球対称形状におけるガンマ線輸送方程式の 直接積分コード 06 NIOBE-G について

片岡巌* 竹内清*

A Photon Transport Code in Spherically Symmetric Geometry, 06 NIOBE-G

By Iwao KATAOKA and Kiyoshi TAKEUCHI

Abstract

A series of codes, 06 NIOBE-G, has been written for the NEAC 2206 computer for the numerical integration of the time independent photon transport equations in spherically symmetric geometries. The original NIOBE was prepared for the IBM 704 and later for the IBM 7090. At present there are two versions of the 06 NIOBE, i. e. the 06 NIOBE-G1 and the 06 NIOBE-G2. The G1 code is almost identical with the original NIOBE in general view of its mathematical treatments.

The G2 has then been introduced with a view to decreasing some of errors in solutions ascribed to the procedure of spatial integrations in the NIOBE which have been found as one of the results of test calculations of the G1 code.

In the procedure of spatial integrations of the transport equations the G2 code applies the Lagrange interpolation formula not only to estimating angular distributions but also to radial interpolation. This has brought on two main improvements; First, it gives fairly close approximations to exact solutions of test calculations in the cases where the G1 code shows remarkable deviations. Second, it shows a decrease of 30 per cent of a computation time for one iteration against one of the G1 code.

Excepting differences between two versions of the code mentioned above, for the most part the results of test calculations with these codes agree well with exact solutions within approvable error. The concept of the NIOBE approximating angular distribution of fluxes with finite terms of the Legendre polynomials, however, occasionally leads to difficulties in treating problems in which the flux varies steeply in magnitude with directional angle.

まえがき

定常状態の Boltzmann 輸送方程式を数値積分によって解き,有限厚さの多重層内の中性子またはガンマ 線束をエネルギー,位置および方向角の関数として求 める解析法または計算コードの主なるものにSn法¹¹, NIOBE²⁰, EOS³⁾⁴⁾がある。中性子またはガンマ線束 の角度分布を表現する方法として, Sn 法では方向角 余弦のべき級数を,また NIOBE および EOS では

* 原子力船部

Legendre 関数による多項式展開を用いる。 Sn 法は 平板形状および球対称形状の両者に適用 できるが, NIOBE は球対称形状のみに 用 いられる。EOS は NIOBE の利点を保持して,平板形状を解くために開 発された解法である。

NIOBE (Numerical Integration of the Boltzmann Equation) は IBM 704 計算機に対して作られ たコードの名称であり²⁾,後に IBM 7090 用に P-NI OBE⁵⁾ が作られた。 必要とする 計算システムの規模

は、磁気コア記憶装置の容量が32,768語、磁気テープ 装置が10台である。半径方向メッシュ数85,方向角メ ッシュ数8,エネルギー組数81の問題を解くのに要す る計算時間は IBM 704 で約15時間であり, IBM 7090 によれば約2時間半である。

本報告で述べるのは、当所設置の NEAC 2206 計算 機に適合するガンマ線用の NIOBE コード, 06 NIO BE-G の説明と一部の試計算の結果である。本コード には、原 NIOBE にほぼ相当する G-1 コードと、空 間積分の方法を改良したG-2 コードの2種類がある。

当所に設置されている NEAC 2206 の現在のシス テムの規模は下記の通りである。

磁気コア記憶装置 4,000 語(10,000 語まで拡張 可能)

磁気ドラム装置(10,000語/台)1台

(10台まで可能)

磁気テープ装置 なし(40台まで可能) したがって、ここに述べる 06 NIOBE-G-1 および G-2コードは上記の計算システムに適合するように組 まれている。計算システムの規模が小さいため、コー ドは3つの部分に分けられている。また主な制限条件

はつぎの通りである。

	G-1コード	G-2⊐ ⊧
エネルギー組数	≦21	≦10
物質層の数	≦ 5	≦ 5
半径方向メッシュ数	≦25	≦50
方向角メッシュ数	≦14	≤ 14

何れの制限も解析法の本質から与えられたものでは なく、計算システムの規模によるものである。当所の 計算システムが近く拡張される予定であるが、その際 は、より緩和された制限の下でコードを組むことがで きる。

Boltzmann 方程式の空間積分は後述の様に 繰返し 法によって求められる。半径方向メッシュ数10, 方向 角メッシュ数14の場合に、1回の繰返し計算に要する 時間は、G-1コードで3分20秒、G-2コードでは2分 30秒である。さらに、テスト計算の結果では、収斂に 達する繰返し計算の回数が両者でほとんど等しい。し たがって、一般的に云えば、今回開発した G-2 コー ドの方が、旧来の G-1 コードより収斂が速いことに なる。

理論的な厳密解が知れている多数の問題について試 計算を行なった結果, G-1, G-2両コード共満足な精 度で解が得られることが示された。しかしながら一般 に G-2 コードの解の方が G-1 コードによる解より も近似度がよかった。

NIOBE を含めて、中性子束またはガンマ線束の角 度分布を,有限項の Legendre 展開で表現する解法で は、解の値が角度により非常に大きい変化をもつ問題 を扱かうのは困難である。ここで報告する試計算でも その傾向が認められる。

最後に実際に近い問題の一例として,水中でのガン マ線減衰の計算結果を示す。

コードのフローチャートおよび使用法は別に詳しく 報告する10)。

基礎方程式および解法 2.

2.1 輸送方程式

球対称形状における, ガンマ線の定常輸送方程式は つぎのように書ける。

$$\omega \frac{\partial I(r,\omega,u)}{\partial r} + \frac{1-\omega^2}{r} \frac{\partial I(r,\omega,u)}{\partial \omega}$$

+ $\Sigma_T(r, u)$ I (r, ω, u) = R $(I; r, \omega, u)$ ······(1) ここに、

дm

 $\mathbf{R}[\mathbf{I}; r, \omega, u] = I_{ph}[\mathbf{I}; r, \omega, u] + \mathbf{G}(r, \omega, u)$ である。 $G(r, \omega, u)$ は線源を示し、また $I_{ph}(I; r, \omega, u)$

は Compton 散乱の効果を示す項で、散乱積分と呼ば れ以下の様な積分で表現される。すなわち,

$$I_{ph} (I; r, \omega, u) = \frac{C(r)}{\pi} \int_{-1}^{1} K(u', u) d\mu \int_{0}^{\pi}$$

 $I(r, \omega', u')d\phi$(2)

ここに K(u', u) は Klein-Nishina の公式から導 かれる散乱核で,

$$K(u', u) = \frac{3}{8} \left(\frac{u'}{u} \right) \left[\frac{u'}{u} + \frac{u}{u'} + 2 (u' - u) + (u' - u)^2 \right]$$

