Lpp (m)	3.50	3.50	3.50
B (m)	0.634	0.634	0.634
d (m)	0.211	0.211	0.211
L/B	5.52	5.52	5.52
B/d	3.01	3.01	3.01
Disp. (m ³)	0.37706	0.37652	0.37581

(Model Scale = 1/91.43)

Fig.2.2 Cross Sections for Flow Field Measurements

		(
Kind of Experiment	Wake Measurement	rement Flow Visualization		Measurement of Hydrodynamic Forces
Measurement Apparatus	5–Hole Pitot Tube	Tufts on Ship Surface	Tuft Grid	Force Gauge
Ship Speed	U = $0.81m/s$ Fn= 0.138 Rn= 2.4×10^{6}	U = 0.43m/s Fn=0.073 Rn=1.3×10 ⁶	U = 0.43 m/s Fn= 0.073 Rn= 1.3×10^{6}	U = 0.81 , 0.43 m/s Fn=0.138 , 0.073 Rn=2.4 \times 10 ⁶ , 1.3 \times 10 ⁶
Ship-A	A.P. $\beta = 0^{\circ}$, 9°, 18° S.S.1 $\beta = 0^{\circ}$, 9°	$\beta = 0^{\circ}$,9°,18°		$\beta = -24^{\circ} \sim +24^{\circ}$
Ship-C	A.P. $\beta = 0^{\circ}, 9^{\circ}, 18^{\circ}$ S.S2 $\beta = 0^{\circ}, 9^{\circ}, 18^{\circ}$		A.P. $\beta = 0^{\circ}, 4.5^{\circ}, 9^{\circ}, 13.5^{\circ}, 18^{\circ}$ S.S2 $\beta = 0^{\circ}, 4.5^{\circ}, 9^{\circ}, 13.5^{\circ}, 18^{\circ}$	$\beta = -24^{\circ} \sim +24^{\circ}$
Ship-B	A.P. $\beta = 0^{\circ}$, 9°, 18° S.S.1 $\beta = 0^{\circ}$, 9°, 18°	$\beta = 0^\circ$, 9°, 18°		$\beta = -24^{\circ} \sim +24^{\circ}$

 Table 2.2
 Experimental Conditions

Fig.2.3 Setup for Flow Visualization by Surface Tafts

があるが、各々の断面の斜航角0°、9°、18°について計測 した。船速はU = 0.81m/s(Fn = 0.138, $Rn = 2.4 \times 10^{\circ}$ 、た だし代表的長さは船長とした。)の一状態である。

2.2.3 表面タフト法による可視化実験の方法

表面タフト法による可視化実験はShip - A、Bについて 行った。実験配置図をFig.2.3に示す。

表面タフト法による可視化実験は船尾船体表面に絹糸をア ルミテープで張り付け、水中ビデオカメラにより船側、船 底のタフトの様子を観察した。また、撮影した画像から平 均的なタフトの向きを読み取り、視角補正を行い後述する 可視化図を作った。観察した斜航角はTable2.2に示すよう に、 $\beta = 0^\circ$ 、 9° 、 18° で、船速はU = 0.43m/sの一状態で ある。

2.2.4 タフトグリッド法による可視化実験の方法

最近、タフト法の新しい手法として航空機や自動車の分 野で蛍光ミニタフト法が用いられているが、この蛍光ミニ タフト法は通常のタフト法に比べ鮮明な画像が得られてい る[4]。そこで、今回水中にもこの方法の適用を試みた。 実験配置図をFig.2.4に示す。タフトグリッドを、5孔管に よる流場計測と同様に模型船の進行方向に垂直な断面に置

Fig.2.4 Setup for Flow Visualization by Taft Grid

き、その後方の水中ビデオカメラにより観察を行った。グ リッド部は0.7mmの釣糸製で、寸法は幅400mm、深さ 240mm、格子点間隔20mmである。タフトは、水中での 紫外線の減衰が大きいことを考慮し、太さ0.8mm、長さ 50mmの蛍光染料で染色したナイロン製を使用した。比重 は水よりも僅に重い。照明は水銀灯の外球に紫外線透過フ ィルターを使用した市販品で、400W2灯を水中に設置し た。なお観察断面に比ベタフトグリッドが小さいため、1 航走ごとに模型を横方向に移動し、断面全体を観察した。 Table2.2に示すようにタフトグリッド法による可視化実験 はShip - Cについて行った。船速はU=0.43m/sの一状態、 斜航角は $\beta = 0^\circ$ 、4.5°、9°、13.5°、18°で、観察断面は A.P.断面と船体後方のS.S. - 2断面であるが、A.P.断面につ いては船体があるためA.P.断面より140mm後方の断面を 観察している。

Fig.2.5 Separation Vortices under Straight Towing Condition

Fig.2.6 Separation Vortices under Obliquely Towing Condition

2.2.5 流体力計測の方法

斜航船体に働く流体力 (surge force, sway force, yaw moment)の計測は、pitch、heave、rollを自由にし、曳航 点と模型の重心高さを一致させて計測した。船速は実船相 当 15kt (U=0.81m/s)と8kt (U=0.43m/s)の2種類で、斜航角は -24° から $+24^{\circ}$ の範囲で流体力及び姿勢変化を 計測した。後述する流体力の計測結果はすべて船体固定座 標系で、yawmomentはS.S.5 まわりのモーメントである。

