6.甲板荷重及び甲板上水位の推定法

6.1 はじめに

波浪中模型実験の結果から、船体運動等と甲板荷 重の間には強い相関関係があることが明らかになっ た。そこで、海水打ち込みの観点からみた乾魃の評 価手法を確立することを目的として、Strip 法等に より計算できる船首相対水位、縦揺れ角及び船首上 下速度を用いて、甲板水位、甲板荷重及び甲板水圧 を実用的に推定する手法を開発した。推定法は、甲 板水位等を既知として甲板荷重及び甲板水圧を推定 する部分と、船首相対水位等を既知として甲板水位 を推定する部分に分かれるので、それぞれ別個に説 明する。

6.2 甲板荷重の推定法

まず、甲板水位等を既知として甲板荷重及び水圧 を推定する方法について述べる。

川上ら¹⁵⁾や竹沢ら¹²⁾による実験でも、甲板水圧 と甲板水位との相関は確かめられているが、甲板水 位やそれを積分して求めた甲板水量から甲板水圧や 甲板荷重を精度よく推定するまでには至っていない。

近年、Buchner¹⁶⁾は甲板水圧Pを(6.1)式で推定す ることを提案している。

$$P = \frac{d(\rho h \cdot W)}{dt} + \rho g h \cos \theta$$
$$= \rho \left(\frac{\partial h}{\partial t}\right) W + \rho \left(g \cos \theta + \frac{\partial W}{\partial t}\right) h$$

(6.1)

ここで、ρは水の密度、h は甲板上打ち込み水位、W は甲板の鉛直方向速度、g は重力加速度、θ は縦揺 れ角である。この式は甲板水圧を甲板水のもつ運動 量変化による動的な水圧も含めて推定するもので、 第1項は打ち込み水位の変動に伴う運動量変化、第 2項は慣性力を表わす。Buchner は甲板水位の計測デ ータを用いて(6.1)式から甲板水圧を推定し、計測値 とよく一致することを示した。また、衝撃成分は (6.1)式の第1項に起因するため、甲板水圧のピーク 値にはこの項が大きく影響すると考察している。

そこで、内航タンカー模型による甲板荷重の計測 値と(6.1)式による圧力 P を面積分した値とを比較 した。(6.1)式のhは、甲板水量mから求めた。実船 換算した値を時系列で図 6.1 に示す。図中には、全 体の甲板荷重の計算値と各成分を一緒に示している。 これによると、甲板水量から推定した甲板荷重は計 測値とかなりよく一致しており、甲板水の運動量変 化を含めた(6.1)式で甲板荷重を推定できることが わかる。また、(6.1)式の各成分を比較すると、定量 的には(6.1)式2行目の第2項、すなわち甲板水の静 的な荷重が最も大きい割合を占める。しかし、立ち 上がりからピークにかけては、(6.1)式2行目第1 項の水位変化の項が大きな影響を及ぼしており、甲 板水の自重だけでは、荷重のピーク値を過小に評価 することになる。このことから荷重のピーク値の推 定には、水位変化に伴う運動量変化が重要であるこ とがわかる。波高波長比や船速が異なる場合につい ても同様に比較を行って、(6.1)式で甲板荷重を精度 よくできることを確認した。

6.3 甲板上水位の推定法

前節での検討結果から、甲板荷重や甲板水圧を推 定するためには、甲板水位hの時間変化を精度よく 推定する必要があると考えられる。しかし、甲板水 の挙動は複雑であり、これを厳密な形で表現するこ とは容易でない。そこで、甲板水の挙動をモデル化 し、それを用いて甲板水位の推定を行うこととした。 甲板水を表わすモデルとして考えられているものに ダムの崩壊モデル1718があり、これは静止した水壁 がある瞬間から崩れて起きる流れを表現したモデル である。しかし、模型船に搭載したビデオカメラに よる観察結果では、激しい打込みが生じる場合には、 水が大きな壁となって後方に流れており、ダムの崩 壊モデルとは異なった状況を示していた。これは、 溝口19による観察結果と同じであった。また、ダム の崩壊モデルを用いて甲板水位の推定を行ったが、 実験で計測された急峻な水位変化を表現できないこ とがわかった。これらのことから甲板水の挙動を表 すモデルには船速による動的な影響を取り入れる必 要があると考えられた。