• μ_T barn/electron $u \ge u' \ge u - 2$
= 0 $u' > u \ \forall t \ u' < u - 2 \cdots (3)$

となる。ただし μ_T は Thomson unit から barn へ の換算係数で µr=0.665 である。

2.2 散乱積分の計算

まずガンマ線エネルギー束 I(r,ω, u) および散乱核 K(u', u)を Legendre 展開する。すなわち、

有限のLに対して、(4)式の展開は近似式であり、

(298)

I(r,ω,u) が角度によって変化する 程度によって近似 の精度が異なる。Lは計算入力として与えられる。

一般にガンマ線の Compton 散乱では、散乱角の余 弦µ と波長の変化との間につぎのような関係がある。

 $\mu = 1 + u' - u.$

これを(3)式に代入すると,展開式(5)の係数 $K_{\rho}(u)$ は 直ちに計算され、かつ3以上のPに対する係数 $K_{\rho}(u)$ は 0となることが判る⁶⁾。

$$\begin{split} & \mathrm{K}_{s}(u) = (1 - u^{-1} + u^{-2})\mu_{T} \\ & \mathrm{K}_{1}(u) = \left(\frac{2}{5}u^{-1} - \frac{1}{2}u^{-2}\right)\mu_{T} \\ & \mathrm{K}_{2}(u) = \left(\frac{1}{10} - \frac{1}{10}u^{-1} + \frac{1}{10}u^{-2}\right)\mu_{T} \\ & \mathrm{K}_{3}(u) = \frac{3}{70}u^{-1}\mu_{T}. \end{split}$$

ー方(4)式の展開式の係数 I₁(r,u) はつぎのように与 えられる。

$$\mathbf{I}_{l}(r, u) = 2\pi \int_{-1}^{1} \mathbf{I}(r, \omega, u) \mathbf{P}_{l}(\omega) d(\omega)$$

この積分を行なうため、Gaussの数値積分法を用いる。すなわち、適当な正の整数Qをとり $\omega_q \approx P_{2Q}(\omega)$ の第q根であるとするとつぎの近似式が成立する。

ここに,

$$A_{lq} = \frac{2l+1}{2} \lambda_q \ \mathsf{P}_l(\omega_q)$$

l=0,1,....,L;q=1,2,....,2Q。 また λ_q は 1 \leq Q \leq 8 にわたって数表で与えられてい る⁷⁾。

したがって, (4)式より

$$I(r, \omega, u) = \sum_{l=0}^{L} \sum_{q=1}^{20} A_{lq} I(r, \omega_q, u) P_l(\omega) \dots (8)$$

と表現される。

取扱おうとする問題のガンマ線の最高エネルギーに 対応する波長を u_J とするとき,波長を等間隔 h で J+1 組に組み分けする。したがって,第j組の波長 u_j は,

 $u_j = u_J + (J - j)h$ 0 $\leq j \leq J$ 。 ただし間隔hは、Nを適当な正の整数とするとき、 h = 2/N なる如くとる。

上記のようなエネルギー組分けを行ない、かつ(5)式 および(8)式の表現を用いると(2)式の散乱積分はつぎの ように表わされる⁶⁾⁸⁾。ただし、 $I(r, \omega_q, u)$ は、波長 uに関して、任意の1つのエネルギー組内においては u の1次関数として変化すると仮定する。

$$I_{pk}(\mathbf{I}; r, \omega, u_j) = \sum_{k=o}^{\min(N, J-j)} \sum_{l=o}^{L} \mathbf{S}_{lk}^{j} \mathbf{P}_{l}(\omega)$$
$$\times \sum_{q=1}^{2Q} A_{lq} \mathbf{I}(r, \omega_q, u_j - kh) \dots (9)$$

ここに,

$$min(N, J-j) \equiv N : N \leq J-j$$
$$\equiv J-j : N > J-j$$

$$\Psi_{lk}^{j} = \sum_{p=0}^{3} \varphi_{pk}^{l} \mathbf{K}_{p}(u_{j})$$

 $S_{lk}^{j} = C(r) \Psi_{lk}^{j}$

さらに φ_{pk}^{l} は以下のように与えられる。

$$\begin{split} \varphi_{pk}^{l+1} &= \frac{2l+1}{l+1} \sum_{t} b_{pt} \varphi_{lk}^{l} - \frac{l}{l+1} \varphi_{pk}^{l-1} \\ \varphi_{po}^{o} &= \frac{2p+1}{2h} \int_{\mu_{1}}^{1} L_{1}(\mu) P_{p}(\mu) d\mu \\ \varphi_{pk}^{o} &= \frac{2p+1}{2h} \left[\int_{\mu_{k+1}}^{\mu_{k}} L_{k+1}(\mu) P_{p}(\mu) d\mu \\ &+ \int_{\mu_{k+1}}^{\mu_{k}} L_{k-1}(\mu) P_{p}(\mu) d\mu \right] \quad 0 < k < N \\ \varphi_{pN}^{o} &= \frac{2p+1}{2h} \int_{\mu_{N-1}}^{-1} L_{N-1}(\mu) P_{p}(\mu) d\mu \end{split}$$

ここに,

$$L_{k}(\mu) = \mu - \mu_{k}$$

$$\mu_{k} = 1 - kh$$

$$b_{pt} = \frac{2p+1}{2} \int_{-1}^{1} \mu P_{p}(\mu) P_{t}(\mu) d\mu$$

$$= \frac{p+1}{2t+1} \delta_{p+1, t} + \frac{p}{2t+1} \delta_{p-1, t}$$

すなわち, 第jエネルギー組における散乱積分は, 第j組およびそれより上のエネルギー組の, 角度 ω_α におけるエネルギー束,

$$I(r, \omega_q, u_{j+k}) \begin{cases} q=1, 2, \cdots, 2Q\\ k=0, 1, \cdots, min(N, J-j) \end{cases}$$
によって計算できる。

2.3 Boltzmann 方程式の積分

輸送方程式(1)の (r,ω) 変数をつぎの変数 (x, y) に変換する⁹⁾。

$$x = r\omega$$

 $y = r(1 - \omega^2)^{1/2}$
その結果(1)は,

(299)

$$\frac{\partial I(x, y, u)}{\partial x} + \sum_{\tau} (x, y, u) I(x, y, u)$$

 $= \mathbf{R}(\mathbf{I}; x, y, u) \cdots (\mathbf{I})$

となる。

外境界, r=A で流入する光子エネルギーとして境 界条件が与えられているとする。すなわち,

 $x^2 + y^2 = A^2$

x<0

で I(x, y, u) は既知とする。

ここで微分方程式(10をyが一定なる直線上で積分す ることにする。この直線上に適当なメッシュポイント をとり、ある相隣る2点のx座標をそれぞれ x' およ びxとする。いま、この直線上xから x' の間は Σ_r が一定であり、またRがxの1次関数として変化する と仮定すると、微分方程式(10)の解はつぎのようにな る。ただし、変数x, yをr, ω に戻してある。

$$I(r, \omega, u) = I(r', \omega', u) exp(-\Sigma_T d)$$

+ C₁R(I; r, ω , u)
+ (C₀-C₁)R(I; r', ω' , u)(1)
 $\Sigma \subset U$, $d = x - x' = r\omega - r'\omega'$

$$C_{0} = \frac{1 - exp(-\Sigma_{T}d)}{\Sigma_{T}}$$
$$C_{1} = \frac{d - C_{0}}{\Sigma_{T}d}$$

