船舶技術研究所報告 第36巻第4号(平成11年)総合報告 11

また、全体の画面の中から指定した領域をラムディ スクにサブ画面として切り出したサブ画面(図3-5、 表示領域 19×12km)を作成し、このサブ画面上で油 の拡散領域をマウスで指定し、バンド毎に平均値と標 準偏差を求め、その値の範囲にあるデータを油の領域 として残すことによって、図3-6に見られる油の拡 散状態を得た。この画面の作成にはバンド5 (波長 1.55~1.75 μ m)、バンド4 (波長0.76~0.90 μ m)、バ ンド1 (波長0.45~0.52 μ m)を使用し、表示のための ヒストグラムの輝度レベルの上限と下限の値はそれぞ れ0~10, 0~15, 25~60とした。

図 3-5 油汚染のサブ画面 (Prince William Sound)

図 3 — 6 流出原油の拡散状況 (Prince William Sound)

3.5 湾岸戦争によるペルシャ湾油汚染

湾岸戦争(1991年1月~2月)時に発生した大規模 流出油汚染に関するシーンから得られる原油の基本的 なスペクトル情報について述べる⁴³⁾。

1月19日頃から原油積み出し施設や、大型タンカー から大量の原油がペルシャ湾に放出された。その量は、 300万バレル~700万バレル(1バレル=159リットル) と見積られている。LANDSAT衛星で観測された油の拡 散状況を報告に見ることができる^{4, 26, 31)}。ペルシャ湾は 平均水深が35~40 m程度の浅海で、湾の東側(イラン 側)はやや深いが、西側は浅くなっており、沿岸部で は干潮時に海底が露出する湿地帯や礁湖、珊瑚礁が存 在する。浅海部では海底まで光が届き、衛星で観測す るときの海面情報は東京湾で見られるものとは大きく 異なる。

(a) アルジュベール沿岸 (全体)

(b) アルジュベール沿岸(Aの枠部分)図 3 — 7 原油の拡散状況

図3-8 流出油の領域指定

(図3-7の流出原油と海面)

バンド	1	2	3	4	5	6	7
湾岸油汚染、ペルシャ湾							
1)油面	54.3	16.2	12.5	9.9	37.2	114.1	15.8
2)海岸に近い海面	64.6	21.9	14.2	6.0	3.7	106.7	1.9
3)海岸から離れた海面	50.9	13.9	9.0	3.7	1.3	115.9	0.8
アラスカ、エクソンバルディーズ号による原油流出							
4)油面	61.7	18.4	15.8	11.4	25.9	77.7	14.3
5)海面	61.7	18.5	14.7	8.5	4.6	73.4	3.3
東京湾、シーン1							
6) 湾奧河川濁水均質	48.8	17.3	12.9	5.3	3.2	121.9	1.6
7)湾奥河川濁水	54.6	22.2	19.2	6.6	3.4	123.2	1.8
8) 湾奥均質暗い部分	44.8	14.4	10.9	5.1	3.2	123.1	1.7
9)湾中央河川濁水	55.5	24.3	23.8	7.4	3.0	119.7	1.6
10)湾中央暗い部分	44.9	14.2	10.7	4.7	2.9	122.3	1.6
11)湾外河川濁水	59.3	23.3	16.3	5.5	3.0	125.5	1.6
12)湾外暗い部分	44.8	14.1	10.4	4.9	3.0	127.5	1.6
東京湾、シーン2							
13)湾奥薄い雲	63.3	23.8	23.2	13.7	8.6	95.9	3.7
14)湾中央薄い雲	61.9	23.0	22.1	12.5	8.0	98.3	3.5
15)湾外薄い雲	62.3	22.3	21.1	12.1	7.6	113.0	3.5
16)湾外雲無し	57.6	20.2	18.5	10.6	6.4	113.5	3.0

