



る。若しN≪1であるとすれば2N秒としてよい。機 械的カウンターはAがカウンターのレバーを押すこと によつて数をかぞえる。従つて,舵角がその機械的カ ウンターの上をAが往復する様に取られれば1つカウ ントすることになる。この機械的カウンターのカウン ト数をnとすると $\frac{N}{n}$ は1回当りの操舵時間である。 本計器の写真をPhoto 1・12に示す。実船試験の測定 結果については本文中にて述べたが,本計器で改良す べき点はマイクロスイッチ及び機械的カウンターのレ バーの動きとスイッチが閉じたりカウンターの数が進 む時刻との間に誤差が生じるので,これらの代りに精 度の高い固定した電気接点(接触形或は非接触形)を 用いると良い。本試験では  $\delta_1$ ,  $\delta_2$ ,  $\delta_3$ ,...... を夫々 2.5°, 5°, 8°, 13°, 20° して行つた。

#### 附録C デジタイザー

# 1. 概要

デジタイザーは実船実験において計測しようとする 項目を敏速に解析する目的により作成したものであ る。即ち航行中船舶の運動及びその他を計測する計器 よりの連続的に変動する電気的アナログ量を一定時間 間隔でデジタル化し NEAC 2203 G 電子計算機又は FACOM-426 リレー計算機に直接挿入出来る様に記 録を数値化し、穿孔紙テープを作成する装置である。

### 2. 本装置の主要目

### 2.1 構 成

本装置は次記のものより構成されていて,そのブロ ック図は Fig C・1に示す。

- 1 デジタイザー操作卓
- 1 〃 電源
- 1 紙テープ穿孔機

# 1 " 自動巻取機

1 -100V較正器

#### 2-2 機 能

- アナログ入力
   チャンネル
   4 チャンネル
   入力レベル
   フルスケール±1V以上
   入力インピーダンス
   5 kQ/V
   以上
- スケール
   バイアス電圧 -999~000~+999
   フルスケール電圧 ±1 V~±10V
- 3 サンプル
  - サンプル順序 固定 サンプル速度 0.375 sec/1Data 0.500 0.625 0.750
- 4 表 示

選択された1チャンネルのデータを表示する。 表示内容

- チャンネル番号 (1~4)1桁
   極性 「+」又は「-」の表示1桁

  - データー 10進表示3桁
- 5 紙テープ穿孔
   連続穿孔 サンプル順序に従つて各データ毎
   穿孔
   一回穿孔
  - NEAC-2203G, FACOM-426
    - 計算用穿孔テープの作成
  - 穿孔桁数
  - 符号
     1 桁

     数値
     3 桁 (10進法)
- 6 A-D変換

62

A-D変換は比較形のもの

|   | 入力インピーダス | $2~{ m K} \Omega$    |
|---|----------|----------------------|
|   | 入力電圧     | $0\sim\pm10V$        |
|   | 出力コード    | 2進化→10進3桁            |
|   | 変換速度     | 1/300 秒以下            |
| 7 | 所用電源     |                      |
|   | 電圧       | A C 100 V $\pm 10\%$ |
|   | 周波数      | 48~62 c/s            |
|   |          |                      |

#### 3. 本装置の動作

計測するアナログ入力CH1~4に接続し,スケー ルを決定する。これはバイアス及びゲイン設定で,計 測する状態に応じて設定用マルチダイヤル,切替スイ ッチバイアス電圧切替スナプスイッチ等によりフルス ケールを±10Vになる様に適宜増幅する。(本装置の A-D変換器は入力電圧フルスケール±10Vにてデジ タル出力999となる。次にスケールキャリブレイション を入れて,これで全チャンネルのスケールが設定され た事になる。測定開始から完了までにはあらかじめ操 作卓上で穿孔が連続か1回かを決め,スキャンセレク トにて \* C H 1 \* だけか \* C H 1, C H 2 \* 等かに決 める。そこでパンチョードを NEAC か FACOM かに 使用する計算機名の方に投入する。最後に表示ランプ でどのチャンネルを見るかを決めてそのチャンネルに ピンを差し込む。これで準備が完了した事になる。上 記のスキャンスピードは水晶発信機(16・38KC)を 有し発振出力を増幅後シュミットトリガー回路にて矩 形パルスを作つているのでサンプルスピードは実に精 確である。そこで穿孔開始を押せば連続又は一回穿孔 された紙テープが作成されることになる。なお連線記 録を併用したい場合には操作卓背後にある出力端子よ り電磁オシロ又はペンオシロに入れればよい。しかし 一般にはハイインピーダンスをデジタイザーにロウイ ンピーダンスをオシロに投入する。なお計測中におい ても任意のチャンネルの変化をピンジャック一本の差 し換えにて表示ランプに数値を表示させられる。