2.2節ですでに述べたように、 R[I; r, ω , u_j]を計算するには、 現在求めようとしている I(r, ω_q , u_j)それ自身が知られていること が必要である。したがって、(1)式 を計算するには適当に仮定した解 I⁽⁰(r, ω_q , u_j)を右辺に代入し、繰 返し法によって解、I⁽¹⁾, I⁽²⁾, … I⁽ⁿ⁾を順次求め、収斂した場合を 以って最終解とする。

すなわち,繰返しの計算式は,

$$I^{(n+1)}(r_{i}, \omega_{q}, u_{j}) = \chi \{exp(-\Sigma_{T}d) \\ \times I^{(n+1)}(r_{i}', \omega_{q}', u_{j}) \\ + C_{1}R(I^{(n)}; r_{i}, \omega_{q}, u_{j}) \\ + (C_{0}-C_{1})R(I^{(n)}; r_{i}', \omega_{q}', u_{j}) \} \\ + (1-\chi)I^{(n)}(r_{i}, \omega_{q}, u_{j}) \cdots \cdots \cdots (\Omega)$$

となる。 χ は収斂加速因子である。 (r_i, ω_q) は I の値 を求めようとしている点であり,また (r_i', ω_q') は先 に述べた x' に相当する点である。したがって,

$$d = r_i \omega_q - r_i' \omega_q' r_i^2 (1 - \omega_q^2) = r_i'^2 (1 - \omega_q'^2)_\circ$$

収斂判定条件を ε とした場合, 解の収斂判定はつぎ のようにして行なう。

 $\max_{r_i, \omega_q} \left| 1 - \frac{\mathrm{I}^{(n+1)}(r_i, \omega_q, u_j)}{\mathrm{I}^{(n)}(r_i, \omega_q, u_j)} \right| \leq \varepsilon$

最高エネルギー組, j=Jから四式の計算を始めて、 収斂した解が得られれば順次下のエネルギー組につい て計算を行なう。

3. 06 NIOBE-G1,-G2 コードの計算

3.1 計算過程の概要

06 NIOBE—G1, —G2 コードの計算過程を述べ る。この両コードの主な相違点は、ある (r_i , ω_q) に 対して (r_i' , ω_q')を選ぶ考え方にある。なおこれらの コードの計算過程はフローチャートの形式で別に述べ られている¹⁰⁾ので、ここではその基本となっている考 え方を説明する。

図1は2.3節で定義された変数, *x*, *y*を直角座標 にとって示した図であり,これによって計算過程の概

図1 計 算 図

要を説明する。実際の空間での原点からの半径方向の 距離は、図1でも原点からの距離で表わされる。外周 の半円, r=A は外境界を示し、その内側の半円周は それぞれ、実空間での半径方向のメッシュ点を代表し、 ている。

ある半径方向メッシュ点での光子の進行方向角は、 その半円上の点が原点に対してy軸となす角で表わさ れる。図1に記入された原点からの放射状の直線は、 $P_{2q}(\omega) = 0$ の根を示すものとする。半円と放射線との 交点を格子点と呼び、その他の点を非格子点と呼ぶこ とにする。格子点 (r_i, ω_q) が、計算によって解を求め

16

(300)

るべき点 Pig である。

与えられた境界条件の値を用いて、 メが一定なる直 線上で(2)式の積分を行なって格子点での解を求め、 さ らに得られた格子点での値から計算を行なって順次解 を得て行く。

図2 1 iteration に要する計算時間

ある格子点 P_{iq} からyが一定なる直線を左に延長し て、半円または放射線と交わった点を P_{iq} 'とし、その 点での値を用いて(四式の計算を行なうことにする。 P_{iq} 'は、図1上 No. 17 に対する P_{iq} 'のように格子 点になる場合と、No. 6、No. 15、No. 22 に対する P_{iq} 'のように非格子点である場合とがある。 P_{iq} 'が格 子点である場合は、その点での値は求められているか ら個式の計算は直ちに行なえる。非格子点が P_{iq} であ る場合の計算手順には様々な考え方があり、G1 コー ドおよびG2コードで採用された方法を以下に述べる。

3.2 06 N10BE-G1 ⊐- ド

No.6 のように $P_{iq'}$ が半円上にある場合は、その半 円上の各格子点での値から角度についての Lagrange 補間法を用いて $I^{(n+1)}(P_{iq'}, u_j)$ および $R(I^{(n)}; P_{iq'}, u_j)$ を求めこれから (2)式によって $I^{(n+1)}(P_{iq}, u_j)$ を求め る。

Lagrange 補間はつぎのように行なわれる。

$$I(r, \omega', u) = \sum_{q=Q_0}^{Q_0+Q-1} I(r, \omega_q, u) l_q(\omega')$$

$$R(I; r, \omega', u) = \sum_{q=Q_0}^{Q_0 + \overline{Q} - 1} R(I; r, \omega_q, u) l_q(\omega')$$

$$z \geq k, \quad \omega_q' < \omega' < \omega_{q'+1} \geq \frac{1}{2} \leq k,$$

$$Q_0 = q' - \left[\frac{\overline{Q} - 1}{2}\right]$$

$$2Q - \left[\frac{\overline{Q}}{2}\right] \ge q' \ge \left[\frac{\overline{Q} + 1}{2}\right]$$

$$= 1 \qquad q' < \left[\frac{\overline{Q} + 1}{2}\right]$$

$$= 2Q - \overline{Q} + 1 \qquad q' > 2Q - \left[\frac{\overline{Q}}{2}\right]_{\circ}$$

また、 $\overline{\mathbf{Q}}$ は入力として与えられる整数であって、 $2 \leq \overline{\mathbf{Q}} \leq 2\mathbf{Q}$ なる如くとる。

さらに、

$$I_{q}(\omega) = \frac{\prod_{i} (\omega - \omega_{i})}{\prod_{i} (\omega_{q} - \omega_{i})} \qquad j = Q_{o}, \dots, Q_{o} + \overline{Q} - 1$$
$$(\underline{H} \cup j \neq q)$$