溝口¹⁹は、船首楼甲板端部での船長方向の打ち 込み水の流入速度を船速に等しいとおき、浅水波の 仮定のもとに特性曲線法を使って甲板水位を求めて いる。現状では、この手法はよい精度で解を与える と考えられるが、甲板上の諸量の実用的な評価手法 の確立という所期の目的を考えると簡易さに欠ける ことも否めない。そこで、洪水流の理論²⁰⁾を甲板水 位の推定に適用し、実験値との比較及び検討を行っ た。

一般に、開水路における2次元非定常流の連続の 式及び運動方程式は、時間を1、主流方向の座標をx とすると、

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0 \tag{6.2}$$

$$\frac{\partial q}{\partial t} + \frac{\partial vq}{\partial x} + gh\frac{\partial h}{\partial x} = gh(i_0 - i_f)$$
(6.3)

で表わされる²¹⁾。ここで、hは水深、q は流量、v

は平均流速 (q/h)、 i₀ は路床勾配、 i₁ は摩擦勾配 を表わす。いま、定常流中 (水深 $h=b_0$ 流速 $V=V_0$) の上流端 x=0 において撹乱が加えられた際の波形の 伝播を考える。撹乱の時間スケールT、空間スケー ル $L = T V_0$ で表わされる無次元パラメータ

 $\alpha = h_0 / Li_0, \beta = v_0 / \sqrt{gh_0}$ を用いて(6.3)式のオ

ーダー比較を行うと、 $\alpha \approx 1$ で $\beta^2 \approx 0.1$ の場合、

(6.3) 式の左辺において第1、2項は第3項の水面勾 配項や右辺に比べて小さいものとして無視できるた め、 i_f をマニング則を用いて $i_f=n^2q^2/h^{10/3}$ (n はマニ ングの粗度係数) で表わすと、(6.2)及び(6.3) 式は

$$\frac{\partial h}{\partial t} + \frac{5}{3}v\frac{\partial h}{\partial x} = \frac{vh}{2\left(i_0 - \frac{\partial h}{\partial x}\right)}\frac{\partial^2 h}{\partial x^2}$$
(6.4)

となる。これを初期条件 $t = 0; h = h_0$ (一定)、上流

端での境界条件を $x = 0, t \ge 0; h = h_0 + F(t)$ とし

て解く。

$$h = h_0 \left(1 + \frac{\phi_1}{h_0} + \frac{\phi_2}{h_0^2} + \dots \right)$$
(6.5)

の様に展開すると、その1次成分は、

$$\phi_1(x,t) = \frac{x}{2\sqrt{\pi D}}$$

$$\times \int_0^t \frac{F(\tau)}{(t-\tau)^{3/2}} \exp\left\{\frac{-(x-\omega_0(t-\tau))^2}{4D(t-\tau)}\right\} d\tau$$

(6.6)

となる。ここで、 $D = v_0 h_0 / 2i_0, \omega_0 = 5v_0 / 3$ であ

る。この式は洪水流の理論式²⁰と呼ばれれおり、河 川工学で用いられている。これらの式を用いて、図 6.2に示すような座標系を考え、船首を x=0 とし、 船尾方向に向かって x 軸を正にとり、定常流の水深 h_0 及び流速 v_0 を各々Bow Top Height f² 及び船速に 等しいとし、また、上流端での撹乱 F(t) を、