の場合はイ)の場合がよく,遅い場合はニ)がよい。

サンプル順序は

| 穿孔順序              |    |    |    |    |    |    | サンプル時間間隔秒(同一チャンネル) |    |       |       |               |        |
|-------------------|----|----|----|----|----|----|--------------------|----|-------|-------|---------------|--------|
| イ) CH1            | 1, | 1, | 1, | 1, | 1, | 1, | 1,                 | 1, | 0.375 | 0.500 | 0.625         | 0. 750 |
| □) CH1~2          | 1, | 2, | 1, | 2, | 1, | 2, | 1,                 | 2, | 0.750 | 1.000 | 1.250         | 1. 500 |
| ハ) CH1~3          | 1, | 2, | 3, | 1, | 2, | 3, | 1,                 | 2, | 1.125 | 1.500 | 1.87 <b>5</b> | 2. 250 |
| =) C H 1 $\sim$ 4 | 1, | 2, | 3, | 4, | 1, | 2, | 3,                 | 4, | 1.500 | 2.000 | 2.500         | 3.000  |

の4種類が可能である。従つて現段階では早い現象





Fig C • 1 Block diagram of digitizer

(117)

### 附録D 海象の個人観測値

山隆丸の18次航海における各計測番号ごとの海象状 況は目視にて観測を実施した。観測した種類は波浪階 級、うねりと風浪との波長、波高、周期と船が波に出 会う角度などである。Fig D・1より Fig D・10 ま での図面は乗船した三人を主体にして観測値を比較し たものであり、この平均値を本文中の2・1の海象内 Table 1・3 の数値に使用した。図を見ると波浪階級、 出会角度はほとんど個人差はないが一般に目標物がな くて、観測しにくいと云われている波長、周期になる と個人差が見られる。







Fig D • 1 Sea disturbance scale observations

WAVE LENGTH . METERS







(118)



Fig D · 6 Sea disturbance scale observations



Fig D . 7 Wave length observations



Fig D • 8 Wave height observations

### 附録E 荒天時の天気図

今回の復航において,連続して低気圧が発生して太 平洋を東進し,波長,や風力階級が中程度以上に遭遇 した日付変更線以西の場合についての天気図を Fig E ・1 から Fig E・16 に示す。この間の低気圧によつ て発生した波に遭遇したのは TEST NO 211~220 ま での試験である。この天気図は気象庁がグリニッジ標 準時の0000と1200 GMT に発表したものである。図中 における二重丸はその時刻における山隆丸の位置を示



Fig D . 9 Wave period observations



Fig D · 10 Wave direction observations

しているが、図中に実験船の位置が示されていないものは20~22日までの三日間であるが、この時の船の位置は次表に示す。この天気図は1.3の復航時における試験の経過の参考として有益なものと思われる。

| 日 付<br>JAN | 時 刻<br>GMT | 緯  | 度                | 経   | 度                |
|------------|------------|----|------------------|-----|------------------|
| 20         | 0000       | 30 | -50 <sup>N</sup> | 145 | $-50^{W}$        |
| 20         | 1200       | 31 | -20 <sup>N</sup> | 149 | $-40^{W}$        |
| 01         | 0000       | 31 | -48 <sup>N</sup> | 153 | -52 <sup>W</sup> |
| - 21       | 1200       | 31 | -53 <sup>N</sup> | 158 | _03 <sup>W</sup> |
| 20         | 0000       | 32 | 00 <sup>N</sup>  | 162 | -56W             |
| 22         | 1200       | 32 | -05 <sup>N</sup> | 167 | -10 <sup>W</sup> |

(119)



T

Fig E · 1





Fig E · 2



Fig E · 5



Fig E · 3

Fig E · 6

66





Fig E · 10

Fig E · 7



JANKY 25 1964 0000 GMT

Fig E · 8

Fig E · 11



Fig E • 9

Fig E • 12

(121)