である。以上、〔〕はガウスの記号である。

No.22 に対する P_{iq}' のように放射線に交叉する場 合は、さらに順次延長して半 円 周 に 達するようにす る。半円周との交点でのI(P_{iq}', u_j)および $R(I; P_{iq}', u_j)$ の値は上にすでに述べた 方法 で 補間により計算され る。 P_{iq}' が格子点であればこれらの値は求められてい るから補間の必要はない。図 1 中の No. 22 の例では P_{iq}' は 3 個が順次取られて、No.3の格子点に達する。 計算は P_{iq}^{1} , P_{iq}^{2} , P_{iq}^{3} , P_{iq} の順に行なわれる。すな わち I(P_{iq}^{1} , u_j), $R(I; P_{iq}^{1}, u_j)$ および $R(I; P_{iq}^{2}, u_j)$ (No.4 と No.8 での $R(I; P_{iq}, u_j)$ が求められ る。次下同様にして I(P_{iq}^{3}, u_j)が、さらに求める No.22 での I(P_{iq}, u_j)が計算される。

ただし、最も内側の半径メッシュで、かつ $\omega>0$ な る点(例えば No. 15)を計算する場合は、中間的な P_{iq^2} の如き点を取らずに、直接に P_{iq^1} となる格子点 (この場合は No.10)から(2)式を適用する。

3.3 06 N10BE-G2 ⊐-ド

 P_{ia} で半円周上にある、No.6のような場合は、G1 コードと全く同様に角度方向の Lagrange 補間法を用いる。

一方, P_{iq}' が放射線上にある No.22または No.15 の如き場合の計算方法は G1 コードと異なっている。 これらの場合は、求めようとする P_{iq} の直前の P_{iq}' のみを考えることにする。すなわち、No.22について は図1の P_{iq}^3 から、また No.15に対しては P_{iq}^2 か

17

(301)

ら計算を開始する。これらの点での $I(P_{iq'}, u_j)$ および R $[I; P_{iq'}, u_j]$ の値は、半径方向の Lagrange 補間 法により求める。

補間公式は,

$$\begin{split} \mathrm{I}(r', \omega, u) &= \sum_{i=T_0}^{T_0 + \overline{\mathrm{T}} - 1} \mathrm{I}(r_i, \omega, u) \ l_i(r') \\ \mathrm{R}(\mathrm{I}; r', \omega, u) &= \sum_{i=T_0}^{T_0 + \overline{\mathrm{T}} - 1} \mathrm{R}(\mathrm{I}; r_i, \omega, u) l_i(r') \quad \text{o} \\ \mathrm{fc} \not \sim \mathrm{fc} \ \mathcal{K} \ \mathrm{L}, \ r_i' < r' < r_{i'+1} \ \mathcal{L} \ \mathcal{T} \ \mathcal{L} \\ \mathrm{T}_0 &= i' - \left[\frac{\overline{\mathrm{T}} - 1}{2}\right] \qquad \mathrm{T} - \left[\frac{\overline{\mathrm{T}}}{2}\right] \geq i' \geq \left[\frac{\overline{\mathrm{T}} + 1}{2}\right] \\ &= 1 \qquad i' < \left[\frac{\overline{\mathrm{T}} + 1}{2}\right] \\ &= \mathrm{T} - \overline{\mathrm{T}} + 1 \qquad i' > \mathrm{T} - \left[\frac{\overline{\mathrm{T}}}{2}\right] \end{split}$$

であり、 \overline{T} は $2 \leq \overline{T} \leq T$ の範囲で選ぶ整数であるが、 実計算では $\overline{T} = 6$ とした。

特に, r'<r1 の場合は,

$$T_0=1$$
, $T=3$ Lt_{\circ}

また,

$$l_i(r) = \frac{\prod (r-r_j)}{\prod (r_i-r_j)} \quad j = T_0, \dots, T_0 + \overline{T} - 1$$

$$\underline{I} \sqcup \bigcup j \neq i$$

4. テスト問題

4.1 単一エネルギー問題

減速を伴なわない解析解を求めて、主として Boltzmann 輸送方程式の空間積分のチェックを行なう。主 な問題を以下にかかげる。すべて C(r)=0 とする。

TEST 1

$$\begin{cases} G(r, \omega) = A^2 - r^2 \\ I(A, \omega) = 0 & \omega < 0 \end{cases}$$

$$\not Pr ; I(r, \omega) = \frac{A^2 - r^2}{\Sigma_T} + \frac{2}{\Sigma_T^3} \Big[(\Sigma_T r \omega - 1) \\ + (1 + \Sigma_T \sqrt{A^2 - D^2}) \\ \times exp \{ -\Sigma_T (r_{\omega}^{\phi} + \sqrt{A^2 - D^2}) \} \\ \gtrsim \zeta \not \subset D = r \sqrt{1 - \omega^2} \end{cases}$$
TEST 2
$$\begin{cases} G(r, \omega) = 0 \\ I(A, \omega) = 1 & \omega < 0 \\ Mr ; I(r, \omega) = exp \{ -\Sigma_T (r \omega + \sqrt{A^2 - D^2}) \} \end{cases}$$
TEST 11
$$\begin{cases} G(r, \omega) = \omega + r \Sigma_T \\ I(A, \omega) = A & \omega < 0 \end{cases}$$

$$\begin{split} & \ensuremath{\wplineskiplimits} \\ & \ensuremath{\wplineskiplimits} \ensuremath{\wplineskiplimits} \\ & \ensuremath{\wplineskiplimits} \ensuremath{\wplineskiplimits} \\ & \ensuremath{\Slineskiplimits} \ensuremath{\Slineskiplimits} \ensuremath{\alephlineskiplimits} \ensuremath{\Relineskiplimits} \ensuremath{\alephlineskiplimits} \ensuremath{\alephlineskiplimi$$

ガンマ線の減速過程の計算の一部をチェックする問 題。

$$\begin{cases} G(r, \omega, u) = 0 & : u \leq L \\ = \sum_{T} (u - L) + \frac{C\mu_{T}}{u^{2}} \{u^{2} - \frac{7}{5}u + \frac{3}{2} \\ - (u^{2} - u + 1)(u - L)\} & : u \geq L + 2 \\ = \sum_{T} (u - L) + \frac{3}{8} C\mu_{T} \frac{(u - L)^{2}}{u^{2}} \{\frac{1}{20}u(u - L)^{3} \\ - \frac{1}{12}(u + 1)^{2}(u - L)^{2} + \frac{1}{3}(u^{2} + u)(u - L) \\ - u^{2} \} & : L + 2 \geq u \geq L \\ I(A, \omega, u) = u - L & : \omega < 0 \end{cases}$$

$$\Re ; I(r, \omega, u) = u - L \\ \succeq \subset \langle \mathcal{L} \equiv u_{max} - h \\ C = C(r) \neq 0 \\ \sum_{T} = \sum_{T} (r, u) = 0 \end{cases}$$