 $F(t) = f(t) - h_0$ として f(t) を船首相対水位と考

えれば、(6.6)式を打込み水位の推定にも適用することができる。ここでは、甲板の幅の広がりを考慮した補正を(6.6)式に施した(6.7)式で甲板水位を表す

こととする。

$$\phi_1(x,t) = \frac{B_0}{B(x)} \cdot \frac{x}{2\sqrt{\pi D}}$$
$$\times \int \frac{f(\tau)}{0(t-\tau)^{3/2}} \exp\left\{\frac{-(x-\omega_0(t-\tau))^2}{4D(t-\tau)}\right\} d\tau$$

(6.7)

ここで、B(x)は各位置での船幅、B₀は打ち込みの有 効幅を表わす。

田崎¹³は、模型実験結果から有効幅 B₀は船首相対 水位が Bow top を超えた高さ δ (= f (t) max-f') に比例するとして、B₀=0.8 δ という結果を得ている。 これは計測された一出会周期当たりの甲板水量をも とに推定した結果である。本研究でも同様の解析を 行ったところ、比例係数は内航タンカーで 1.1、内 航貨物船では Type1、Type2 及び Type3 でそれぞれ 1.05、1.1 及び 0.9 であった。以後の解析ではこの 値を用いることとする。この係数の差はフレアなど の船首部形状の違いによるものと考えられるが、詳 細な検討については今後の課題としたい。

また、船首相対水位 f(t)については、実験で計測 した相対水位の時系列を用い、また、路床勾配 i_0 については、溝口と同様に縦揺れの最大角 θ_{max} (船 首上げ)を用いて $\sin \theta_{max}$ とした。さらに、本実験 や竹沢ら 10の実験から、打込みは船首相対水位がピ ークに達した直後から始まることがわかっているの で、船首相対水位がピークに達した時間を t=0 とし た。

図 6.3 に甲板水位の推定結果と内航タンカー実験 の計測値の時系列による比較を示す。波高波長比の 小さい (H/入=1/35)(a)図では、各横断面とも推定 値と計測値はよく一致しており、この推定法の有効 性を示している。しかし、波高波長比がより大きく (H/入=1/25)打ち込みの激しい(b)図では、Bulwark 端である S. S. 9 1/2 より後方の一致度は良くない。 推定値は(6.7)式のように幅の広がりを考慮してい るため後方になるほど甲板水位のピークが低くなる が、計測値にはその傾向が顕著に現れない。これは、 ビデオカメラによる観察で舷側からの水の流入が原 因であることが確認されており、本推定法の仮定で ある海水が主にStemから打込む場合とは異なって いるため、計測値と推定値の傾向が異なったものに なったと考えられる。

6.4 推定法の評価及び考察

上記手法により甲板上水位を求めて、甲板荷重及

び甲板水圧の計算を行った。推定値を実験値と比較 したので以下に示す。図 6.4 に甲板水量、図 6.5 に 甲板水圧(船体中心線上 F.P.の前方 120mm、以下 P1) の時系列の計算例を示す。甲板水量は甲板上水位分 布を船長方向に積分することにより求めた。計算値 と実験値のピーク値は概ねよく一致しており、前節 までに示した手法で甲板水圧のような局所的な荷重 についても精度よく推定できることがわかる。

図 6.6 に内航タンカーによる正面向波 (χ =180°)で波高波長比及び船速を変えた場合の甲板 荷重及び甲板水圧の推定値と実験値を実船換算した 値で示す。これらの図から、推定値は概ね実験値と よく一致していることがわかる。波高波長比や船速 が大きい場合には、甲板荷重は実験値との差が大き くなるが、これは、前述したとおり舷側からの水の 流入によるものである。