表3-2 領域での輝度値の平均

図3-7 はサウジアラビア沿岸の工業都市アルジ ュベールを含む185Kmの範囲について示したものであ る。アルジュベールの北西に位置するマサラニヤ湾か ら右下のアブアリ島にかけて大量の油が押し寄せてい るのが分かる。この画像は表示のためには赤色にバン ド5、緑色にバンド2、青色にバンド1を割り当て、 入力輝度値のコントラスト増幅を行っている。画面の 一部に雲はあるが、薄い雲のところでは油の存在を認 めることができる。沿岸に押し寄せた油について図3 -8に示すように、明らかに油と認めることのできる 微小領域をマウスで指定し、各々の微小領域の平均値 をグラフで示すと図3-9 が得られる。ここで、横 軸はTMデータの観測バンド1~7 (可視波長から赤外 波長領域、バンド6は熱赤外線領域)に相当し、縦軸 は輝度値である。この油面についての各々のバンドで の輝度値の平均値を表3-2、1) に示す。以下、同 様の処理を行い油と陸に挟まれた部分で、明らかに油 を含まない部分についての輝度値の平均値を表3-2、 に示す。陸から離れた海上で、シーンの中でも 2) エアロゾルの影響の少ないと思われる部分についての 輝度値の平均値を表3-2、3) に示す。

アラスカでの原油流出事故についてのTMデータと、 湾岸の油汚染データを比較するために、先と同様な処 理を行い、油と海面についての各バンドの輝度値の平 均値を調べた結果について述べる。まず、油の部分に ついての結果を表3-2、4) に示す。油の周辺海 域では、表3-2、5) に示す値であった。

表3-2より湾岸油汚染データについてのバンド1 では、海岸に近い海面での輝度値の平均値は、油の部 分より高くなっているが、海岸から離れた海上の輝度 値の平均値を比較すると、海上の輝度値の平均値の方 が油の輝度値より低くなっている。バンド4、5、7 については、海面の輝度値より油の輝度値の方が高く なっていることが分かる。特にバンド5ではその差が はっきりとしているので、海上における油の識別のた めにはTMバンド5を使用することが有効であることが 分かる。また、熱赤外波長領域であるバンド6におい ては、輝度値をカラー表示することによって、油面に ついての温度差を画像の上で分類できることが分かっ た。今回計測された海上での油の状態について、その 厚さについては資料が無いので言及できないが、3月 12日にアルジュベール市の北部、マドマー地区でサン プリングされた油は、炭素数が12より少ない成分は蒸 発していたことが記述されている。また同資料では、 海上の油は安定して浮遊していたと考えられる。アラ スカでのデータの場合、油面と海面について比較する と、バンド5とバンド7で周辺海域より明らかに輝度 値の平均値は高くなっており、バンド5の方がその差 が大きいことが分かる。ただし、湾岸における油の部 分の放射輝度値の方が、アラスカにおける原油につい てのものより高い値を示している。アラスカにおける 流出原油の拡散が短期間に、広範囲にわたったことを 考えると、これらの差は油膜厚さの違いによるもので はないかと考えられる。

3.6 東京湾データについて

東京湾の二つのシーンについて、同様の処理により、 東京湾奥、中央、湾外でのTMデータの放射輝度値の平 均値を調べた結果について述べる。シーン1は、羽田 沖に雲があるが、そのほかの東京湾については雲は認 められず、河川の濁水の流入の認められるシーンであ る。湾奥についての各バンドの平均値の内、川からの 濁水を含むが画像の上で均質な場所での結果を表3-2、6)に、画像の上で特に川からの濁水の認められ る部分の結果を表3-2、7)に、画像の上で明らか に川からの濁水を含まない輝度の低い部分の結果を表 3-2、8)に示す。湾中央についての各バンドの輝 度値の平均値について、画像の上で特に川からの濁水 の認められる部分の結果を表3-2、9)に、画像の 上で明らかに川からの濁水を含まない輝度の低い部分 の結果を表3-2、10)に示す。湾外についての各バ ンドの輝度値の平均値について、画像の上で特に川か らの濁水の認められる部分の結果を表3―2、11)に、 画像の上で明らかに川からの濁水を含まない輝度の低 い部分の結果を表3-2、12)に示す。シーン2は、