TEST 22

$$\begin{cases} G(r, \omega, u) = 0 &: u \leq L \\ = (u-L) + r\omega(u-L)\Sigma_{T} \\ - \left\{ \frac{3}{8}C\mu_{T}r\omega\frac{(u-L)^{2}}{u^{2}} \left[u(u-L)^{3} \\ \times \left\{ \frac{1}{30}(u-L) - \frac{1}{20}u \right\} + u(u-L)^{2} \\ \times \left\{ \frac{1}{4}u - \frac{3}{20}(u-L) \right\} + (u-L) \\ \times \left\{ \frac{1}{3}u(u-L) - \frac{1}{20}(u-L)^{2} - \frac{2}{3}u^{2} \\ + \frac{1}{12}(u-L) - \frac{1}{3}u \right\} + u^{2} \right] : L \leq u \leq L + 2 \end{cases}$$

(302)

$$\begin{cases} = (u-L) + r\omega(u-L)\Sigma_{T} \\ -\frac{3}{8}C\mu_{T}r\omega\frac{1}{u^{2}}\left[u(u-L)^{3}\left\{\frac{1}{30}(u-L)\right. \\ -\frac{1}{20}u\right\} + u(u-L)^{2}\left\{\frac{1}{4}u - \frac{3}{20}(u-L)\right\} \\ + (u-L)\left\{\frac{1}{3}u(u-L) - \frac{1}{20}(u-L)^{2} \\ -\frac{2}{3}u^{2} + \frac{1}{12}(u-L) - \frac{1}{3}u\right\} + u^{2}\right] \\ : u \ge L + 2 \\ I(A, \omega, u) = A\omega(u-L) : \omega < 0 \end{cases}$$

解; $I(r, \omega, u) = r\omega(u - L)$

 $\sum \sum L \equiv u_{max} - h$ $C = C(r) \neq 0$ $\sum_{T} \sum_{T} (r, u) \quad 0$

ただし, TEST 3 および TEST 22 で, Cおよび Σ_{T} は同一の物質層内では一定値をとるものとする。

5. サンプルインプットおよび アウトプット

図3, 図4は G1 コードで TEST 11 の問題を解 いた場合のインプットおよびアウトプットのプリント

TESTII 5 51100000 10 00000000	1500000 4810000	015 00	7	14	12			
51 500000								
51100000 50500000								
0000000 0000000 0000000 0000000 0000000	000000 000000 000000 000000 000000	00 00 0000 09 0000 00 0000 00 0000	0000 0000 0000 0000	00000	0000		0000000	00000000 00000000 00000000 00000000
00000000 51500000 END	000000 515000	00 0000 00 5150	0000	0000 5150	0000	00000000 51500000	0000000	00 0000000 00 51500000
		🕱 3 (a)	G1 ⊐	ードの	サンプル	ィインプッ	ŀ	
51348628 51281911 51181270	3808 5 2368 5 7096 5	13428434 12608054 11672798	883 9 948 9 685 9	51332 51239 51157	720131 194505 156511	5 51318 2 51218 7 51151	7292904 0887632 3716192	513015248636 511984751364
51323628 51256911 51156270	3808 5 2368 5 7096 5	13178434 12358054 11422798	883 948 685	51307 51214 51132	720131 194505 156511	5 51293 2 51193 7 51126	57292904 50887632 53716192	512765248636 511734751364
51298628 51231911 51131270	3808 5 2368 5 7096 5	12928434 12108054 11172798	883 948 685	51282 51189 51107	720131 194505 156511	5 51268 2 51168 7 51101	37292904 30887632 13716192	512515248636 511484751364
51273628 51206911 51106270	3808 5 2368 5 7096 5	12678434 11858054 09227986	883 948 850	51257 51164 50821	720131 194505 565117	5 51243 2 51143 0 50763	57292904 50887632 57161920	512265248636 511234751364
51248628 51181911 50812707	3808 5 2368 5 0960 5	12428434 11608054 06727986	1883 1948 1850	51232 51139 50571	720131 194505 565117	5 51218 2 51118 0 50513	37292904 30887632 37161920	512015248636 509847513640
51223628 51156911 50562707	3808 5 2368 5 0960 5	12178434 11358054 04227986	1883 1948 1850	51207 51114 50321	720131 194505 565117	5 51193 2 50930 0 50263	57292904 08876320 57161920	511765248636 507347513640
51198628 51131911 50312707	3808 5 2368 5 0960 5	11928434 11108054 01727986	1883 1948 5850	51182 508919 49715	720131 945052 651170	5 51168 0 50680 0 49137	37292904 08876320 71619200	511515248636 504847513640
51173628 51106911 49627070	3808 5 2368 5 9520 -4	11678434 08580549 9772013	1883 1487 1500 -	51157 50641 50178	720131 945051 434883	5 51143 3 50430 6 - 50236	57292904 08876311 52838086	511265248636 502347513637
51148628 50819112 -50187292	3808 5 3689 5 9048 -5	11428434 06080549 03272013	1883 1487 150 -	51132 50391 50428	720131 945051 434883	5 51118 3 50180 6 -50486	37292904 08876311 52838086	511015248636 -491524863630
51123628 50569112 50437292	3808 5 3689 5 9048 -5	03580549 05772013	1883 1487 1150 -	51107 50141 50678	720131 945051 434883	5 50937 3 -4969 6 -50736	72929048 11236890 52838086	507652486363 -502652486363

図3(b) G1 コードのサンプルインプットの線源

1

(303)

NIOBE-G 63 5 17

TEST | | E 51500000

I(R,W,U)