図 6.7 に内航タンカーによる斜め向波(χ=150°) で波高波長比及び船速を変えた場合の甲板荷重及び 甲板水圧の推定値と実験値を実船換算した値で示す。 ビデオによる観察結果より、斜波中においても、正 面向波と同様に Stem から乗り上げた水が速いスピ ードで流れていく現象が支配的であることを確認し ている。これは以前、北川等20が行った実験と同様 の結果であった。また、正面向波中では、波傾斜や 船速が大きくなるにつれて舷側からの流入が無視で きないことが明らかになったが、斜め向波の場合、 波下側からの流入はほとんどなく、また波上側から 流入する波も Bulwark 端をまわり込むことなくまっ すぐ流れていることがビデオの観察結果から明らか になっており、斜波中では舷側からの流入が甲板上 の諸量にあまり影響を及ぼしていないことがわかっ た。これらのことから今回実験に用いた内航タンカ ー模型船のように Bulwark が船首楼甲板の大部分を 開っている船の斜波中の打込みに関しては、上記の 手法で甲板荷重等を推定しても実用上問題がないと 考えられる。

図 6.8 及び図 6.9 に内航貨物船による正面向波 (χ=180°)で波高波長比を変えた場合の甲板荷重 の推定値と実験値を実船換算した値で示す。こちら も内航タンカーの場合と同様に精度良く推定できて いることがわかる。

なお、今回示した計算例は、モデル化自体の妥当 性を検証するために、入力データである船首相対水 位、縦揺れ角及び船首上下速度については実験での 計測値を用いたが、既存の船体運動計算法である Strip 法等と今回示した計算法を組み合わせること で、容易に甲板荷重等の推定を行うことができると 考えられる。

6.5 まとめ

洪水流モデルを用いて甲板上水位分布を推定し、 甲板上水位の運動量変化を考慮して甲板荷重の推定 を行ったところ以下の事がわかった。

- (1) 甲板水の運動量変化を考慮することにより、甲 板荷重及び甲板水圧のピーク値を精度よく推 定できることを確認した。
- (2) 洪水流モデルを用いて、船首部相対水位等から 甲板水位及びその時間変化を推定する方法を 考案し、実験結果との比較を行ってその妥当性 を確認した。
- (3) (1)及び(2)を組み合わせることで、Strip 法な どで計算した船首相対水位、船首上下速度及び 縦揺れの時系列を用いて、甲板水位や甲板荷重 を推定することができる。

本研究及びこれまでに行われた数多くの研究から、 甲板上水位分布や甲板荷重は船首相対水位が船首を 越えた高さ(越波高さ)に強い相関があるという知 見が得られた。これらのことから、海水打ち込みを 正確に推定するためには船首相対水位変動の一層の 精度向上が必要と考えられる。これは、海水打ち込 みに限らず、スラミング等の大波高中での耐航性の 観点からも精度向上は重要であると考えられる。

海水打ち込み等が問題となる大波高中での船首相 対水位変動を考える場合、波高による船体運動の非 線形性や船首部における反射波の影響を考慮する必 要があると考えられる。そのため、実験及び理論の 双方から検討を行う必要性があると考えられるが、 ほとんど行われていないのが実情である。これらに ついては今後の課題としたい。

図 6.1 甲板荷重と甲板水量の相関(内航タンカー、 λ/L=1.0, H/λ=1/25, Fn=0.1, χ=180°)

図 6.2 洪水流モデル

図 6.3 甲板水位の時系列 (内航タンカー、χ=180°)

図 6.4 甲板水量の時系列 (内航タンカー、χ =180°)

図 6.5 甲板水圧の時系列(内航タンカー、χ=180°、 120mm fore from F.P.)