河川からの濁水の流入は特に認められず、東京湾全体 について薄い雲が認められ、一部房総半島の山の風下 側で明らかな雲が見られなくなっている部分を含むシ ーンである。湾奥についての各バンドの輝度値の平均 値の結果を表3-2、13)に湾中央での結果を表3-2、14)に、湾外で薄い雲の認められるところでの結 果を表3-2、15)に、湾外で薄い雲の認められない ところでの結果を表3-2、16)に示す。

東京湾についてのデータは、今後汚染が発生したと きに経年的な変化も含めて、汚染識別のためのバック グラウンドデータとして使用できることが望ましいと 考え、現状での平均的な値の抽出が可能かどうかに着 目して二つのデータの比較を行った。バンド1の値の 内、シーン1の河川の濁水を含まない値は、他のデー タに比べて最も低い値となっている。シーン2の湾外 で明らかな雲を含まないと思われる部分の値も同程度 の値であることが期待されたが、実際には相当高い値 を示している。

3.7 まとめ

原油の流出の識別については、コントラストの増幅 を行い、画像化することによって識別が容易になる。 EOSATより購入した、アラスカでの原油流出事故後の 油の拡散状況を含むLANDSAT TMデータの処理を行 い、バンド5(1.55-1.75μm)の中間赤外線の画像に、 海上に流出した油の特徴的なパターンを見ることがで きる。SPOT衛星と、MOS-1にはここで用いたバンド5 に相当する波長帯が無いため、汚染の識別はここで述 べたものと少し変わることが予想される。

大規模な油汚染については、可視、赤外、マイクロ 波などを用いて得られた衛星画像もたびたび報道され ている。しかし、周回軌道のため機動性に制約がある、 可視、赤外観測機器は雲があると観測できない、成分 識別が困難、情報処理に時間がかかることなど、汚染 防除の現場の要求に応えることが未だ難しい。

4. 海面放射輝度

大量流出油拡散状況の識別には、LANDSATの場合バ ンド5に特徴的な情報があり、コントラスト増幅を行 った表示により識別が容易になることが分かった。 しかし、小規模な汚染や大規模汚染でも長期にわたっ て回復度を追跡することは困難である。このために、 日本近海の海面放射輝度データを蓄積し、詳細な比較 検討によりその差を見出すことが一つの方法と考えら れる。以下、東京湾を対象として分析を行った⁴⁶。

4.1 処理データ

東京湾と相模湾、九十九里沿岸についてのデータを 集めて検討した。図4-2に全体のシーンを示してい る。関東地方南部を含む地域でパス、ロウ(107,35) で特定される地域について、1/2シーン移動した地域 である。

図4-1 関東地方の処理対象区域

各々のデータは、1986年8月6日、1987年3月18日、 1988年3月4日、1990年2月22日、1990年3月26日、 1990年5月29日、1990年8月17日、1990年11月5日、 1992年1月27日、1992年3月31日、1993年3月18日に 観測されたものである。処理領域は、図4-1に示す 東京湾、相模湾、九十九里沿岸とした。シーンの中に 明らかに雲を含むものはなるべくその影響を避けるよ うに指定領域を選択した。明らかに雲やエアロゾルの ため海上の輝度平均値の算出に適さないと判断された ものは以後の処理を行わなかった。

4.2 処理方法

光磁気ディスクに取り込んだファイルは、7つの波 長帯(可視波長から近赤外波長6バンド、赤外域波長 1バンド)により観測されたバンド毎の画像データと その他の付属情報を含むファイルよりなる。バンド6 からは温度情報が得られる。

バンド毎の画像データについて図4-3(a, b)

05N0V90

 27JAN92
 31MAR92
 18MAR93

 図4-2
 処理対象とした全画像データ(東京湾)

船舶技術研究所報告 第36巻第4号(平成11年)総合報告 15

に示すようにヒストグラムを作成する。図では横軸に 観測された輝度値を示し、縦軸に各々の輝度値の頻度 を表している。輝度値は0から255の範囲に分布してい るが、ここではヒストグラムを表示するために、1から 254について最大の頻度のものを1として表している。 図4-3(a)はエアロゾルまたは雲の少ないシーン についてのバンド1の例であり、図4-3(b)はエ アロゾルまたは雲の多いシーンについてのバンド1の 例である。