2.3 斜航船体まわりの流場の特徴

斜航船体まわりの流場に関しては、これまでいくつかの 可視化実験や流場計測が行われ、おおよその構造が明らか となってきている [5] ~ [10]。そこで計測結果について 詳しく述べる前に、これまでの研究成果と今回行ったタフ トグリッド法による可視化結果及び流場計測結果により、 斜航状態の肥大船まわりの流場の特徴について述べる。

2.3.1 直進状態の肥大船まわりの流場

直進状態の肥大船には多くの剥離渦が発生している。それらの主なものを模式的にFig.2.5に示す[10]。船首では、船首水面付近の首飾り渦(A)と、船首船底の船首ビルジ 渦(B)がある。船尾では、船底ビルジ部の船尾縦渦あるいは船尾ビルジ渦と呼ばれる渦(C)と、水面付近の跳水 渦(D)等がある。この他にもビルジキールでの剥離やバ ブル型の剥離なども観察されている。これらの剥離渦のう

Fig.2.7 Visualized Closs Flow Pattern (Ship-C)

ち、直進状態の船尾で流場を観察した場合に明瞭に認められるものは船尾縦渦(C)である。

2.3.2 斜航状態の肥大船まわりの流場

前述のような流場を持つ肥大船が斜航した場合、その流 場は更に複雑であるが、ここでは横力発生の主要因と考え られる主な剥離渦を模式的にFig.2.6に示す。肥大船が斜 航した場合の流場の特徴は、船体前半部から発生する剥離 渦(A)(以下、船首渦と呼ぶ)と、船尾縦渦を含む渦グ ループ(B)(以下、船尾渦と呼ぶ)の二つの渦(グルー プ)の存在である。著者らのこれまでの研究 [8] によれ ば、斜航角βがある程度大きい状態においては、船首渦 (A) は船体前半部の船底肩部ビルジ部から発生し、船体 平行部ビルジ部の剥離流を巻き込んで行く集中度の強い渦 で、その経路は、少しずつ上昇しながらおおよそ船体中心 面に沿って流れる。船尾渦(B)は船尾縦渦が斜航角によ り変化したもので、斜航角の増加とともにFace側の船尾 縦渦が弱くなり、Back側の船尾縦渦が強くなる。船尾渦 は船首渦に比べ広い範囲をゆっくりと巻き込みながら流れ る。

Fig.2.7に今回行った中間的な船型であるShip - Cのタフ トグリッド法による可視化結果を示す。左側がA.P.断面、 右側が船体後方のS.S.-2断面の流場の様子で、Y=0が船 体中心面位置である。ここに示した観測結果は、ある一瞬 の画像をつなぎ合わせたものであり、視角補正も行ってい ない。また、流れにはゆらぎがあるため必ずしも平均的な 流場を表わしていない部分もあるが、定性的には以下のよ うな様子が読みとれる。直進状態のA.P.断面では、一対の 船尾縦渦が確認できるが、斜航角が大きくなるに従い、 Fase側(左舷)の渦が弱くなり、Back側(右舷)の渦が 強くなる。断面間の流場を比較すると、直進状態のA.P.断 面に見られる一対の船尾縦渦は、S.S.-2断面では互いに相 殺され減衰する。斜航状態の船尾渦は、斜航角の小さいう ちは互いに相殺され減衰するが、斜航角が大きくなると相 殺量は小さく、残った部分はほぼそのままの強さで後方へ 流れている。このような流場の様子は、5孔管計測により もっと定量的にとらえることができるが、タフトグリッド 法による可視化実験は簡単なため、大まかな流れの様子を つかむには便利な方法である。

次に、後述する5孔管計測から求めた船首渦、船尾渦 (グループ)各々の渦度の中心位置から、渦の流れる経路 について述べる。中間的な船型であるShip - Cの船首渦、 船尾渦各々の渦度の中心位置をFig.2.8、2.9に示す。計測 はA.P.断面とS.S. - 2断面についてしか行っていないため船 体付近の情報はないが、船体後方においては以下のことが 言える。斜航角が9°、18°の状態とも船首渦は上昇しなが らおおよそ船体中心面と平行に流れ、船尾渦は船首渦ほど 上昇せず、船体中心面から離れる傾向にある。参考のため、 計測範囲すべての渦度の中心位置をFig.2.10、2.11に示す。

以上のように、今回実験に供した模型船についても、横

Fig.2.8 Trajectory of Bow and Stern Vortices (Ship-C, $\beta = 9^{\circ}$)

Fig.2.9 Trajectory of Bow and Stern Vortices (Ship-C, $\beta = 18^{\circ}$)

Fig.2.10 Trajectory of Center of Vorticity (Ship-C, $\beta = 9^{\circ}$)

Fig.2.11 Trajectory of Center of Vorticity (Ship-C, $\beta = 18^{\circ}$)