(b)船速影響(H/λ=1/30)

図 6.6 甲板荷重及び甲板水圧の最大値(内航タンカー、 x=180°)

図 6.7 甲板荷重及び甲板水圧の最大値(内航タンカー、 x=150°)

図 6.8 甲板荷重の波高影響 (内航貨物船、正面向 波、χ=180°、Fn=0.17, λ/L=1.0)

図 6.9 甲板荷重の波高影響(内航貨物船、正面向 波、χ=180°、Fn=0.17, λ/L=1.2)

7. 甲板荷重の長期予測法

7.1 はじめに

船の運航形態を考慮すると、海水打ち込みに伴う 甲板荷重等を指標として乾舷を評価する際には、そ の長期予測値を用いるのが適当であると考えられる。 甲板荷重等の長期予測計算を行うためには、短期海 面での超過確率を推定する必要があるが、現在のと ころその推定法が定まっているとはいえない状況で ある。そこで、規則波中での模型実験結果をもとに 船首相対水位と甲板荷重の相関を表わすモデルを考 え、それを用いて甲板荷重等の超過確率を推定する 手法を開発したので以下に示す。なお、この際の理 論的な取り扱いは、以下の仮定のもとに行う。

●船体運動、船首相対水位等のスペクトルは、狭帯 域スペクトルであるとする。

●海水打ち込みは、船首相対水位が船首高さを越えた際に発生するとする。

また、以下に示す計算例はすべて正面向波状態で 行った結果である。

7.2 甲板荷重の短期予測

7.2.1 甲板荷重の超過確率

ここでは、船首相対水位の極大値の確率分布を既 知とし、不規則波中における甲板荷重の超過確率の 推定を行う。

評価手法として用いるためには、できるだけ簡便 な手法である必要があると考えられるので、模型実 験の解析結果から船首相対水位と甲板荷重の相関関 係のモデル化を行い、その関係を用いて甲板荷重の 確率分布を導くこととした。規則波中での実験の解 析結果から、今、検討対象としている海水打込みで は、船首相対水位が船首高さを越えた高さ(δ)だ けの水がδにほぼ比例する有効幅をもって甲板上に 流入することがわかった。また、甲板荷重は甲板水 量にほぼ比例することもわかっている。そこで、甲 板荷重Fを次式で表わすこととする。

$$F = \alpha \rho g B (\eta_{\max} - f)^2 = \alpha \rho g B \delta^2$$
(7.1)

ここで、 α は衝撃圧係数、 ρ は水の密度、g は重 力加速度、B は船幅、 η_{max} は船首相対水位 η の最大 値を表わす。このように、甲板荷重 F が船首相対水 位の最大値 η_{max} の関数 F=f(η_{max})で表わされると仮 定すれば、甲板荷重の確率密度関数 p_r(F)は船首相 対水位の確率密度関数 p_n(η_{max})を用いて

$$p_F(F)dF = p_\eta(\eta_{\max})d\eta_{\max}$$
(7.2)

で表わすことができる。仮定から、船首相対水位の

確率密度関数を Rayleigh 分布と考えることができ るので、変数変換を行うことにより

$$p_{F}(F) = p_{\eta}(\eta_{\max}) \frac{d\eta_{\max}}{dF}$$
$$= \frac{f \cdot \sqrt{\alpha \rho g B} + \sqrt{F}}{2 \alpha \rho g B \sigma_{\eta}^{2} \sqrt{F}} \cdot \exp\left\{-\frac{\left(f \cdot \sqrt{\alpha \rho g B} + \sqrt{F}\right)^{2}}{2 \sigma_{\eta}^{2} \alpha \rho g B}\right\}$$
(7.3)

$$P(F_0) = \int_{F_0}^{\infty} p_F(F) dF$$

= $\exp\left\{-\frac{\left(f \cdot \sqrt{\alpha \rho g B} + \sqrt{F_0}\right)^2}{2\sigma_\eta^2 \alpha \rho g B}\right\}$ (F_0>0)

$$p(F_0)dF = 1 - \int_f^\infty p_\eta(\eta_{\max})d\eta = 1 - \exp\left\{-\frac{f^2}{2\sigma_\eta^2}\right\}$$
(F₀=0)

(7.4)