画像の表示は、任意の3バンドを選択し、各々のヒ ストグラムから頻度の多い部分について、その上限と 下限の値を選択し、0から255の値に変換することに よってコントラストを強調した表示を行う。図4—1 はバンド3、2、1の画像データをそれぞれ赤(R)、 緑(G)、青(B)に割り付けて表示したものである。 全体シーンを表示するためにデータを等間隔で間引い て表示しているが、全体シーンに含まれるデータ数は 表示画面上のドットの数より非常に多いので、表示さ れた全体シーンの中から表示画面のドットの数に合う データ領域を枠で表示し、目的の海域をマウスで指定 してディスプレイに表示する。その後、ディスプレイ 上で海上の船舶等を避けた海面部分について、マウス で領域指定を行い、各バンド毎の放射輝度平均値を求 めた。

4.3 海面放射輝度の平均値

図4-4は、東京湾について指定した領域での放射 輝度平均値を、横軸にバンドをとり、縦軸に放射輝度 平均値をとって示している。図には、指定した微小領 域毎の平均値と、指定された領域全体についての平均 値を重ねて示している。同一シーンの中でも指定領域 によって海面放射輝度の平均値に差のあることが分か る。

4.3.1 太陽高度の影響

図4-5 (a、b、c)は、東京湾、相模湾、九 十九里沿岸について、横軸に太陽高度をとり、縦軸に 海面放射輝度の平均値を示している。それぞれのデー タでエアロゾル影響の度合が異なるので、絶対的な海

面放射輝度値としての比較はできないが、太陽高度の 変化に伴う要因によって海面放射輝度の平均値が変化 していると考えられる。また、同一シーンに含まれる 各々の海域での放射輝度平均値の相違は最大のもので 6 程度であった。以下の図の各バンドの記号は図4-5 (a) に表示したものと同様である。

図4-6 観測月と放射輝度(東京湾)

4.3.2 海面放射輝度の月変化

16

図4-6(a)は東京湾についての月毎の変化を示 したデータを、横軸に月をとり、縦軸にバンド毎の放 射輝度平均値を示している。また、図4-6(b、c、 d)は絶対放射輝度値として得られる値を各々の海域 について示したものである。横軸に月をとり、縦軸に 絶対放射輝度を表示している。使用したデータの範囲 では、5月と8月のデータが雲またはエアロゾルの影 響で利用できなかった。絶対放射輝度値への変換は、 資料4-1 MSS/TM ディジタル値から絶対放射輝 度への変換式の6-1式によった。

4.3.3 海面放射輝度の年変化

図4-7に示す放射輝度の年変化(a、b、c)は 3月における経年的なデータを、横軸に年を、縦軸に 絶対放射輝度値を示した。ここでa、b、cは各々東 京湾、相模湾、九十九里沿岸である。使用したデータ は3月4日から31日のものであり、太陽高度の値が38 度から47度の範囲にある。

4.4 統計解析

海面放射輝度は一般に小さく、個々の値のばらつき も大きい。このようなデータの集合から海面情報を抽 出するために統計的処理を行ってその相関を調べるこ とを試みる。このため、東京湾と大量流出油データに ついてバンド間の相関解析を行った⁴⁹。

計算手順は、まず、コントラスト強調画面を作り、 この画面上で雲や河川流入の影響が明らかなところは 避けて、小区画を選定する。複数の小区画について、 バンド毎の平均、分散、標準偏差、バンド間の共分散、 相関係数を求める。

)

図4-8は東京湾での輝度値を7つのバンドに対し てプロットされた輝度を示す。画像の中でエアロゾル や汚濁水が明らかには認められない個所の選択された 部分の CCT カウントである。横軸にセマティックマッ パの7つのバンドを示し、縦軸に輝度値を示す。バン ド6以外のデータのばらつきは少ない。図4-9は7 つのバンドに対してプロットされた油面と周りの海面 についての輝度である。バンド5,6,7のデータの ばらつきは広く、1,2,3,4バンドは狭い。油面 についてのバンド5,7の平均値は周りの海面より高 くそのばらつきはより大きい。