UJ#01					
RS/WQ	-509863838086	-509284348836	-508272013150	-506872929048	-505 152486363
10	51500000000	5 (5000000000	5 15000000000	51500000000	51500000000
9	5 4 4 9 9 9 7 5 8 7 0	514500442760	514500763260	514502419230	514505125300
8	514000342120	514000152630	514002171680	514002804710	5 4008470 40
7	513501184000	513499255700	513503741540	513503415130	513509640880
6	513001271120	512999910000	513002767250	513006692780	513010340550
5	512501726670	512500119480	512503206130	512506882710	512513897290
-4	512002314560	512000478050	512003913300	512008320170	512015770950
3	511503266160	511501073600	511505015660	511510934740	511519742900
2	511004273570	511003145260	511006907460	511015167410	511027496340
	505054651100	505076313320	505140277410	505260698430	505444178950
RS/WQ	-503191123689	-501080549487	501080549487	503191123689	505152486363
10	51500000000	51500000000	515008083480	515013600120	515012846340
.9	514513482320	514538874510	514530622690	514514908500	514515006700
ě	514017724170	514042366310	514032944870	514014784890	5 40 6700 20
7	513521016510	513545801020	513535657550	513514911360	513539779700
Ġ	513021916440	513048596390	513038368580	5130147 19470	513008185170
5	512526569070	512552328230	512542241310	512516652670	512508395050
Ă	512030381680	512057589790	512047908670	5120 19267 160	512008853850
3	51 1536094370	51 15645864 10	51 1555795540	511524310700	511511132640
2	511046803230	511077202000	511069693370	51 1034948210	511017428330
ī	505702841640	506054113610	505999696960	505624207450	505443679440
·					
RS/WQ	506872929048	508272013150	509284348836	509862838086	
10	515010943470	515007766020	514999188280	515000703520	
9	514515109990	514506361400	514498461000	514501211180	
8	514024721370	513996317670	514003584060	513998407900	
7	513504738210	513502279010	513499594600	513501054870	
6	513004679090	513002348920	512999084660	513002081050	
5	512503757630	512505023810	512495635080	512506195240	
4	512010010020	512000186380	51 19964 18 140	512011052530	
3	511505097980	511499244450	511498453540	511522414100	
2	511008232420	511002855680	511011744610	511043455010	
1	5054 1339 1360	505477969380	505579600090	50566 198 1 1 10	

N-1#453593000000 N-2#463588600000

図4 G1 コードのサンプルアウトプット

TEST 5 51100000 02 10	1500000 02 48100000	252714	12			
00000000	00000000					
51100000	51600000					
51350000 51300000 51250000	5 350000 5 300000 5 250000					
0000000 51100000 51100000 52357500 52237500	0000000 5110000 51100000 52350000 52200000	00000000 51100000 51100000 52350000 52157500	5 100000 5 100000 52337500 52 10000	5 100000 5 100000 52320000 5 575000	51100000 51100000 52297500 00000000	51100000 51100000 52270000
00000000 00000000 00000000 END	00000000 0000000 00000000	00000000 00000000 00000000	00000000 00000000 00000000	0000000 0000000 0000000	00000000 00000000 0000000	0000000 0000000 0000000

図5 G2 コードのサンプルインプット

(304)

NIOBE-G 63 6 20

TEST | E 51500000

I(R,W,U)

UJ#02 RS/W0	-509862838086	-509284348836	-508272013150	-506872929048	-505152486363
13	000000000000	00000000000	00000000000	00000000000	00000000000000000000000000000000000000
12	509962813960	511030540040	511102588540	511209123200	
11	512841104090	512905556030	513027117650	513201052640	
10	514781914050	514854080940	514984882160	515166334570	
9	516606465330	516675475280	516798409080	516966444330	517170164760
8	518254692230	518316724120	518425733190	518574481220	518752722680
7	519709628910	519763457710	519856701920	519984425050	521013633170
6	521096648990	521101169540	521108878720	521119487080	521132223640
5 4 3 2	521202399810 521288174560 521353963710 521353963710 521399785190	521206022040 521290880030 521355739740 521355739740 521400615250	521212143520 521295435490 521358750160 521358750160 521358750160	521220551170 521301525530 521362274010 521362274010 521362274010	521230814790 521309223860 521367424440 521367424440 521367424440
RS/WQ	-503 1911 23 689	-501080549487	501080549487	503191123689	505152486363 507936478410
12	511579689100	511905264080	512279779310	512643278010	512998915030
11	513686892460	514016150700	514374238610	514704531640	515019557980
10	515638884390	515943762720	516268676740	516565067090	516847230410
9	517399602920	517671866230	517962199490	518224770110	518474051810
8	5 895979 650	519199188390	519454599520	519683534940	519899941320
7	52 03 862050	521052521710	521074566560	521094124160	521112483700
6	52 147598890	521164971660	521183516100	521199773930	521214870170
5	52 243203000	521257250070	521272278460	521285280010	521297150700
4	521318624250	52 329320340	521340804270	521350598310	52 3593 3220
3	521373803100	52 38 108820	521388994220	521395624080	52 40 455290
2	521373803100	52 38 108820	521388994220	521395624080	52 40 455290
1	521408676000	52 4 2478 50	521416626010	521421533600	52 427035 10
RS/WQ	506872929048	508272013150	509284348836	509862838086	
13	511151051890	511435407550	511634903830	511749112000	
12	513340615160	513602794580	513786301210	513891282030	
11	515330768050	515569885750	515737815550	515833370150	
10	517120866850	517336848210	517489357550	517575414750	
9	51871078@00	518903764240	519040874570	519117439930	
8	521010042440	521027102740	521039216870	521045954580	
(654 7	52129259100 521228620050 521307870760 521367061120 521406854700	521240587470 521317241470 521373872990	521249391170 521324456230 521379846580 521417345560	521254439350 521328870720 521384048450 521422012310	
2	521406854700 521433245130	521412098190 521412098190 521440493700	521417345560 521449447670	52 4229 23 0 52 46 659 500	

N-1#441930000000 N-2#455510000000

図6 G2 コードのサンプルアウトプット

を示す。物体の外径、A が 5 cm のとき、半径方向 メッシュを10、角度メッシュを14、 \overline{Q} =14、L=12 χ =1.0、 Σ_{T} =0.5 cm⁻¹ とした。なおインプットの型 式については文献10を参照されたい。

G2 コードで TEST 1 の問題を扱った例を図5 お よび図6に示す。A=6cm, 半径方向メッシュ=12, 角度メッシュ=14, \overline{Q} =14, L=12, χ =1.0, Σ_{T} =

1

2.5cm^{−1} である。

プリントされた数字のうち, 浮動小数点型式のもの の読み方はつぎの通りである。

- (1) 上位の2桁は指数部であり、10の指数に50を加 えた数字を示す。
- (2) それ以下の数字は、小数点以下の仮数部を示す。

例えば 1.0000=0.10000×10¹→→5110000 110.239=0.110239×10³→→53110239 である。今後は,通常のE表示のプリントに変更する 予定である。

6. テスト計算の結果と検討

6.1 TEST 1

A = 6 cm 半径方向メッシュ=12 角度メッシュ=14 \overline{Q} =14 L=12 χ =1.0 Σ_{T} =0.5, 1.0, 2.5cm⁻¹