となる。ここで σ_n は船首相対水位の標準偏差を表わす。

7.2.2 計算例

(7.1)式の α は第5章で説明した規則波中実験結 果から決定した。図7.1及び図7.2に船首相対水位 の最大値がBow top height を越えた高さ(越波高さ) δ と甲板荷重Fとの関係を示す。縦軸及び横軸の値 はそれぞれ実船換算した値を表す。また、縦軸の甲 板荷重は甲板面積で割った値(平均水圧)で表す。 丸印等が実験結果であり、それを(7.1)式で近似し たものを実線等で示す。

図7.3から図7.4に甲板荷重の超過確率の推定値 と、第5章で説明した不規則波中実験での計測値と の比較を示す。それぞれ縦軸に超過確率、横軸に甲 板荷重をとっている。縦軸及び横軸の値はそれぞれ 実船換算した値を表す。縦軸の甲板荷重は甲板面積 で割った値(平均水圧)で表す。計算に用いた船首 相対水位の分散値は、不規則波中実験で得られた値 を用いた。これらの図から(7.4)式を用いて求めた 甲板荷重の超過確率は、概ね実験値と一致している ことがわかる。

7.3 甲板荷重の長期予測計算

上述した短期予測手法を用いることで、甲板荷重 の長期予測は次式で行うことができる。

$$q(F > F_0) = \int_0^{\infty} \int_0^{\infty} P(F \mid H, T) \cdot P(H, T) dH dT$$
(7.5)

(563)

66

P(H,T)は、波浪の発現頻度であり、また、P(F)を計 算する際は各波高、各周期ごとに計算した船首相対 水位の分散値を用いる。図7.5 に模型実験に用いた タンカー及び貨物船について長期予測計算を行った 結果を示す。縦軸の甲板荷重は甲板面積で割った値 (平均水圧)を実船換算で表す。NK 鋼船規則 CS 編 で設定する甲板荷重は、今回計算を行った内航貨物 船の場合約55(Kn/n²)となるため発生確率は10の-5 乗程度となる。NK 鋼船規則 CS 編で想定している甲 板荷重は事故時の損傷解析にもとづいて設定されて おり、その発生確率は10の-6よりも若干高い確率 を想定すると言われている²³⁾。このことから、図7.5 の結果は、甲板荷重が最も大きくなると想定される 正面向波の結果であることを勘案すると、現行の甲 板荷重に関する指標と整合性があることがわかる。

図7.1 越波高さと甲板荷重の相関(内航タンカー)

図 7.2 越波高さと甲板荷重の相関(内航貨物船)

7.4 まとめ

模型実験の結果を用いて,甲板荷重の超過確率を 求めた。さらにそれを用いて長期予測計算手法の開 発を行った結果,以下のような結論を得た。

(1) 甲板荷重及び甲板水量をδの2乗の関 係式で表し、これらを基に超過確率を計算し たところ不規則波中実験の結果とよく一致 することがわかった。

(2) 甲板荷重の長期予測計算手法を行い、甲 板荷重に関する既存の指標との比較を行っ たところ整合性がとれていることがわかっ た。

図 7.4 甲板荷重の超過確率(内航貨物船)

8. 限定近海船に対する満載喫水線基準案の検討

8.1 はじめに

現在運航されている沿海船が航行中に発生すると 予測される海水打ち込み関連の諸量(打ちこみ頻度 及び打ち込み水による甲板荷重)の長期予測計算を 行い、現行の規定で担保されている安全性の推定を 行った。その結果をもとに限定近海で必要と考えら れる乾舷及び船首高さを設定したので以下に示す。