T

Fig E • 13



Fig E · 15



Fig E • 16

Sxx(W), Sxx(W) スペクトラム
 の<sup>2</sup> 分散

# 参考文献

- (1) 矢崎敦生,田中拓,松元尚義,直井保 "ニューヨ クー定期貨物船大島丸による北太平洋航海性能実船 試験について"船研報告 第1巻,第3・4号 1964.
- 2) 横尾幸一,北川弘光,谷政明"ニューヨーク定期 貨物船まんはつたん丸による北太平洋航海性能実船 試験について"第3回船研発表会講演概要 1964.
   11
- 3) H. U. Roll "Height Length and Steepness of Seawaves in the North Atlantic and Dimensions of Seawaves as Functions of Wind Force." Society of the Naval Arch. and Marine Engineers.
- 4) "船体性能の向上に関する調査報告書"(その1)
  "シーマージンに関する調査"日本造船研究協会 1964.3
- 5) W. J. Pierson, Jr., G. Neumann, R. W. James "Practical Methods for observing and Forecasting

JARLARY 25 (REA LOO GMT

Fig E · 14

主な記号の表

| λ     | 仪权   |
|-------|------|
| $T_w$ | 波の周期 |
|       |      |

2

- Te 波の出会周期
- △CF 摩擦修正量

orte Est

- Ws 実船の伴流係数
- ₩<sub>M</sub> 模型船の伴流係数Ψ 偏角
- **Ψ** 偏角
- **Ý** 回頭角速度
- *δ* 舵角
- Ar 舵面積
- *ω* 周波数
- V 速度
- ▽ 排水量
- T 平均周期
- Ω 角速度
- K,T 操縦性指数
- Â===(で) コレログラム

Ocean Waves, by means of Wave Spectra and Statistics." 1955

- 6) N. Hogben, B. Sc., Ph. D. "Sea State Observation Studies on the S.S. Cairndhu and R.V. Ernest Holt." NPL Ship Rep. 32. 1962. 8.
- 7) 野本謙作"船の操縦性"造船協会操縦性シンポジ ウム 1964.6.
- 8) 野本謙作"自動操縦の安定性について"造船協会 論文集 104号
- ⑦ 元良誠三 "荒天中の自動操舵と Yawing につい て"造船協会論文集 94号
- 10) 山内保文,富田哲治郎,安藤定雄"舵型式の推進 操縦性能に及ぼす影響"第24回運研発表会。
- 秋田好雄"波浪と船体強度"海洋波と船舶に関するシンポジウム 1961.1.
- 12) "Experiments on the Stress Frequency and Deck Wave Load acting on High Speed Boats in Rough Seas."

The Shipbuilding Research Association of Japan. 1964

- 13) 山内保文, "船の 波浪中横揺応答の 解析法につい て" (その1), (その2), (その3) 造船協会論文 集109, 110, 111号
- 14) "船舶の波浪中における復原性に関する研究" 第

3 分冊 日本造船研究協会第17部会報告書

- 15) "不規則振動のスペクトル解析" 統計数理研 究 所 昭和37年度講座
- 16) H. Akaike, Y. Yamanouchi, etc: "On the Statistical estimation on Frequency Response Functions." Annals of the Institute of Statistical Mathematics. Vol. 14 1962
- 17) Korvin-Kroukovsky: "Theory of seakeeping." SNAME, 1961
- 18) G. Neumann: "On Ocean Wave Spectra and a New Method of Forecasting Wind generated Sea" Beach Erosion Board, Tech. memo No. 43,
- 19) N. H. Jasper: "Statistical Distribution Patterns of Ocean Waves and of Wave-induced Ship Stresses and Motions, with Engineering Application." Trans. ASNAME 1956
- 20) 山内保文, 菅井和夫, 安藤定雄 "船舶の耐航性試 験データ処理システムについて"船研発表会講演概 要 1964.11.
- 21) H. U. Sverdrup and W. H. Munk; "Wind, Sea, and Swell; Theory of relations for Forecasting" H. O. Pub. 601 1947.
- 22) 木下昌雄, 岡田正次郎 "軸馬力計の改良について" 造船協会論文集 102 号

68