この結果のうち、 $\Sigma_T = 2.5 \text{cm}^{-1}$ の場合の結果を、

図 6 ……G2 コード

図7……厳密解の一部

図8……G1 コードの一部

にそれぞれ示す。

ω<0 の範囲では、G1 および G2 コードとも厳密 解との差は 0.4%以内である。

ω>0 では、ωが0に近い程、また外側境界に近い

程誤差が大きくなる。r=A, $\omega=0.986$ では誤差は約 0.9%であるのに対し, r=A, $\omega=0.108$ に於ては, 厳密解が 0.092 となるのに計算値は事実上 0 に近い。

 Σ_{T} =0.5cm⁻¹ および 1.0cm⁻¹ の場合は、上記の Σ_{T} =2.5cm⁻¹ の場合より誤差が大きくなる。

G1 コードと G2 コードでは有意の差は認められない。

6.2 TEST 3

A=1.2cm 半径方向メッシュ=6 角度メッシュ=14 $E_{max}=5$ MeV エネルギーグループ数=10 h=0.4 $\overline{Q}=14$ L=12 $\chi=1.0$ C=2.6980

G1 コードでの計算結果のうち、エネルギーグルー プ、j=9 および 7 の一部を図 9 に掲げる。ここでは ω が負の場合を示したが、他の角度においても同様であ るから省略する。なお厳密解は、j=9 では I=0.4

TEST-	
RS/JO	-

S/WQ	-5098628	-5068729	50 10805	5068729	5098628
12	0000000	0000000	4992581	5111916	5117656
11	5110074	5112359	5123626	5133816	5139078
10	5128558	5132305	5144449	5153716	5158500
9	5147977	5 5 959	5163276	5171617	5175922
8	5166226	5169957	5 80 103	5187517	5191344
7	5182711	5 8603 1	5084930	5201041	5210476
6	5197262	5210012	5210775	5211331	521 16 18
5	5210983	5211222	521 1858	5212321	5212561
4	5212040	5212232	5212741	5213111	5213303
3	52 2898	5213042	5213423	5213701	5213845
Ž	5213556	5213652	5213906	5214091	5214187
ī	5214014	5214062	5214189	5214281	521432

図7 テスト問題1の解析解

TEST

110011				C	E00000070000
RS/WQ	~509862838086	-506872929048	501080549487	508672929048	509862838086
10	000000000000	000000000000000000000000000000000000000	422703947040	511150785690	511749235840
15	E00067090070	511200043740	512279766460	513340405280	513891468190
	009903262230	511203043140	ELATT 460 4040	515770033930	615933532530
10	5 2841 80770	513200959820	514514094240	212220322002	0100000000000
ġ	514782099600	515166090700	516269494620	517 121517210	5175/5507750
ĕ	5 66067 15050	516966212960	517963324920	518711957020	519117452370
<u> </u>	510000110000	510500212500	E 10 45 6007600	501010015450	521045050170
7	518254911030	5 85 (4385550	519406220000	021010210400	521045353110
Â	519709759820	519984438090	521074799290	521129853590	521160201510
Ĕ	501006651790	521119/92160	521 183849630	521229902660	521254433210
U, U	021090001190	521113452100	50100000000	E01700766570	501700640900
4	521202409770	521220547190	521212109030	521309100550	021020040020
ż	521288214240	521302097560	521341545320	521369421790	521383023750
Š	521250214240	501707074700	501700154050	E01400040000	501A 17A54000
2	521353997900	521303834/00	021090104200	021400040020	
Ĩ	521399737430	521405136110	521418554310	521427982080	521432633510

図8 テスト問題1のG1コードでの計算結果例

TEST3					
01403					
RS/WQ	-509862838086	-509284348836	-508272013150	-50687 2929048	-505152486363
6	50400000000	504000000000	504000000000	50400000000	50400000000
5	503999966640	503999973010	504000000710	504000023390	504000054670
4	50399996 1990	503999965030	503999999320	504000032380	504000063580
3	503999972660	503999972110	503999995660	504000026380	504000052030
2	503999988460	50399998 1740	503999992870	504000007940	504000021540
Ĩ	50400028340	503999996090	503999997260	503999999930	50400002340
UJ#07					
RS/WQ	-509862838086	-509284348836	-508272013150	-506872929048	-505 152486363
6	51120000000	51120000000	51120000000	51120000000	51120000000
5	511 199965350	511 19996 1770	511199960850	511199953560	511199946760
Ă	511199938630	511199931400	511199931590	511199924380	511199916370
3	511 1999 18590	511199907150	511199908270	511199903950	511199897450
ž	511199903410	511199889310	511199887600	511199886380	511199882640
ī	511199895050	511 199882040	511199877700	511 199875370	511199873170
•	0	011100000000	0.1.00011100		

-V

図9 テストテスト問題3のG1コードでの計算結果例

TEST

TESTI	1				
RS/WQ	-509862838086	-506872929048	501080549487	506872929048	509862838086
10	515000000000	515000000000	5 15008083490	515006574900	514999413330
9	514499963170	514502448950	514514883 890	514505972800	514499328410
Ř	513999814790	514003968020	514015809790	514005409140	5 399 9 196 9 50
ž	513499695900	513504645730	513514883910	513504814500	513499032930
6	512999682870	513005325900	513013960260	513004247350	512998860320
5	512499828020	512506616980	512513052480	512503997270	512498676800
Ă	512000044570	512008692990	512011958260	512004045830	511998456790
3	511500141380	511509449170	511511080660	511504390890	511498862900
Ž	511000217070	511008919110	511010157430	511004984270	50999 149 1860
ī	505011211070	505079597480	505086780570	505057622350	505009398420
-					

図10 テスト問題11の G2 コードでの計算結果例

•				
TEST 16				
RS/WQ	506872929048	508272013150	509284348836	509862838086
10	506832715360	508208690810	509339774200	509830678990
9	506805391110	508204689210	509383992550	509790356110
8	5067 16538790	508277686250	509402208110	509743155150
7	506871437730	508228720480	509533465960	509580469800
6	506878 60460	508245493940	509699745840	509282310060
5	506909074010	508290644820	509978 180780	508643183700
Ă	506902353860	508554326300	511026078720	507 3278 19940
3	507167690850	509075255150	511019782530	504503871880
õ	508072076420	509370001300	506922340390	-492143077590
ī	502 143052050	-495687870680	-503323466020	-505214991730
•				

図11 テスト問題16の G1 コードでの計算結果例

TEST 16				
RS/WQ	506872929048	508272013150	509284348836	509862838086
10	506844237350	50826 1040470	509289138840	509893198840
9	506844410880	508262706960	509295026890	509904426520
8	506845585420	508266337160	509304380660	5099 19558 130
7	506848207910	508273597830	509318648830	509939911710
6	506854546630	508285938240	509340422780	509966684860
5	506867803230	508302601560	509375670610	509999 105480
4	506879466370	508326132970	509433359060	511003102940
3	506890946320	50 8368528370	509531959990	511002426140
2	506968843580	508455806040	50 9552341660	509934821810
1	506955396410	508301385610	509207294370	509541273260