種々のバンド組み合わせでの輝度の頻度を図4—10 に示す。このデータは1990年5月29日のもので、それ ぞれの組み合わせに対して回帰直線を計算した。図4 —11は各々のバンドの組み合わせに相当するように配 置された回帰直線の傾き計数を示す。横軸にバンドの 組み合わせ、縦軸に傾き係数を示した。東京湾で僅か な汚染が観測された1990年5月29日の一つのグループ を除いて、絶対値は1.0以下である。画像の中で選択 されたそれぞれの組の輝度値は幾分変わるが、全体の 変化パターンは各バンドについて互いに類似している ことが分かる。図4—12 は相関係数についての表示 であり、基準化されており他との比較上都合が良い。

図4-13 は1991年2月16日のペルシャ湾の油膜に ついての、バンドの組み合わせに対する輝度値の頻度 を示している。図4-14 はバンドの組み合わせに相 当するように配置された油膜についての回帰直線の傾 き係数である。これらの値のばらつきは東京湾のもの より大きく、最大の値は5.4である。これらの組のパタ ーンはお互いに似ているが、東京湾のものとは異なっ ている。図4-15 はそれぞれのバンドの組み合わせ に相当するように配置された油膜上の輝度値の相関係 数を示している。値の範囲は東京湾のものより広く、 バンド5と7の相関係数は最大で0.9である。これらの 組のパターンは似ているが、東京湾のものとは異なっ ている。バンド毎の相関係数と回帰直線の傾き係数を 解析することにより、輝度値のばらつきと輝度値の組 み合わせパターンが海上の汚染の情報を持つと考えら れる。

図 4 — 14 バンドの組み合わせ毎の傾き係数 (湾岸流出油)

4.5 まとめ

海面について観測された放射輝度値と太陽高度とに 一定の関係のあることが分かった。これは、季節的変 化、月変化にも現れている。検知器が同一のものでな いため、経年的な変化を調べるためには絶対放射輝度 値測定精度について検討しなければならない。また、 これら輝度値には、大気中のエアロゾルの影響も大き く作用するため十分その影響を考慮しなければならな い。

東京湾と大量流出油についてのLANDSAT TMデー タを画像強調とバンド間の相関解析を用いて解析した。 油膜上のバンド5と7の輝度は東京湾のものより大き く、データのばらつきは周りの海面より大きい。バン ドの組み合わせの並びを同一にとると傾き係数と相関 係数のパターンは、お互いに類似している。油膜につ いての絶対値のばらつきは、東京湾のものより非常に 大きい。油膜についてのバンドの相関係数、特にバン ド5,7は汚染の無い海面より大きく、データのばら つきも周りの海面より大きい。統計的解析は、このよ うに個々のデータ差からは判別し難い場合でも、傾向 としてその差を見出すことができるため汚染監視に有 効な情報を与えることが分かった。

5. 大気補正の精密化

太陽光は、地表に到るまでに大気分子とエアロゾル の散乱と吸収を受けて減衰する。海表面に到達した光 は水に透過吸収される。このため海面からの放射は非 常に小さく、相対的に大気からの放射分が大きな部分 を占めることとなる。海洋では、衛星で観測される放 射輝度のうち、大気放射が約80%も占めることが航空 機観測から推定されている20)。ここがアルベド (albedo)の大きい陸上画像と大きく異なる点で、大気 散乱とエアロゾルの寄与を補正する事が衛星画像を解 釈する上で重要な仕事となる。基礎的なアプローチは、 海面からの放射輝度をもとに海中のプランクトン濃度 を推定しようとする目的で、CZCS画像の解析に際して 開発された。本章では、このGordon¹⁹⁾の方法による大 気補正の方法の導入と、ライダーを用いて大きな影響 を与えるエアロゾルモデルの検証と精密化についての 試みについて述べる。

5.1 大気放射

大気分子によるレイリー散乱とエアロゾルのミー (Mie) 散乱は光学的特性が異なるため区別して取り扱 う。以下、Gordon による大気補正の手法に従って、多 重散乱と太陽の輝点反射は無いものとして議論を進め る。衛星で受信する放射強度 L_t を成分に分けて考える。