Fig.2.12 Flow Field Measurement and Flow Visualization by Tuft Grid (Ship - C, $\beta = 18^{\circ}$, S.S. - 2)

力発生の主要因と考えられる船体前半部から剥離した船首 渦と船尾縦渦を主体とする船尾渦という、二つの渦グルー プに代表される斜航時の流場の特徴、渦強さの変化の傾向、 渦の流れる経路など、定性的には著者らのこれまでの研究 結果と同じであると言える。

2.3.3 流場のゆらぎと5孔間による流場計測

Fig.2.12にShip - C、 β = 18°、S.S. - 2断面の5孔管によ り計測した断面内速度ベクトルとタフトグリッド法により 撮影したビデオ画像の出力2画面を示す。定性的には速度 ベクトルとタフトの様子が良く似ているが、タフトグリッ ド法の結果を比べると、画像の取り込み時間が違うだけで、 タフトの向きや渦の中心位置が移動している。ビデオ観察 によれば、斜航角や計測断面によらず、どの状態において も渦の中心付近で周期の短い流場のゆらぎが観察される が、渦の中心付近以外の流れは安定している。5孔管によ る流場計測は一点につき5秒間の圧力の平均値から求めた 流場で、ゆらぎの周期はこの計測時間に比べると短い周期 ではあるが、特に渦中心での圧力計の変動が大きいこと、 規則的な圧力変動ではないことから、渦の中心付近の細部 構造までは計測できていないと考えられる。例えば、 Fig.2.12に示す5孔管により計測した断面内速度ベクトル の、Y=200mm、船尾渦中心付近のベクトルの向きの不 自然さなど、流場のゆらぎによる影響であると考えられ、 後述する5孔管による流場計測結果を見る場合には注意を 要する。しかし、渦の中心付近以外の流れは安定している ことから、渦中心以外については平均的な流場として計測 できていると考えている。

2.4 実験結果と考察

2.4.1 5孔管による流場計測

2.3章で斜航船体まわりの流場の定性的な傾向について 述べたが、以下では、斜航にともなう流場の変化や、計測 断面間の流場の変化、船型の違いによる流場について、5 孔管による定量的な計測結果を基に検討を加える。

5孔管による流場計測結果は、伴流分布、渦度分布、速 度ベクトルとして表した。ただし、伴流分布といっても船 体の長さ方向の速度成分ではなく、計測断面に垂直方向、 即ち船体の進行方向の速度成分の分布であり、渦度分布も 同様に計測断面内の渦成分の分布である。Ship - A、C、B の、A.P.断面での伴流分布をFig.2.13に、渦度分布を Fig.2.14に、速度ベクトルをFig.2.15に示す。なお、実際 の計測はここに示す図よりも横方向に広い範囲について計 測を行い、少なくともここに示す計測範囲よりも横には剥 離渦が無い事を確認している。

2.4.1.1 直進状態の流場

直進状態における計測結果の左右対称性は、実験精度の 評価の一つの目安となる。Fig.2.13の伴流分布の直進状態 ($\beta = 0^{\circ}$)を見ると、Ship - A、C、Bともほぼ左右対称な 流れとなっている。Fig.2.14の渦度分布の直進状態 ($\beta = 0^{\circ}$)では、一対の船尾縦渦が特徴的であり、水面付近にも 小さな渦領域が存在するが、どの船型もほぼ左右対称な渦 度分布となっている。また、後述する3分力計測結果と渦 度分布から推定した横力も比較的良い一致を示しており、 本実験の誤差は、本研究目的に対し許容範囲内にあると見 てよいであろう。

2.4.1.2 斜航角による流場の変化

直進状態におけるA.P.断面での流場は船型によらずほぼ 左右対称な流れであったが、斜航角がついた場合、船型に よらず以下のような流場の変化が見られる。

Fig.2.13の伴流分布では、直進で左右対称な流れは、右 に9[°]斜航角がつくとプロペラ付近の伴流分布が右へ移っ たような形になるとともに、右舷側に船体前半部で剥離し た船首渦に対応する伴流が現れる。更に斜航角が右へ18[°] となると、船首渦に対応する伴流は更に大きく強くなるが、 プロペラ付近の右へ移動した伴流は少し弱くなっている。

Fig.2.14の渦度分布では、直進状態での一対の船尾縦渦 は、右に斜航角がつくと、右舷側船尾縦渦が右に移動し大 きくなるとともに、左舷側の船尾縦渦が右舷側縦渦の中へ 小さくなってめり込むような形になる。また、右舷側には 船体前半部で剥離した船首渦が現れる。斜航角が大きくな ると、右舷船尾縦渦と船首渦は強さと大きさを増してゆ く。

Fig.2.15の速度ベクトル分布で見ると、船首渦と船尾縦 渦を主体とする船尾渦という、二つの渦グループに代表さ れる斜航時の流場の特徴が良くわかる。

2.4.1.3 船型による流場の変化

前述のように、斜航中の船体まわりの流場は、どの船型

船舶技術研究所報告 第34卷 第5号 (平成9年)総合報告 9

Fig.2.15 Velocity Vector (A.P)