8.2 計算対象船及び計算条件

計算対象船の主要目を表 8.1 に示す。乾舷及び船 首高さを設定するもとになる応答関数については、 Strip 法(NSM)で行なった。応答関数の計算条件につ いて、船速は海象及び波との出会い角によらず各船 の公称の航海速力で航行するとした。縦慣動半径に ついては、全ての船で 0.25Lpp(Lpp: 垂線間長)と した。横揺れ減衰係数は、前進速度のない状態の減 衰係数を渡辺・井上の実験式²⁴⁰から求め、これに高 橋の前進速度の修正関数²⁵⁰を乗ずる方法で求めた。 なお、渡辺・井上の実験式の中で必要となるビルジ キールの面積に関しては、(社)日本中型造船工業会 の技術指導書²⁶⁾等を参考に、長さを垂線間長の40%、 幅を全幅の2.8%と仮定した。横揺れ固有周期につい ては、1MOの総会決議A.749に示されている推定式 (船長、船幅、喫水及びGMの関数)を用いて推定し た。

長期予測計算を行うために必要となる波のスペク トルは ISSC スペクトル (Modified Pierson-Moskowitz型)を用いた。また、方向分布 は、cos² χ 分布を仮定した。また、長期予測計算に 必要となる波浪頻度表は、第4章で述べたように、 沿海区域及び限定近海については、局所波浪データ を整理したものを用いた。近海区域に関しては、北 太平洋の波浪データベース⁹に収録されている波浪 追算データの内、近海区域に含まれる範囲のデータ をまとめて頻度分布表を作成した。

表8.1 計算対象船の主要目

番号	船種	船型	航行区域	乾舷計算	GT (ton)	L (m)	B (m)	D (m)	d (m)	Disp.(ton)	Cb
1	一般貨物船	二層甲板船	沿海区域	近海 (50mm)	731	78.50	12.80	7.80	4.53	3136.10	0.671
2	一般貨物船	二層甲板船	沿海区域	近海 (50mm)	499	74.50	11.20	6.50	3.82	1898.70	0.580
3	一般貨物船	二層甲板船	沿海区域	沿海 (100mm)	393	60.00	10.50	6.00	3.97	1706.64	0.664
4	一般貨物船	二層甲板船	沿海区域	近海 (50mm)	310	56.50	10.50	5.80	3.50	1490.00	0.695
5	一般貨物船	二層甲板船	沿海区域	近海 (50mm)	199	53.00	9.60	5.45	3.22	1172.00	0.697
6	石灰石運搬船	二層甲板船	近海区域	近海 (50mm)	749	77.00	13.60	7.70	4.43	3397.00	0.714
7	石灰石運搬船	凹甲板船	沿海区域	沿海(1371mm)	2, 760	92.00	15.20	7.60	6.26	6509.22	0.725
8	土砂運搬船	二層甲板船	沿海区域	近海 (50mm)	431	55.00	12.00	6.00	3.44	1733.60	0.744
9	油送船	凹甲板船	沿海区域	沿海 (511mm)	749	72.00	11.50	5.25	4.75	2738.52	0.678
10	油送船	凹甲板船	沿海区域	沿海 (552mm)	999	74.00	12.00	5.75	5.22	3264.60	0.686
11	油送船	凹甲板船	沿海区域	沿海 (595mm)	1, 599	85.00	13.00	6.40	5.82	4638.40	0.702
12	アスファルト運搬船	凹甲板船	沿海区域	沿海 (207mm)	749	65.00	11.50	4.60	4.23	2345.45	0.723
13	ケミカルタンカー	凹甲板船	沿海区域	沿海 (241mm)	264	44.70	8.90	3.65	3.21	959.35	0.731
14	ケミカルタンカー	凹甲板船	沿海区域	沿海 (315mm)	499	62.00	10.20	4.50	4.16	1813.21	0.671
15	石灰石運搬船	平甲板船	沿海区域	沿海 (277mm)	7,600	123.00	20.00	11.00	7.50	13997.00	0.758
16	石灰石運搬船	凹甲板船	沿海区域	沿海 (308mm)	8, 550	117.00	20.40	11.90	7.50	14496.00	0.812
17	石灰石運搬船	凹甲板船	沿海区域	沿海 (152mm)	3, 494	99, 00	17.00	7.70	6.20	7450.00	0.720
18	セメント運搬船	凹甲板船	沿海区域	沿海 (151mm)	3, 600	90.00	17.00	8.40	6.80	7980.00	0.766
19	油送船	凹甲板船	近海区域	近海 (1228mm)	3, 815	97.50	16.00	8.55	6.30	6920.00	0.706