•••••

図12 テスト問題16の G2 コードでの計算結果例

23

(プリントでは 50400000000 となる), j=7 では, I=1.2 (プリントでは51120000000) である。ここに 例示しない,他のエネルギーグループおよび角度にわ たって,最悪の場合でも計算値は厳密解と4桁一致し た。G1 コードとG2コードでは有意の差は認められ ない。

6.3 TEST 11 A = 5 cm半径方向メッシュ=10 角度メッシュ=14 $\overline{Q} = 14$ L = 12 $\chi = 1.0$ $\Sigma_T = 0.5 \text{ cm}^{-1}$

図4;G1 コードの結果

図10;G2 コードの結果の一部

厳密解との差は, ωが0に近く, かつ半径の小さい 部分で顕著になり, この点での誤差は G1 コードでは 20%にも達するのに対して, G2コードでは1.7%と極 めて小さい。

6.4 TEST 16

A = 5 cm 半径方向メッシュ=10 角度メッシュ=14 $\overline{Q} = 14$ L = 12 $\chi = 1.0$ $\Sigma_{T} = 0.5$ cm 図11; G1 コードの結果の一部

図12;G2 コードの結果の一部

 $\omega < 0$ の場合は両コードとも厳密解とよく一致する が、 $\omega > 0$ では G1コードは極めて大きな誤差を生ず る。特に中心に近い部分で著しく、負の値を得ること もある。図11は誤差の大きい $\omega > 0$ の部分を示したも のである。一方 G2 コードでは図12に見るように厳密 解との一致は良好である。

6.5 テスト計算の検討

以上のテスト計算およびここには記述を省略した他 のテスト計算から,Boltzmann 方程式の 空間 積分は 正しく行なわれているものと判定される。ただし,ガ ンマ線束の角度方向分布を有限項の Legendre 級数で 表現しているから,角度による値の変化が著しく大き い問題については取扱いが困難な場合がある。

TEST 3 および TEST 22 において計算値は厳密

解とよく一致した。従ってガンマ線の減速問題も正し く扱っているものと期待できる。

G2 コードは、G1 コードに比較して、一般に厳密 解からの偏差がより少なかった。

7. 計算時間

NIOBE コードの計算時間は、繰返し法による Boltzmann 方程式の空間積分、すなわち RUN3 に要す る時間によってほとんど占められる。RUN1 および RUN2 の計算時間は合計約 $10\sim20$ 秒 程度である。 RUN3の演算時間は 1 iteration に要する時間と、収 斂に至るまでの計算回数との積である。1 iteration の 計算時間を図2に示す。この計算時間は、半径方向メ ッシュ数、角度メッシュ数および角度内挿の項数Qに よって変化する。ここでは角度メッシュを14とした場 合について、半径方向メッシュの数を横軸に変数とし て取って図表で示した。

図から明らかな様に、同一条件の下では、G2 コー

ドの演算時間は G1 コードの70%である。

収斂に至る計算繰返し数は問題によって異ることは いうまでもない。前章に上げたテスト問題では通例数 回の繰返しで収斂し (ε =0.1%), 最も多い場合でも 10回であった。

ガンマ線の水中での減衰 (計算例)

計算例として、ガンマ線の水中での減衰の計算結果 を図13に示す。線源は 0.5MeV の等方線源で、半径 2 cm である。A=52cm とした。縦軸は $E=E_J$ グル ープの $e^{\mu_0 r}I_o(r,E)$ である。比較のために r^{-2} の直線 を実線で示す。

9. む す び

球対称形状における Boltzmann 輸送方程式を数値 積分によって解く解法, NIOBE を, NEAC 2206 計 算機用のコードとして作成し 06 NIOBE-G1 コード と名付けた。このコードを検討した結果,空間積分の 方法に改良を加えた 06 NIOBE-G2 コードを新たに 開発した。現在までの試計算の結果,G2 コードは, G1 コードに比較して,より誤差の少ない解を得るこ とができる。また,G2 コードの1 iteration の計算 に要する時間が G1 コードの70%であり,収斂に至る 繰返し計算の回数はほぼ同一であるから,綜合的な演 算時間も短縮される。

本研究に着手するに当って,種々助言をいただいた 中田東海支所長に感謝の意を表する。

記号

r:原点からの距離。

- ω:半径方向ベクトルとガンマ線の運動方向ベクト ルとのなす角の余弦。
- u: ガンマ線の波長 (Compton波長単位)。E をガ ンマ線のエネルギー (MeV), また m_oc² を電 子の静止質量エネルギーとすると、 u=m_oc/E
- I(r,ω,u):ガンマ線の徴分エネルギー束。位置 rで ω なる方向に運動するエネルギEなるガンマ線 によって運ばれるエネルギー量。単位 エネル ギ,単位面積,単位立体角,単位時間当り。
- G(r,ω,u):位置 r で方向ωをもつ、エネルギEな るガンマ線の線源強さ。(エネルギ単位)
- Σ_T : (r, u): 全線吸収係数。
- μ:散乱角の余弦,
- $\phi:$ 散乱の azimuthal angle。

C(r):位置 r にある物質の、単位体積当りの電子 数。(10²⁴ 個単位)

P_l(ω): 第 l 次の Legendre 多項式

参考文献

- C_{ARLSON} S.N., B_{ELL} G.I.; P/2386, 2nd. I.C.
 P.U.A.E. (1958)
- 2) P_{REISER} , S., $R_{\text{ABINOWITZ}}$, G., de D_{UFOUR} , E. ; ARL-TR-60-314 (1960)
- KATAOKA, I., TAKEUCHI, K. ; J. of Nucl. Sci. and Tech. 2, No.1 (1965)
- K_{ATAOKA}, I., T_{AKEUCHI}, K.; Papers of Ship Research Institute, No.6 (1965)
- Y_{etman}, D., Eisenman, B., Rabinowitz, G. ; NDA-2143-18 (1961)
- C_{ertaine}, J., M_{ittlenman}, P.S.; NDA-10-161 (1955)
- L_{OWAN}, A.N., D_{AVIDS}, N., L_{EVENSON}, A.; National Bureau of Standards, Applied Mathematics Series 37, 185 (1954)
- 8) C_{ertaine}, J.; NYO-6268 (1955)
- 9) R_{ICHTMYER}, R.D.; NYO-7696 (1957)
- 10) 竹內 清;船舶技術研究所報告 Vol.2, No.3, 197 (1965) (原稿受付 1965. 9.20)