Eq. 5-1 $L_t = L_r(\lambda) + L_a(\lambda) + t(\lambda) L_w(\lambda)$

ここで、 L_r はレイリー (Rayleigh) 散乱成分、 L_a はエ アロゾルによるミー散乱成分、 λ は波長、tLw は海 面からの放射が大気の散乱を受けてセンサーに到達し た部分を示す。 L_r 、 L_a は次式で与えられる。

Eq. 5-2
$$L_x = \omega_x(\lambda) \tau_x(\lambda) F_0(\lambda) p_x(\theta, \theta_0, \lambda) / 4\pi$$

ここで、 L_x はx (rまたはa)の単散乱アルベド、 ω_x はxの光学的厚さ、 F_0 は大気圏外の太陽光強度、 τ_x は表面とセンサー間の透過率、pは位相関数、 θ は 太陽天頂角、 θ_0 は観測海面とセンサーを見る角度を示 す。

エアロゾルの分布と注目する画像の屈折率が均質で あると仮定する。エアロゾルの位相関数は可視域での 波長依存性は小さいと仮定できるとすれば^{sr)}、2波長 で測定を行うと次式が得られる。

Eq. 5-3
$$t(\lambda) L_w(\lambda) = L_t(\lambda) - L_r(\lambda) - S(\lambda, \lambda_0) [L_t(\lambda_0) - L_r(\lambda_0) - (\lambda_0) L_w(\lambda_0)]$$

ここでS(λ,λ)は次の式で与えられる定数である。

Eq. 5-4
$$S(\lambda, \lambda_0) =$$

 $e(\lambda, \lambda_0) \left[\frac{F_0(\lambda)}{F_0(\lambda_0)} \right] \exp \left[(\tau_0(\lambda) - \tau_0(\lambda_0)) \left(\frac{1}{\mu} + \frac{1}{\mu_0} \right) \right]$

ここで τ_0 はオゾンの光学的厚さ、 μ 、 μ_0 は衛星から 目標海面を見るとき及び太陽の天頂角の余弦成分であ る。 $e(\lambda, \lambda_0)$ は光学的厚さと単散乱アルベドの波 長依存性を示す。

Eq. 5-5
$$e(\lambda, \lambda_0) = \frac{\omega_0(\lambda) \tau_0(\lambda)}{\omega_0(\lambda_0) \tau_0(\lambda_0)}$$

条件の良い場合はt=1.0とおくことができ、さらに Gordonは、λ₀をCZCSの4バンド(750nm)にとると、

Eq. 5-6 $t (\lambda_0) L_W (\lambda_0) = 0$

が成立するとした。すると、S(λ_0, λ) を資料から計 算できるとして、Eq.5-3から任意の波長についてL_{*}(λ) を求めることができる。実際は、Eq.5-6の仮定か、あ る点での現場測定値を用いてEq.5-3からS(λ_0, λ)を求 めて、画面全体の補正に用いることとなる。定数は、 分子のレイリー散乱、オゾンの体積吸収率は大気の光 学的透過と放射特性からかなりの精度で推定すること ができるが、エアロゾル効果は不確定要素が多く精度 が低い場合が多い。

5.2 エアロゾルモデル

衛星画像の輝度には少なからぬ影響を与えるエアロ

ゾルについて少し詳しく検討する⁴⁵⁾。変化が速くしか も大きく変化するエアロゾルには多くのモデルが提唱 されている。これらの代表的なものがLOWTRAN大気 モデルに組み込まれている³⁸⁾。モデルは、大気を高度 で4区分して各々独立した特性を与えている。即ち、 地表に最も近い混合層(0~2km)、対流圏上層(2~ 10km)、成層圏下部(10~30km)そして成層圏上部 (30~100km)である。混合層を除けば、エアロゾル分 布の変化は緩やかで、季節的変動を考慮した一般的な エアロゾルモデルで表すことは妥当と考えられる。た だ、時により大規模な火山噴火により成層圏に多量の 噴煙の注入が行われると、通常の100倍を超える濃度と なることがある。図5-1にはエアロゾルのタイプを 5種類モデルを計算したものであり、かなりの差が認 められる。

図 5-2 大気下層の光学的特性のモデル (LOWTRAN 6 による計算)

(144)