8.3 計算結果

8.3.1 限定近海で必要となる乾舷

長期予測計算をもとに限定近海の乾舷値の設定を 行った。計算には表 3.1 のうち乾舷計算を沿海規定 で行っている二層甲板船以外の船舶(表中 9~18) を用いた。

(1)沿海規定をもとにした検討

沿海規定で定められる基本乾舷で沿海を航行する 場合の船体中央部の打ち込み確率を求め、これと同 じ確率で限定近海を航行するために必要となる乾舷 を推定した。打ち込み確率は10の-0.5 乗から-1 乗 であった。推定値と基本乾舷の比を図8.1 に示す。 横軸は船長を表す。船長にかかわらず比はほぼ一定 となることがわかる。ここで推定値と基本乾舷の比 の平均値は1.06 となった。

(2) 近海規定をもとにした検討

同様に、近海規定で定められる基準乾舷で近海を 航行した場合の船体中央部の打ち込み確率を求め、 これと同じ確率で限定近海を航行するために必要と なる乾舷を推定した。打ち込み確率は沿海規定をも とにした場合と同様に10の-0.5 乗から-1 乗であっ た。推定値と基準乾舷の比を図8.2 に示す。こちら も船長にかかわらず比はほぼ一定となることがわか る。ここで推定値と基準乾舷の比の平均値は0.84 となった。

図8.2 近海規定をもとに推定した限定近海船の 基準乾舷

(3)限定近海船の乾舷の設定

これらのことから乾舷に関しては、打ち込み確率 を同じとした場合に推定される限定近海船の乾舷値 は基本(基準)乾舷と一定の比率にあると考えられ る。

既に示したように、限定近海の海象は相対的に近 海より沿海でのそれにはるかに近い。また、陸上か らの迅速な支援に頼ることが出来ず、付近を航行す る船舶も比較的まばらであるため自力対処が第一に 求められる近海区域に対して、限定近海においては 陸上からの支援がある程度期待できると考えられる。 また、沿海及び近海規定が担保している打ち込みの 安全性はほぼ同じであった。さらに、今回推定した 各船舶の乾舷値に沿海規定で定められる諸修正(満 載喫水線規則第71条~第74条)を施し、各船舶の 現状の乾舷と比較した結果、ほとんどの船舶で現状 の乾舷は限定近海で必要と推定される乾舷の値を満 足していることが確認できた。これらのことを勘案 すると、限定近海で必要となる基本乾舷の設定及び 諸修正は沿海規定をベースとして行っても差し支え ないものと考えられる。

そこで、限定近海船の乾舷は、沿海規定で定めら れる基本乾舷に修正係数として 1.06 を乗じて基本 となる乾舷を決定し、これに沿海規定の諸修正を施 すことで設定可能と考えられる。この考え方にもと づき求まる限定近海船の基本乾舷の一例(Cb=0.68) を図 8.3 に示す。

図8.3 基準案により定められる限定近海船の 基本乾舷の例(Cb=0.68)

8.3.2 限定近海で必要となる船首高さ

長期予測計算をもとに限定近海の船首高さの設定 を行った。計算には表 3.1 の全ての船舶を用いた。

(1) 打ち込み確率による検討

沿海規定では船首高さに関する規定が無いため、 近海規定で定められる最小船首高さをもとに限定近 海で必要となる最小船首高さの推定を行う。また、 現行規則では規定されていない沿海船の船首高さに ついても設定を試みる。

近海規定で定められる最小船首高さ(満載喫水線 規則第58条)で近海を航行した場合の船首部の打ち